ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
152# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
153#endif 170#endif
154 171
171# define EV_USE_POLL 1 188# define EV_USE_POLL 1
172# endif 189# endif
173#endif 190#endif
174 191
175#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
176# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
177#endif 198#endif
178 199
179#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
181#endif 202#endif
183#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 205# define EV_USE_PORT 0
185#endif 206#endif
186 207
187#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
188# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
189#endif 214#endif
190 215
191#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 217# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
202# else 227# else
203# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
204# endif 229# endif
205#endif 230#endif
206 231
207/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 249
209#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
212#endif 253#endif
233 274
234#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 276# include <winsock.h>
236#endif 277#endif
237 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
238/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
239 303
240/* 304/*
241 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
257#else 321#else
258# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
259# define noinline 323# define noinline
260# if __STDC_VERSION__ < 199901L 324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 325# define inline
262# endif 326# endif
263#endif 327#endif
264 328
265#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
280 344
281typedef ev_watcher *W; 345typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
284 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 354/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
288 357
289#ifdef _WIN32 358#ifdef _WIN32
290# include "ev_win32.c" 359# include "ev_win32.c"
291#endif 360#endif
292 361
313 perror (msg); 382 perror (msg);
314 abort (); 383 abort ();
315 } 384 }
316} 385}
317 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
318static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 403
320void 404void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 406{
323 alloc = cb; 407 alloc = cb;
324} 408}
325 409
326inline_speed void * 410inline_speed void *
327ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
328{ 412{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
330 414
331 if (!ptr && size) 415 if (!ptr && size)
332 { 416 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 418 abort ();
357 W w; 441 W w;
358 int events; 442 int events;
359} ANPENDING; 443} ANPENDING;
360 444
361#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
362typedef struct 447typedef struct
363{ 448{
364 WL head; 449 WL head;
365} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
366#endif 469#endif
367 470
368#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
369 472
370 struct ev_loop 473 struct ev_loop
441 ts.tv_sec = (time_t)delay; 544 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 546
444 nanosleep (&ts, 0); 547 nanosleep (&ts, 0);
445#elif defined(_WIN32) 548#elif defined(_WIN32)
446 Sleep (delay * 1e3); 549 Sleep ((unsigned long)(delay * 1e3));
447#else 550#else
448 struct timeval tv; 551 struct timeval tv;
449 552
450 tv.tv_sec = (time_t)delay; 553 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 557#endif
455 } 558 }
456} 559}
457 560
458/*****************************************************************************/ 561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 564
460int inline_size 565int inline_size
461array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
462{ 567{
463 int ncur = cur + 1; 568 int ncur = cur + 1;
464 569
465 do 570 do
466 ncur <<= 1; 571 ncur <<= 1;
467 while (cnt > ncur); 572 while (cnt > ncur);
468 573
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 576 {
472 ncur *= elem; 577 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 580 ncur /= elem;
476 } 581 }
477 582
478 return ncur; 583 return ncur;
590 695
591#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
592 if (events) 697 if (events)
593 { 698 {
594 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
595 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 } 706 }
598#endif 707#endif
599 708
600 { 709 {
688 } 797 }
689} 798}
690 799
691/*****************************************************************************/ 800/*****************************************************************************/
692 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
693void inline_speed 822void inline_speed
694upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
695{ 824{
696 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
697 827
698 while (k) 828 for (;;)
699 { 829 {
700 int p = (k - 1) >> 1; 830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 833
702 if (heap [p]->at <= w->at) 834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
703 break; 850 break;
704 851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
705 heap [k] = heap [p]; 914 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 916 k = p;
708 } 917 }
709 918
710 heap [k] = w; 919 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 921}
741 922
742void inline_size 923void inline_size
743adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
744{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 927 upheap (heap, k);
928 else
746 downheap (heap, N, k); 929 downheap (heap, N, k);
747} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
748 957
749/*****************************************************************************/ 958/*****************************************************************************/
750 959
751typedef struct 960typedef struct
752{ 961{
753 WL head; 962 WL head;
754 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
755} ANSIG; 964} ANSIG;
756 965
757static ANSIG *signals; 966static ANSIG *signals;
758static int signalmax; 967static int signalmax;
759 968
760static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 970
764void inline_size 971void inline_size
765signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
766{ 973{
767 while (count--) 974 while (count--)
771 978
772 ++base; 979 ++base;
773 } 980 }
774} 981}
775 982
776static void 983/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 984
827void inline_speed 985void inline_speed
828fd_intern (int fd) 986fd_intern (int fd)
829{ 987{
830#ifdef _WIN32 988#ifdef _WIN32
835 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 994#endif
837} 995}
838 996
839static void noinline 997static void noinline
840siginit (EV_P) 998evpipe_init (EV_P)
841{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
842 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
844 1019
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
848} 1088}
849 1089
850/*****************************************************************************/ 1090/*****************************************************************************/
851 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
852static WL childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
853 1130
854#ifndef _WIN32 1131#ifndef _WIN32
855 1132
856static ev_signal childev; 1133static ev_signal childev;
857 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
858void inline_speed 1139void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
860{ 1141{
861 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1144
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
864 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
865 { 1149 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1151 w->rpid = pid;
868 w->rstatus = status; 1152 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1154 }
1155 }
871} 1156}
872 1157
873#ifndef WCONTINUED 1158#ifndef WCONTINUED
874# define WCONTINUED 0 1159# define WCONTINUED 0
875#endif 1160#endif
884 if (!WCONTINUED 1169 if (!WCONTINUED
885 || errno != EINVAL 1170 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1172 return;
888 1173
889 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1177
893 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1181}
897 1182
898#endif 1183#endif
899 1184
900/*****************************************************************************/ 1185/*****************************************************************************/
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1304 have_monotonic = 1;
1020 } 1305 }
1021#endif 1306#endif
1022 1307
1023 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
1024 mn_now = get_clock (); 1309 mn_now = get_clock ();
1025 now_floor = mn_now; 1310 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1027 1312
1028 io_blocktime = 0.; 1313 io_blocktime = 0.;
1029 timeout_blocktime = 0.; 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1030 1321
1031 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
1032#ifndef _WIN32 1323#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1325 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1329 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1332
1042 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1335
1051#if EV_USE_PORT 1336#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1338#endif
1054#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
1062#endif 1347#endif
1063#if EV_USE_SELECT 1348#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1350#endif
1066 1351
1067 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
1069 } 1354 }
1070} 1355}
1071 1356
1072static void noinline 1357static void noinline
1073loop_destroy (EV_P) 1358loop_destroy (EV_P)
1074{ 1359{
1075 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1076 1378
1077#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
1079 close (fs_fd); 1381 close (fs_fd);
1080#endif 1382#endif
1117#if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1420 array_free (fork, EMPTY);
1119#endif 1421#endif
1120 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1122 1427
1123 backend = 0; 1428 backend = 0;
1124} 1429}
1125 1430
1431#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1127 1434
1128void inline_size 1435void inline_size
1129loop_fork (EV_P) 1436loop_fork (EV_P)
1130{ 1437{
1131#if EV_USE_PORT 1438#if EV_USE_PORT
1139#endif 1446#endif
1140#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1448 infy_fork (EV_A);
1142#endif 1449#endif
1143 1450
1144 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1145 { 1452 {
1146 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1147 1459
1148 ev_ref (EV_A); 1460 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1150 close (sigpipe [0]); 1470 close (evpipe [0]);
1151 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1152 1473
1153 while (pipe (sigpipe))
1154 syserr ("(libev) error creating pipe");
1155
1156 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1157 } 1477 }
1158 1478
1159 postfork = 0; 1479 postfork = 0;
1160} 1480}
1161 1481
1183} 1503}
1184 1504
1185void 1505void
1186ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1187{ 1507{
1188 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1189} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1190 1543
1191#endif 1544#endif
1192 1545
1193#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1194struct ev_loop * 1547struct ev_loop *
1196#else 1549#else
1197int 1550int
1198ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1199#endif 1552#endif
1200{ 1553{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1206 { 1555 {
1207#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1209#else 1558#else
1212 1561
1213 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1214 1563
1215 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1216 { 1565 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1566#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240#ifndef _WIN32 1587#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1243#endif 1590#endif
1244 1591
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1252} 1593}
1253 1594
1254void 1595void
1255ev_default_fork (void) 1596ev_default_fork (void)
1257#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1259#endif 1600#endif
1260 1601
1261 if (backend) 1602 if (backend)
1262 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1263} 1604}
1264 1605
1265/*****************************************************************************/ 1606/*****************************************************************************/
1266 1607
1267void 1608void
1272 1613
1273void inline_speed 1614void inline_speed
1274call_pending (EV_P) 1615call_pending (EV_P)
1275{ 1616{
1276 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1277 1620
1278 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1280 { 1623 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1286 1629
1287 p->w->pending = 0; 1630 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1289 } 1632 }
1290 } 1633 }
1291}
1292 1634
1293void inline_size 1635 EV_FREQUENT_CHECK;
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318} 1636}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372 1637
1373#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1374void inline_size 1639void inline_size
1375idle_reify (EV_P) 1640idle_reify (EV_P)
1376{ 1641{
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break; 1654 break;
1390 } 1655 }
1391 } 1656 }
1392 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1393} 1760}
1394#endif 1761#endif
1395 1762
1396void inline_speed 1763void inline_speed
1397time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1426 */ 1793 */
1427 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1428 { 1795 {
1429 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1430 1797
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 1799 return; /* all is well */
1433 1800
1434 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 1802 mn_now = get_clock ();
1436 now_floor = mn_now; 1803 now_floor = mn_now;
1452#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1454#endif 1821#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1457 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1458 } 1829 }
1459 1830
1460 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1461 } 1832 }
1462} 1833}
1476static int loop_done; 1847static int loop_done;
1477 1848
1478void 1849void
1479ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1480{ 1851{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1484 1853
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486 1855
1487 do 1856 do
1488 { 1857 {
1534 1903
1535 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1536 1905
1537 if (timercnt) 1906 if (timercnt)
1538 { 1907 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1541 } 1910 }
1542 1911
1543#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 1913 if (periodiccnt)
1545 { 1914 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1548 } 1917 }
1549#endif 1918#endif
1550 1919
1551 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1584 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 1956
1588 call_pending (EV_A); 1957 call_pending (EV_A);
1589
1590 } 1958 }
1591 while (expect_true (activecnt && !loop_done)); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1592 1964
1593 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1595} 1967}
1596 1968
1685 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1686 return; 2058 return;
1687 2059
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1689 2061
2062 EV_FREQUENT_CHECK;
2063
1690 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1692 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1693 2067
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1696} 2072}
1697 2073
1698void noinline 2074void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1700{ 2076{
1701 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1703 return; 2079 return;
1704 2080
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1706 2084
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1709 2087
1710 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1711} 2091}
1712 2092
1713void noinline 2093void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1715{ 2095{
1716 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1717 return; 2097 return;
1718 2098
1719 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1720 2100
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1727 2111
2112 EV_FREQUENT_CHECK;
2113
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2115}
1730 2116
1731void noinline 2117void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2119{
1734 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1736 return; 2122 return;
1737 2123
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1739 2125
1740 { 2126 {
1741 int active = ((W)w)->active; 2127 int active = ev_active (w);
1742 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1743 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1744 { 2134 {
1745 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1747 } 2137 }
1748 } 2138 }
1749 2139
1750 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1751 2143
1752 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1753} 2145}
1754 2146
1755void noinline 2147void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1757{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1758 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1759 { 2153 {
1760 if (w->repeat) 2154 if (w->repeat)
1761 { 2155 {
1762 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1764 } 2159 }
1765 else 2160 else
1766 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1767 } 2162 }
1768 else if (w->repeat) 2163 else if (w->repeat)
1769 { 2164 {
1770 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1772 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1773} 2170}
1774 2171
1775#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1776void noinline 2173void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2175{
1779 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1780 return; 2177 return;
1781 2178
1782 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2181 else if (w->interval)
1785 { 2182 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2186 }
1790 else 2187 else
1791 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1792 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1797 2198
2199 EV_FREQUENT_CHECK;
2200
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2202}
1800 2203
1801void noinline 2204void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2206{
1804 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1806 return; 2209 return;
1807 2210
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1809 2212
1810 { 2213 {
1811 int active = ((W)w)->active; 2214 int active = ev_active (w);
1812 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1813 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2221 {
1815 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1817 } 2224 }
1818 } 2225 }
1819 2226
2227 EV_FREQUENT_CHECK;
2228
1820 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1821} 2230}
1822 2231
1823void noinline 2232void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1841#endif 2250#endif
1842 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1843 return; 2252 return;
1844 2253
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
1846 2259
1847 { 2260 {
1848#ifndef _WIN32 2261#ifndef _WIN32
1849 sigset_t full, prev; 2262 sigset_t full, prev;
1850 sigfillset (&full); 2263 sigfillset (&full);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2276
1864 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1865 { 2278 {
1866#if _WIN32 2279#if _WIN32
1867 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1868#else 2281#else
1869 struct sigaction sa; 2282 struct sigaction sa;
1870 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1874#endif 2287#endif
1875 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
1876} 2291}
1877 2292
1878void noinline 2293void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2295{
1881 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1883 return; 2298 return;
1884 2299
2300 EV_FREQUENT_CHECK;
2301
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1887 2304
1888 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1889 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1890} 2309}
1891 2310
1892void 2311void
1893ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1894{ 2313{
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2316#endif
1898 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1899 return; 2318 return;
1900 2319
2320 EV_FREQUENT_CHECK;
2321
1901 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1903} 2326}
1904 2327
1905void 2328void
1906ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1907{ 2330{
1908 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1910 return; 2333 return;
1911 2334
2335 EV_FREQUENT_CHECK;
2336
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1914} 2341}
1915 2342
1916#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1917 2344
1918# ifdef _WIN32 2345# ifdef _WIN32
1936 if (w->wd < 0) 2363 if (w->wd < 0)
1937 { 2364 {
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939 2366
1940 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2371 {
1943 char path [4096]; 2372 char path [4096];
1944 strcpy (path, w->path); 2373 strcpy (path, w->path);
1945 2374
2144 else 2573 else
2145#endif 2574#endif
2146 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2147 2576
2148 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2149} 2580}
2150 2581
2151void 2582void
2152ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2153{ 2584{
2154 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2156 return; 2587 return;
2157 2588
2589 EV_FREQUENT_CHECK;
2590
2158#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2160#endif 2593#endif
2161 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2162 2595
2163 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2164} 2599}
2165#endif 2600#endif
2166 2601
2167#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2168void 2603void
2170{ 2605{
2171 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2172 return; 2607 return;
2173 2608
2174 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2175 2612
2176 { 2613 {
2177 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2178 2615
2179 ++idleall; 2616 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2181 2618
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2184 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2185} 2624}
2186 2625
2187void 2626void
2188ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2189{ 2628{
2190 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2192 return; 2631 return;
2193 2632
2633 EV_FREQUENT_CHECK;
2634
2194 { 2635 {
2195 int active = ((W)w)->active; 2636 int active = ev_active (w);
2196 2637
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 2640
2200 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2201 --idleall; 2642 --idleall;
2202 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2203} 2646}
2204#endif 2647#endif
2205 2648
2206void 2649void
2207ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 2651{
2209 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2210 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2211 2656
2212 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2215} 2662}
2216 2663
2217void 2664void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 2666{
2220 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2222 return; 2669 return;
2223 2670
2671 EV_FREQUENT_CHECK;
2672
2224 { 2673 {
2225 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2226 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2228 } 2678 }
2229 2679
2230 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2231} 2683}
2232 2684
2233void 2685void
2234ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2235{ 2687{
2236 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2237 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2238 2692
2239 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2242} 2698}
2243 2699
2244void 2700void
2245ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2246{ 2702{
2247 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2249 return; 2705 return;
2250 2706
2707 EV_FREQUENT_CHECK;
2708
2251 { 2709 {
2252 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2253 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2255 } 2714 }
2256 2715
2257 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2258} 2719}
2259 2720
2260#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2261void noinline 2722void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2309 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 2773 }
2313 2774
2775 EV_FREQUENT_CHECK;
2776
2314 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2316 2779
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2320 2783
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 2785
2323 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2324} 2789}
2325 2790
2326void 2791void
2327ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2328{ 2793{
2329 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2331 return; 2796 return;
2332 2797
2798 EV_FREQUENT_CHECK;
2799
2333 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2335 2802
2336 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2337} 2806}
2338#endif 2807#endif
2339 2808
2340#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2341void 2810void
2342ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2343{ 2812{
2344 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2345 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2346 2817
2347 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2350} 2823}
2351 2824
2352void 2825void
2353ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2354{ 2827{
2355 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2357 return; 2830 return;
2358 2831
2832 EV_FREQUENT_CHECK;
2833
2359 { 2834 {
2360 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2361 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2363 } 2839 }
2364 2840
2365 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2366} 2891}
2367#endif 2892#endif
2368 2893
2369/*****************************************************************************/ 2894/*****************************************************************************/
2370 2895

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines