ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
279} 287}
280# endif 288# endif
281#endif 289#endif
282 290
283/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
284 303
285/* 304/*
286 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
325 344
326typedef ev_watcher *W; 345typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
329 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
330#if EV_USE_MONOTONIC 352#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 354/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 356#endif
419 W w; 441 W w;
420 int events; 442 int events;
421} ANPENDING; 443} ANPENDING;
422 444
423#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
424typedef struct 447typedef struct
425{ 448{
426 WL head; 449 WL head;
427} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
428#endif 469#endif
429 470
430#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
431 472
432 struct ev_loop 473 struct ev_loop
517 } 558 }
518} 559}
519 560
520/*****************************************************************************/ 561/*****************************************************************************/
521 562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
522int inline_size 565int inline_size
523array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
524{ 567{
525 int ncur = cur + 1; 568 int ncur = cur + 1;
526 569
527 do 570 do
528 ncur <<= 1; 571 ncur <<= 1;
529 while (cnt > ncur); 572 while (cnt > ncur);
530 573
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 576 {
534 ncur *= elem; 577 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 580 ncur /= elem;
538 } 581 }
539 582
540 return ncur; 583 return ncur;
754 } 797 }
755} 798}
756 799
757/*****************************************************************************/ 800/*****************************************************************************/
758 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
759/* towards the root */ 901/* towards the root */
760void inline_speed 902void inline_speed
761upheap (WT *heap, int k) 903upheap (ANHE *heap, int k)
762{ 904{
763 WT w = heap [k]; 905 ANHE he = heap [k];
764 906
765 while (k) 907 for (;;)
766 { 908 {
767 int p = (k - 1) >> 1; 909 int p = HPARENT (k);
768 910
769 if (heap [p]->at <= w->at) 911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 912 break;
771 913
772 heap [k] = heap [p]; 914 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 916 k = p;
775 } 917 }
776 918
777 heap [k] = w; 919 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808} 921}
809 922
810void inline_size 923void inline_size
811adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
812{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 927 upheap (heap, k);
928 else
814 downheap (heap, N, k); 929 downheap (heap, N, k);
815} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
816 957
817/*****************************************************************************/ 958/*****************************************************************************/
818 959
819typedef struct 960typedef struct
820{ 961{
908pipecb (EV_P_ ev_io *iow, int revents) 1049pipecb (EV_P_ ev_io *iow, int revents)
909{ 1050{
910#if EV_USE_EVENTFD 1051#if EV_USE_EVENTFD
911 if (evfd >= 0) 1052 if (evfd >= 0)
912 { 1053 {
913 uint64_t counter = 1; 1054 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1055 read (evfd, &counter, sizeof (uint64_t));
915 } 1056 }
916 else 1057 else
917#endif 1058#endif
918 { 1059 {
1365ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1366{ 1507{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1368} 1509}
1369 1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1370#endif 1544#endif
1371 1545
1372#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1373struct ev_loop * 1547struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1548ev_default_loop_init (unsigned int flags)
1440void inline_speed 1614void inline_speed
1441call_pending (EV_P) 1615call_pending (EV_P)
1442{ 1616{
1443 int pri; 1617 int pri;
1444 1618
1619 EV_FREQUENT_CHECK;
1620
1445 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1446 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1447 { 1623 {
1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1449 1625
1453 1629
1454 p->w->pending = 0; 1630 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1456 } 1632 }
1457 } 1633 }
1458}
1459 1634
1460void inline_size 1635 EV_FREQUENT_CHECK;
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485} 1636}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539 1637
1540#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1541void inline_size 1639void inline_size
1542idle_reify (EV_P) 1640idle_reify (EV_P)
1543{ 1641{
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1654 break;
1557 } 1655 }
1558 } 1656 }
1559 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1560} 1760}
1561#endif 1761#endif
1562 1762
1563void inline_speed 1763void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1593 */ 1793 */
1594 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1595 { 1795 {
1596 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1597 1797
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1799 return; /* all is well */
1600 1800
1601 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1802 mn_now = get_clock ();
1603 now_floor = mn_now; 1803 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1621#endif 1821#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1625 } 1829 }
1626 1830
1627 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1628 } 1832 }
1629} 1833}
1699 1903
1700 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1701 1905
1702 if (timercnt) 1906 if (timercnt)
1703 { 1907 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1706 } 1910 }
1707 1911
1708#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1913 if (periodiccnt)
1710 { 1914 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1713 } 1917 }
1714#endif 1918#endif
1715 1919
1716 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1853 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1854 return; 2058 return;
1855 2059
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1857 2061
2062 EV_FREQUENT_CHECK;
2063
1858 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1860 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1861 2067
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1864} 2072}
1865 2073
1866void noinline 2074void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1868{ 2076{
1869 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1871 return; 2079 return;
1872 2080
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1874 2084
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1877 2087
1878 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1879} 2091}
1880 2092
1881void noinline 2093void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1883{ 2095{
1884 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1885 return; 2097 return;
1886 2098
1887 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1888 2100
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1895 2111
2112 EV_FREQUENT_CHECK;
2113
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2115}
1898 2116
1899void noinline 2117void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2119{
1902 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1904 return; 2122 return;
1905 2123
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1907 2125
1908 { 2126 {
1909 int active = ((W)w)->active; 2127 int active = ev_active (w);
1910 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1911 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1912 { 2134 {
1913 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1915 } 2137 }
1916 } 2138 }
1917 2139
1918 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1919 2143
1920 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1921} 2145}
1922 2146
1923void noinline 2147void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1925{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1926 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1927 { 2153 {
1928 if (w->repeat) 2154 if (w->repeat)
1929 { 2155 {
1930 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1932 } 2159 }
1933 else 2160 else
1934 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1935 } 2162 }
1936 else if (w->repeat) 2163 else if (w->repeat)
1937 { 2164 {
1938 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1940 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1941} 2170}
1942 2171
1943#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1944void noinline 2173void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2175{
1947 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1948 return; 2177 return;
1949 2178
1950 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2181 else if (w->interval)
1953 { 2182 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2186 }
1958 else 2187 else
1959 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1960 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1965 2198
2199 EV_FREQUENT_CHECK;
2200
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2202}
1968 2203
1969void noinline 2204void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2206{
1972 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1974 return; 2209 return;
1975 2210
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1977 2212
1978 { 2213 {
1979 int active = ((W)w)->active; 2214 int active = ev_active (w);
1980 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1981 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2221 {
1983 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1985 } 2224 }
1986 } 2225 }
1987 2226
2227 EV_FREQUENT_CHECK;
2228
1988 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1989} 2230}
1990 2231
1991void noinline 2232void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
2011 return; 2252 return;
2012 2253
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2014 2255
2015 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2016 2259
2017 { 2260 {
2018#ifndef _WIN32 2261#ifndef _WIN32
2019 sigset_t full, prev; 2262 sigset_t full, prev;
2020 sigfillset (&full); 2263 sigfillset (&full);
2041 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2044#endif 2287#endif
2045 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
2046} 2291}
2047 2292
2048void noinline 2293void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2295{
2051 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
2053 return; 2298 return;
2054 2299
2300 EV_FREQUENT_CHECK;
2301
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
2057 2304
2058 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
2060} 2309}
2061 2310
2062void 2311void
2063ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
2064{ 2313{
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2316#endif
2068 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
2069 return; 2318 return;
2070 2319
2320 EV_FREQUENT_CHECK;
2321
2071 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2073} 2326}
2074 2327
2075void 2328void
2076ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
2077{ 2330{
2078 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2080 return; 2333 return;
2081 2334
2335 EV_FREQUENT_CHECK;
2336
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
2084} 2341}
2085 2342
2086#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
2087 2344
2088# ifdef _WIN32 2345# ifdef _WIN32
2106 if (w->wd < 0) 2363 if (w->wd < 0)
2107 { 2364 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2366
2110 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2371 {
2113 char path [4096]; 2372 char path [4096];
2114 strcpy (path, w->path); 2373 strcpy (path, w->path);
2115 2374
2314 else 2573 else
2315#endif 2574#endif
2316 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2317 2576
2318 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2319} 2580}
2320 2581
2321void 2582void
2322ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2584{
2324 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2326 return; 2587 return;
2327 2588
2589 EV_FREQUENT_CHECK;
2590
2328#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2330#endif 2593#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2332 2595
2333 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2334} 2599}
2335#endif 2600#endif
2336 2601
2337#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2338void 2603void
2340{ 2605{
2341 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2342 return; 2607 return;
2343 2608
2344 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2345 2612
2346 { 2613 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2348 2615
2349 ++idleall; 2616 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2351 2618
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2354 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2355} 2624}
2356 2625
2357void 2626void
2358ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2628{
2360 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2362 return; 2631 return;
2363 2632
2633 EV_FREQUENT_CHECK;
2634
2364 { 2635 {
2365 int active = ((W)w)->active; 2636 int active = ev_active (w);
2366 2637
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2640
2370 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2371 --idleall; 2642 --idleall;
2372 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2373} 2646}
2374#endif 2647#endif
2375 2648
2376void 2649void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2651{
2379 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2380 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2381 2656
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2385} 2662}
2386 2663
2387void 2664void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2666{
2390 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2392 return; 2669 return;
2393 2670
2671 EV_FREQUENT_CHECK;
2672
2394 { 2673 {
2395 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2396 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2398 } 2678 }
2399 2679
2400 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2401} 2683}
2402 2684
2403void 2685void
2404ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2405{ 2687{
2406 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2407 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2408 2692
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2412} 2698}
2413 2699
2414void 2700void
2415ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2416{ 2702{
2417 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2419 return; 2705 return;
2420 2706
2707 EV_FREQUENT_CHECK;
2708
2421 { 2709 {
2422 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2423 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2425 } 2714 }
2426 2715
2427 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2428} 2719}
2429 2720
2430#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2431void noinline 2722void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2479 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 2773 }
2483 2774
2775 EV_FREQUENT_CHECK;
2776
2484 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2486 2779
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2490 2783
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 2785
2493 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2494} 2789}
2495 2790
2496void 2791void
2497ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2498{ 2793{
2499 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2501 return; 2796 return;
2502 2797
2798 EV_FREQUENT_CHECK;
2799
2503 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2505 2802
2506 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2507} 2806}
2508#endif 2807#endif
2509 2808
2510#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2511void 2810void
2512ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2513{ 2812{
2514 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2515 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2516 2817
2517 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2520} 2823}
2521 2824
2522void 2825void
2523ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2524{ 2827{
2525 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2527 return; 2830 return;
2528 2831
2832 EV_FREQUENT_CHECK;
2833
2529 { 2834 {
2530 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2531 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2533 } 2839 }
2534 2840
2535 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2536} 2844}
2537#endif 2845#endif
2538 2846
2539#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2540void 2848void
2542{ 2850{
2543 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2544 return; 2852 return;
2545 2853
2546 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2547 2857
2548 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2551} 2863}
2552 2864
2553void 2865void
2554ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2555{ 2867{
2556 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2558 return; 2870 return;
2559 2871
2872 EV_FREQUENT_CHECK;
2873
2560 { 2874 {
2561 int active = ((W)w)->active; 2875 int active = ev_active (w);
2876
2562 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 2878 ev_active (asyncs [active - 1]) = active;
2564 } 2879 }
2565 2880
2566 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2567} 2884}
2568 2885
2569void 2886void
2570ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2571{ 2888{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines