ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
279} 287}
280# endif 288# endif
281#endif 289#endif
282 290
283/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
284 303
285/* 304/*
286 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
422 W w; 441 W w;
423 int events; 442 int events;
424} ANPENDING; 443} ANPENDING;
425 444
426#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
427typedef struct 447typedef struct
428{ 448{
429 WL head; 449 WL head;
430} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
431#endif 469#endif
432 470
433#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
434 472
435 struct ev_loop 473 struct ev_loop
520 } 558 }
521} 559}
522 560
523/*****************************************************************************/ 561/*****************************************************************************/
524 562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
525int inline_size 565int inline_size
526array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
527{ 567{
528 int ncur = cur + 1; 568 int ncur = cur + 1;
529 569
530 do 570 do
531 ncur <<= 1; 571 ncur <<= 1;
532 while (cnt > ncur); 572 while (cnt > ncur);
533 573
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 576 {
537 ncur *= elem; 577 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 580 ncur /= elem;
541 } 581 }
542 582
543 return ncur; 583 return ncur;
757 } 797 }
758} 798}
759 799
760/*****************************************************************************/ 800/*****************************************************************************/
761 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
762/* towards the root */ 901/* towards the root */
763void inline_speed 902void inline_speed
764upheap (WT *heap, int k) 903upheap (ANHE *heap, int k)
765{ 904{
766 WT w = heap [k]; 905 ANHE he = heap [k];
767 906
768 for (;;) 907 for (;;)
769 { 908 {
770 int p = k >> 1; 909 int p = HPARENT (k);
771 910
772 /* maybe we could use a dummy element at heap [0]? */ 911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 912 break;
775 913
776 heap [k] = heap [p]; 914 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 915 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 916 k = p;
779 } 917 }
780 918
781 heap [k] = w; 919 heap [k] = he;
782 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (he)) = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812} 921}
813 922
814void inline_size 923void inline_size
815adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
816{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
817 upheap (heap, k); 927 upheap (heap, k);
928 else
818 downheap (heap, N, k); 929 downheap (heap, N, k);
819} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
820 957
821/*****************************************************************************/ 958/*****************************************************************************/
822 959
823typedef struct 960typedef struct
824{ 961{
912pipecb (EV_P_ ev_io *iow, int revents) 1049pipecb (EV_P_ ev_io *iow, int revents)
913{ 1050{
914#if EV_USE_EVENTFD 1051#if EV_USE_EVENTFD
915 if (evfd >= 0) 1052 if (evfd >= 0)
916 { 1053 {
917 uint64_t counter = 1; 1054 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1055 read (evfd, &counter, sizeof (uint64_t));
919 } 1056 }
920 else 1057 else
921#endif 1058#endif
922 { 1059 {
1369ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1370{ 1507{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1372} 1509}
1373 1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1374#endif 1544#endif
1375 1545
1376#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1377struct ev_loop * 1547struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1548ev_default_loop_init (unsigned int flags)
1444void inline_speed 1614void inline_speed
1445call_pending (EV_P) 1615call_pending (EV_P)
1446{ 1616{
1447 int pri; 1617 int pri;
1448 1618
1619 EV_FREQUENT_CHECK;
1620
1449 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1451 { 1623 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 1625
1457 1629
1458 p->w->pending = 0; 1630 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1460 } 1632 }
1461 } 1633 }
1462}
1463 1634
1464void inline_size 1635 EV_FREQUENT_CHECK;
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489} 1636}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543 1637
1544#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1545void inline_size 1639void inline_size
1546idle_reify (EV_P) 1640idle_reify (EV_P)
1547{ 1641{
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break; 1654 break;
1561 } 1655 }
1562 } 1656 }
1563 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1564} 1760}
1565#endif 1761#endif
1566 1762
1567void inline_speed 1763void inline_speed
1568time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1597 */ 1793 */
1598 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1599 { 1795 {
1600 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1601 1797
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 1799 return; /* all is well */
1604 1800
1605 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 1802 mn_now = get_clock ();
1607 now_floor = mn_now; 1803 now_floor = mn_now;
1622 { 1818 {
1623#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1625#endif 1821#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now; 1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1629 } 1829 }
1630 1830
1631 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1632 } 1832 }
1633} 1833}
1703 1903
1704 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1705 1905
1706 if (timercnt) 1906 if (timercnt)
1707 { 1907 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1710 } 1910 }
1711 1911
1712#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 1913 if (periodiccnt)
1714 { 1914 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1717 } 1917 }
1718#endif 1918#endif
1719 1919
1720 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1857 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1858 return; 2058 return;
1859 2059
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1861 2061
2062 EV_FREQUENT_CHECK;
2063
1862 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1864 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1865 2067
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1868} 2072}
1869 2073
1870void noinline 2074void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1872{ 2076{
1873 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1875 return; 2079 return;
1876 2080
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1878 2084
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1881 2087
1882 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1883} 2091}
1884 2092
1885void noinline 2093void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1887{ 2095{
1890 2098
1891 ev_at (w) += mn_now; 2099 ev_at (w) += mn_now;
1892 2100
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2109 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2110 upheap (timers, ev_active (w));
1899 2111
2112 EV_FREQUENT_CHECK;
2113
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2115}
1902 2116
1903void noinline 2117void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2119{
1906 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1908 return; 2122 return;
1909 2123
2124 EV_FREQUENT_CHECK;
2125
1910 { 2126 {
1911 int active = ev_active (w); 2127 int active = ev_active (w);
1912 2128
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2130
2131 --timercnt;
2132
1915 if (expect_true (active < timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1916 { 2134 {
1917 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1919 } 2137 }
1920
1921 --timercnt;
1922 } 2138 }
2139
2140 EV_FREQUENT_CHECK;
1923 2141
1924 ev_at (w) -= mn_now; 2142 ev_at (w) -= mn_now;
1925 2143
1926 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1927} 2145}
1928 2146
1929void noinline 2147void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1931{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1932 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1933 { 2153 {
1934 if (w->repeat) 2154 if (w->repeat)
1935 { 2155 {
1936 ev_at (w) = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2158 adjustheap (timers, timercnt, ev_active (w));
1938 } 2159 }
1939 else 2160 else
1940 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1941 } 2162 }
1942 else if (w->repeat) 2163 else if (w->repeat)
1943 { 2164 {
1944 ev_at (w) = w->repeat; 2165 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1946 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1947} 2170}
1948 2171
1949#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1950void noinline 2173void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2186 }
1964 else 2187 else
1965 ev_at (w) = w->offset; 2188 ev_at (w) = w->offset;
1966 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1971 2198
2199 EV_FREQUENT_CHECK;
2200
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2202}
1974 2203
1975void noinline 2204void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2206{
1978 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1980 return; 2209 return;
1981 2210
2211 EV_FREQUENT_CHECK;
2212
1982 { 2213 {
1983 int active = ev_active (w); 2214 int active = ev_active (w);
1984 2215
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2217
2218 --periodiccnt;
2219
1987 if (expect_true (active < periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2221 {
1989 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1991 } 2224 }
1992
1993 --periodiccnt;
1994 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1995 2228
1996 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1997} 2230}
1998 2231
1999void noinline 2232void noinline
2019 return; 2252 return;
2020 2253
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2022 2255
2023 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2024 2259
2025 { 2260 {
2026#ifndef _WIN32 2261#ifndef _WIN32
2027 sigset_t full, prev; 2262 sigset_t full, prev;
2028 sigfillset (&full); 2263 sigfillset (&full);
2049 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2052#endif 2287#endif
2053 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
2054} 2291}
2055 2292
2056void noinline 2293void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2295{
2059 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
2061 return; 2298 return;
2062 2299
2300 EV_FREQUENT_CHECK;
2301
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
2065 2304
2066 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
2067 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
2068} 2309}
2069 2310
2070void 2311void
2071ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
2072{ 2313{
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2316#endif
2076 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
2077 return; 2318 return;
2078 2319
2320 EV_FREQUENT_CHECK;
2321
2079 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2081} 2326}
2082 2327
2083void 2328void
2084ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
2085{ 2330{
2086 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2088 return; 2333 return;
2089 2334
2335 EV_FREQUENT_CHECK;
2336
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
2092} 2341}
2093 2342
2094#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
2095 2344
2096# ifdef _WIN32 2345# ifdef _WIN32
2114 if (w->wd < 0) 2363 if (w->wd < 0)
2115 { 2364 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117 2366
2118 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2371 {
2121 char path [4096]; 2372 char path [4096];
2122 strcpy (path, w->path); 2373 strcpy (path, w->path);
2123 2374
2322 else 2573 else
2323#endif 2574#endif
2324 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2325 2576
2326 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2327} 2580}
2328 2581
2329void 2582void
2330ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2331{ 2584{
2332 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2334 return; 2587 return;
2335 2588
2589 EV_FREQUENT_CHECK;
2590
2336#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2338#endif 2593#endif
2339 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2340 2595
2341 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2342} 2599}
2343#endif 2600#endif
2344 2601
2345#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2346void 2603void
2348{ 2605{
2349 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2350 return; 2607 return;
2351 2608
2352 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2353 2612
2354 { 2613 {
2355 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2356 2615
2357 ++idleall; 2616 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2359 2618
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2362 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2363} 2624}
2364 2625
2365void 2626void
2366ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2367{ 2628{
2368 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2370 return; 2631 return;
2371 2632
2633 EV_FREQUENT_CHECK;
2634
2372 { 2635 {
2373 int active = ev_active (w); 2636 int active = ev_active (w);
2374 2637
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 2640
2378 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2379 --idleall; 2642 --idleall;
2380 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2381} 2646}
2382#endif 2647#endif
2383 2648
2384void 2649void
2385ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 2651{
2387 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2388 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2389 2656
2390 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2393} 2662}
2394 2663
2395void 2664void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 2666{
2398 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2400 return; 2669 return;
2401 2670
2671 EV_FREQUENT_CHECK;
2672
2402 { 2673 {
2403 int active = ev_active (w); 2674 int active = ev_active (w);
2404 2675
2405 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 2677 ev_active (prepares [active - 1]) = active;
2407 } 2678 }
2408 2679
2409 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2410} 2683}
2411 2684
2412void 2685void
2413ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2414{ 2687{
2415 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2416 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2417 2692
2418 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2421} 2698}
2422 2699
2423void 2700void
2424ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2425{ 2702{
2426 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2428 return; 2705 return;
2429 2706
2707 EV_FREQUENT_CHECK;
2708
2430 { 2709 {
2431 int active = ev_active (w); 2710 int active = ev_active (w);
2432 2711
2433 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 2713 ev_active (checks [active - 1]) = active;
2435 } 2714 }
2436 2715
2437 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2438} 2719}
2439 2720
2440#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2441void noinline 2722void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2489 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 2773 }
2493 2774
2775 EV_FREQUENT_CHECK;
2776
2494 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2496 2779
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2500 2783
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 2785
2503 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2504} 2789}
2505 2790
2506void 2791void
2507ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2508{ 2793{
2509 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2511 return; 2796 return;
2512 2797
2798 EV_FREQUENT_CHECK;
2799
2513 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2515 2802
2516 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2517} 2806}
2518#endif 2807#endif
2519 2808
2520#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2521void 2810void
2522ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2523{ 2812{
2524 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2525 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2526 2817
2527 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2530} 2823}
2531 2824
2532void 2825void
2533ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2534{ 2827{
2535 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2537 return; 2830 return;
2538 2831
2832 EV_FREQUENT_CHECK;
2833
2539 { 2834 {
2540 int active = ev_active (w); 2835 int active = ev_active (w);
2541 2836
2542 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 2838 ev_active (forks [active - 1]) = active;
2544 } 2839 }
2545 2840
2546 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2547} 2844}
2548#endif 2845#endif
2549 2846
2550#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2551void 2848void
2553{ 2850{
2554 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2555 return; 2852 return;
2556 2853
2557 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2558 2857
2559 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2562} 2863}
2563 2864
2564void 2865void
2565ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2566{ 2867{
2567 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2569 return; 2870 return;
2570 2871
2872 EV_FREQUENT_CHECK;
2873
2571 { 2874 {
2572 int active = ev_active (w); 2875 int active = ev_active (w);
2573 2876
2574 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 2878 ev_active (asyncs [active - 1]) = active;
2576 } 2879 }
2577 2880
2578 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2579} 2884}
2580 2885
2581void 2886void
2582ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2583{ 2888{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines