ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
268# include <winsock.h> 276# include <winsock.h>
269#endif 277#endif
270 278
271#if EV_USE_EVENTFD 279#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
273int eventfd (unsigned int initval, int flags); 285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
274#endif 289#endif
275 290
276/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
277 303
278/* 304/*
279 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
295#else 321#else
296# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
297# define noinline 323# define noinline
298# if __STDC_VERSION__ < 199901L 324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 325# define inline
300# endif 326# endif
301#endif 327#endif
302 328
303#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
318 344
319typedef ev_watcher *W; 345typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
322 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
323#if EV_USE_MONOTONIC 352#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 354/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 356#endif
353 perror (msg); 382 perror (msg);
354 abort (); 383 abort ();
355 } 384 }
356} 385}
357 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
358static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 403
360void 404void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 406{
363 alloc = cb; 407 alloc = cb;
364} 408}
365 409
366inline_speed void * 410inline_speed void *
367ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
368{ 412{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
370 414
371 if (!ptr && size) 415 if (!ptr && size)
372 { 416 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 418 abort ();
397 W w; 441 W w;
398 int events; 442 int events;
399} ANPENDING; 443} ANPENDING;
400 444
401#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
402typedef struct 447typedef struct
403{ 448{
404 WL head; 449 WL head;
405} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
406#endif 469#endif
407 470
408#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
409 472
410 struct ev_loop 473 struct ev_loop
495 } 558 }
496} 559}
497 560
498/*****************************************************************************/ 561/*****************************************************************************/
499 562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
500int inline_size 565int inline_size
501array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
502{ 567{
503 int ncur = cur + 1; 568 int ncur = cur + 1;
504 569
505 do 570 do
506 ncur <<= 1; 571 ncur <<= 1;
507 while (cnt > ncur); 572 while (cnt > ncur);
508 573
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 576 {
512 ncur *= elem; 577 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 580 ncur /= elem;
516 } 581 }
517 582
518 return ncur; 583 return ncur;
732 } 797 }
733} 798}
734 799
735/*****************************************************************************/ 800/*****************************************************************************/
736 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
737void inline_speed 822void inline_speed
738upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
739{ 824{
740 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
741 827
742 while (k) 828 for (;;)
743 { 829 {
744 int p = (k - 1) >> 1; 830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
745 833
746 if (heap [p]->at <= w->at) 834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
747 break; 850 break;
748 851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
749 heap [k] = heap [p]; 914 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 916 k = p;
752 } 917 }
753 918
754 heap [k] = w; 919 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784} 921}
785 922
786void inline_size 923void inline_size
787adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
788{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 927 upheap (heap, k);
928 else
790 downheap (heap, N, k); 929 downheap (heap, N, k);
791} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
792 957
793/*****************************************************************************/ 958/*****************************************************************************/
794 959
795typedef struct 960typedef struct
796{ 961{
884pipecb (EV_P_ ev_io *iow, int revents) 1049pipecb (EV_P_ ev_io *iow, int revents)
885{ 1050{
886#if EV_USE_EVENTFD 1051#if EV_USE_EVENTFD
887 if (evfd >= 0) 1052 if (evfd >= 0)
888 { 1053 {
889 uint64_t counter = 1; 1054 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1055 read (evfd, &counter, sizeof (uint64_t));
891 } 1056 }
892 else 1057 else
893#endif 1058#endif
894 { 1059 {
1163 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1329 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1332
1168 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
1170 1335
1171#if EV_USE_PORT 1336#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1338#endif
1261#endif 1426#endif
1262 1427
1263 backend = 0; 1428 backend = 0;
1264} 1429}
1265 1430
1431#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1267 1434
1268void inline_size 1435void inline_size
1269loop_fork (EV_P) 1436loop_fork (EV_P)
1270{ 1437{
1271#if EV_USE_PORT 1438#if EV_USE_PORT
1338void 1505void
1339ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1340{ 1507{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1342} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1343 1543
1344#endif 1544#endif
1345 1545
1346#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1347struct ev_loop * 1547struct ev_loop *
1414void inline_speed 1614void inline_speed
1415call_pending (EV_P) 1615call_pending (EV_P)
1416{ 1616{
1417 int pri; 1617 int pri;
1418 1618
1619 EV_FREQUENT_CHECK;
1620
1419 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1421 { 1623 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 1625
1427 1629
1428 p->w->pending = 0; 1630 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1430 } 1632 }
1431 } 1633 }
1432}
1433 1634
1434void inline_size 1635 EV_FREQUENT_CHECK;
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459} 1636}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513 1637
1514#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1515void inline_size 1639void inline_size
1516idle_reify (EV_P) 1640idle_reify (EV_P)
1517{ 1641{
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1654 break;
1531 } 1655 }
1532 } 1656 }
1533 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1534} 1760}
1535#endif 1761#endif
1536 1762
1537void inline_speed 1763void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1567 */ 1793 */
1568 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1569 { 1795 {
1570 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1571 1797
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1799 return; /* all is well */
1574 1800
1575 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1802 mn_now = get_clock ();
1577 now_floor = mn_now; 1803 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1595#endif 1821#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1599 } 1829 }
1600 1830
1601 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1602 } 1832 }
1603} 1833}
1673 1903
1674 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1675 1905
1676 if (timercnt) 1906 if (timercnt)
1677 { 1907 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1680 } 1910 }
1681 1911
1682#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1913 if (periodiccnt)
1684 { 1914 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1687 } 1917 }
1688#endif 1918#endif
1689 1919
1690 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1827 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1828 return; 2058 return;
1829 2059
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1831 2061
2062 EV_FREQUENT_CHECK;
2063
1832 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1834 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1835 2067
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1838} 2072}
1839 2073
1840void noinline 2074void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1842{ 2076{
1843 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1845 return; 2079 return;
1846 2080
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1848 2084
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1851 2087
1852 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1853} 2091}
1854 2092
1855void noinline 2093void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1857{ 2095{
1858 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1859 return; 2097 return;
1860 2098
1861 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1862 2100
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1869 2111
2112 EV_FREQUENT_CHECK;
2113
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2115}
1872 2116
1873void noinline 2117void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2119{
1876 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1878 return; 2122 return;
1879 2123
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1881 2125
1882 { 2126 {
1883 int active = ((W)w)->active; 2127 int active = ev_active (w);
1884 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1885 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1886 { 2134 {
1887 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1889 } 2137 }
1890 } 2138 }
1891 2139
1892 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1893 2143
1894 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1895} 2145}
1896 2146
1897void noinline 2147void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1899{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1900 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1901 { 2153 {
1902 if (w->repeat) 2154 if (w->repeat)
1903 { 2155 {
1904 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1906 } 2159 }
1907 else 2160 else
1908 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1909 } 2162 }
1910 else if (w->repeat) 2163 else if (w->repeat)
1911 { 2164 {
1912 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1914 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1915} 2170}
1916 2171
1917#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1918void noinline 2173void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2175{
1921 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1922 return; 2177 return;
1923 2178
1924 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2181 else if (w->interval)
1927 { 2182 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2186 }
1932 else 2187 else
1933 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1934 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1939 2198
2199 EV_FREQUENT_CHECK;
2200
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2202}
1942 2203
1943void noinline 2204void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2206{
1946 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1948 return; 2209 return;
1949 2210
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1951 2212
1952 { 2213 {
1953 int active = ((W)w)->active; 2214 int active = ev_active (w);
1954 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1955 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2221 {
1957 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1959 } 2224 }
1960 } 2225 }
1961 2226
2227 EV_FREQUENT_CHECK;
2228
1962 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1963} 2230}
1964 2231
1965void noinline 2232void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1985 return; 2252 return;
1986 2253
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1988 2255
1989 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
1990 2259
1991 { 2260 {
1992#ifndef _WIN32 2261#ifndef _WIN32
1993 sigset_t full, prev; 2262 sigset_t full, prev;
1994 sigfillset (&full); 2263 sigfillset (&full);
2015 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2018#endif 2287#endif
2019 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
2020} 2291}
2021 2292
2022void noinline 2293void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2295{
2025 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
2027 return; 2298 return;
2028 2299
2300 EV_FREQUENT_CHECK;
2301
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
2031 2304
2032 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
2034} 2309}
2035 2310
2036void 2311void
2037ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
2038{ 2313{
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2316#endif
2042 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
2043 return; 2318 return;
2044 2319
2320 EV_FREQUENT_CHECK;
2321
2045 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2047} 2326}
2048 2327
2049void 2328void
2050ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
2051{ 2330{
2052 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2054 return; 2333 return;
2055 2334
2335 EV_FREQUENT_CHECK;
2336
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
2058} 2341}
2059 2342
2060#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
2061 2344
2062# ifdef _WIN32 2345# ifdef _WIN32
2080 if (w->wd < 0) 2363 if (w->wd < 0)
2081 { 2364 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2366
2084 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2371 {
2087 char path [4096]; 2372 char path [4096];
2088 strcpy (path, w->path); 2373 strcpy (path, w->path);
2089 2374
2288 else 2573 else
2289#endif 2574#endif
2290 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2291 2576
2292 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2293} 2580}
2294 2581
2295void 2582void
2296ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2584{
2298 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2300 return; 2587 return;
2301 2588
2589 EV_FREQUENT_CHECK;
2590
2302#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2304#endif 2593#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2306 2595
2307 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2308} 2599}
2309#endif 2600#endif
2310 2601
2311#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2312void 2603void
2314{ 2605{
2315 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2316 return; 2607 return;
2317 2608
2318 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2319 2612
2320 { 2613 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2322 2615
2323 ++idleall; 2616 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2325 2618
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2328 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2329} 2624}
2330 2625
2331void 2626void
2332ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2628{
2334 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2336 return; 2631 return;
2337 2632
2633 EV_FREQUENT_CHECK;
2634
2338 { 2635 {
2339 int active = ((W)w)->active; 2636 int active = ev_active (w);
2340 2637
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2640
2344 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2345 --idleall; 2642 --idleall;
2346 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2347} 2646}
2348#endif 2647#endif
2349 2648
2350void 2649void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2651{
2353 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2354 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2355 2656
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2359} 2662}
2360 2663
2361void 2664void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2666{
2364 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2366 return; 2669 return;
2367 2670
2671 EV_FREQUENT_CHECK;
2672
2368 { 2673 {
2369 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2370 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2372 } 2678 }
2373 2679
2374 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2375} 2683}
2376 2684
2377void 2685void
2378ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2379{ 2687{
2380 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2381 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2382 2692
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2386} 2698}
2387 2699
2388void 2700void
2389ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2390{ 2702{
2391 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2393 return; 2705 return;
2394 2706
2707 EV_FREQUENT_CHECK;
2708
2395 { 2709 {
2396 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2397 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2399 } 2714 }
2400 2715
2401 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2402} 2719}
2403 2720
2404#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2405void noinline 2722void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2453 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 2773 }
2457 2774
2775 EV_FREQUENT_CHECK;
2776
2458 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2460 2779
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2464 2783
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 2785
2467 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2468} 2789}
2469 2790
2470void 2791void
2471ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2472{ 2793{
2473 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2475 return; 2796 return;
2476 2797
2798 EV_FREQUENT_CHECK;
2799
2477 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2479 2802
2480 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2481} 2806}
2482#endif 2807#endif
2483 2808
2484#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2485void 2810void
2486ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2487{ 2812{
2488 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2489 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2490 2817
2491 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2494} 2823}
2495 2824
2496void 2825void
2497ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2498{ 2827{
2499 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2501 return; 2830 return;
2502 2831
2832 EV_FREQUENT_CHECK;
2833
2503 { 2834 {
2504 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2505 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2507 } 2839 }
2508 2840
2509 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2510} 2844}
2511#endif 2845#endif
2512 2846
2513#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2514void 2848void
2516{ 2850{
2517 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2518 return; 2852 return;
2519 2853
2520 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2521 2857
2522 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2525} 2863}
2526 2864
2527void 2865void
2528ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2529{ 2867{
2530 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2532 return; 2870 return;
2533 2871
2872 EV_FREQUENT_CHECK;
2873
2534 { 2874 {
2535 int active = ((W)w)->active; 2875 int active = ev_active (w);
2876
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2878 ev_active (asyncs [active - 1]) = active;
2538 } 2879 }
2539 2880
2540 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2541} 2884}
2542 2885
2543void 2886void
2544ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2545{ 2888{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines