ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
279} 287}
280# endif 288# endif
281#endif 289#endif
282 290
283/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
284 303
285/* 304/*
286 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
422 W w; 441 W w;
423 int events; 442 int events;
424} ANPENDING; 443} ANPENDING;
425 444
426#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
427typedef struct 447typedef struct
428{ 448{
429 WL head; 449 WL head;
430} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
431#endif 469#endif
432 470
433#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
434 472
435 struct ev_loop 473 struct ev_loop
760} 798}
761 799
762/*****************************************************************************/ 800/*****************************************************************************/
763 801
764/* 802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
765 * at the moment we allow libev the luxury of two heaps, 809 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 811 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 812 * the difference is about 5% with 50000+ watchers.
769 */ 813 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 814#if EV_USE_4HEAP
773 815
774#define DHEAP 4 816#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
776 900
777/* towards the root */ 901/* towards the root */
778void inline_speed 902void inline_speed
779upheap (WT *heap, int k) 903upheap (ANHE *heap, int k)
780{ 904{
781 WT w = heap [k]; 905 ANHE he = heap [k];
782 906
783 for (;;) 907 for (;;)
784 { 908 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 909 int p = HPARENT (k);
786 910
787 if (p == k || heap [p]->at <= w->at) 911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
788 break; 912 break;
789 913
790 heap [k] = heap [p]; 914 heap [k] = heap [p];
791 ev_active (heap [k]) = k; 915 ev_active (ANHE_w (heap [k])) = k;
792 k = p; 916 k = p;
793 } 917 }
794 918
795 heap [k] = w; 919 heap [k] = he;
796 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (he)) = k;
797} 921}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811
812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
814 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at);
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
820 }
821 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break;
834
835 ev_active (*minpos) = k;
836 heap [k] = *minpos;
837
838 k = minpos - heap;
839 }
840
841 heap [k] = w;
842 ev_active (heap [k]) = k;
843}
844
845#else // 4HEAP
846
847#define HEAP0 1
848
849/* towards the root */
850void inline_speed
851upheap (WT *heap, int k)
852{
853 WT w = heap [k];
854
855 for (;;)
856 {
857 int p = k >> 1;
858
859 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at)
861 break;
862
863 heap [k] = heap [p];
864 ev_active (heap [k]) = k;
865 k = p;
866 }
867
868 heap [k] = w;
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break;
884
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c];
892 ((W)heap [k])->active = k;
893
894 k = c;
895 }
896
897 heap [k] = w;
898 ev_active (heap [k]) = k;
899}
900#endif
901 922
902void inline_size 923void inline_size
903adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
904{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
905 upheap (heap, k); 927 upheap (heap, k);
928 else
906 downheap (heap, N, k); 929 downheap (heap, N, k);
907} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
908 957
909/*****************************************************************************/ 958/*****************************************************************************/
910 959
911typedef struct 960typedef struct
912{ 961{
1456void 1505void
1457ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1458{ 1507{
1459 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1460} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1461#endif 1544#endif
1462 1545
1463#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1464struct ev_loop * 1547struct ev_loop *
1465ev_default_loop_init (unsigned int flags) 1548ev_default_loop_init (unsigned int flags)
1531void inline_speed 1614void inline_speed
1532call_pending (EV_P) 1615call_pending (EV_P)
1533{ 1616{
1534 int pri; 1617 int pri;
1535 1618
1619 EV_FREQUENT_CHECK;
1620
1536 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1537 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1538 { 1623 {
1539 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1540 1625
1544 1629
1545 p->w->pending = 0; 1630 p->w->pending = 0;
1546 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1547 } 1632 }
1548 } 1633 }
1634
1635 EV_FREQUENT_CHECK;
1549} 1636}
1550 1637
1551#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1552void inline_size 1639void inline_size
1553idle_reify (EV_P) 1640idle_reify (EV_P)
1572#endif 1659#endif
1573 1660
1574void inline_size 1661void inline_size
1575timers_reify (EV_P) 1662timers_reify (EV_P)
1576{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 1667 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1580 1669
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582 1671
1583 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1584 if (w->repeat) 1673 if (w->repeat)
1585 { 1674 {
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587
1588 ev_at (w) += w->repeat; 1675 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now) 1676 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now; 1677 ev_at (w) = mn_now;
1591 1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1592 downheap (timers, timercnt, HEAP0); 1682 downheap (timers, timercnt, HEAP0);
1593 } 1683 }
1594 else 1684 else
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 1686
1687 EV_FREQUENT_CHECK;
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1598 } 1689 }
1599} 1690}
1600 1691
1601#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1602void inline_size 1693void inline_size
1603periodics_reify (EV_P) 1694periodics_reify (EV_P)
1604{ 1695{
1696 EV_FREQUENT_CHECK;
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 1698 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1608 1700
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1610 1702
1611 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1612 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1613 { 1705 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1617 } 1713 }
1618 else if (w->interval) 1714 else if (w->interval)
1619 { 1715 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1623 downheap (periodics, periodiccnt, HEAP0); 1731 downheap (periodics, periodiccnt, HEAP0);
1624 } 1732 }
1625 else 1733 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 1735
1736 EV_FREQUENT_CHECK;
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1629 } 1738 }
1630} 1739}
1631 1740
1632static void noinline 1741static void noinline
1633periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1634{ 1743{
1635 int i; 1744 int i;
1636 1745
1637 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 1748 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 1750
1642 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 1753 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 }
1647 1755
1648 /* now rebuild the heap */ 1756 ANHE_at_cache (periodics [i]);
1649 for (i = periodiccnt >> 1; --i; ) 1757 }
1758
1650 downheap (periodics, periodiccnt, i + HEAP0); 1759 reheap (periodics, periodiccnt);
1651} 1760}
1652#endif 1761#endif
1653 1762
1654void inline_speed 1763void inline_speed
1655time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1709 { 1818 {
1710#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1712#endif 1821#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now; 1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1716 } 1829 }
1717 1830
1718 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1719 } 1832 }
1720} 1833}
1790 1903
1791 waittime = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1792 1905
1793 if (timercnt) 1906 if (timercnt)
1794 { 1907 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 1909 if (waittime > to) waittime = to;
1797 } 1910 }
1798 1911
1799#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 1913 if (periodiccnt)
1801 { 1914 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 1916 if (waittime > to) waittime = to;
1804 } 1917 }
1805#endif 1918#endif
1806 1919
1807 if (expect_false (waittime < timeout_blocktime)) 1920 if (expect_false (waittime < timeout_blocktime))
1944 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1945 return; 2058 return;
1946 2059
1947 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1948 2061
2062 EV_FREQUENT_CHECK;
2063
1949 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1951 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1952 2067
1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1954 w->events &= ~EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1955} 2072}
1956 2073
1957void noinline 2074void noinline
1958ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1959{ 2076{
1960 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1962 return; 2079 return;
1963 2080
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1965 2084
1966 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1968 2087
1969 fd_change (EV_A_ w->fd, 1); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1970} 2091}
1971 2092
1972void noinline 2093void noinline
1973ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1974{ 2095{
1977 2098
1978 ev_at (w) += mn_now; 2099 ev_at (w) += mn_now;
1979 2100
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2109 ANHE_at_cache (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2110 upheap (timers, ev_active (w));
1986 2111
2112 EV_FREQUENT_CHECK;
2113
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2115}
1989 2116
1990void noinline 2117void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2119{
1993 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1995 return; 2122 return;
1996 2123
2124 EV_FREQUENT_CHECK;
2125
1997 { 2126 {
1998 int active = ev_active (w); 2127 int active = ev_active (w);
1999 2128
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2130
2131 --timercnt;
2132
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2133 if (expect_true (active < timercnt + HEAP0))
2003 { 2134 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2135 timers [active] = timers [timercnt + HEAP0];
2005 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
2006 } 2137 }
2007
2008 --timercnt;
2009 } 2138 }
2139
2140 EV_FREQUENT_CHECK;
2010 2141
2011 ev_at (w) -= mn_now; 2142 ev_at (w) -= mn_now;
2012 2143
2013 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
2014} 2145}
2015 2146
2016void noinline 2147void noinline
2017ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
2018{ 2149{
2150 EV_FREQUENT_CHECK;
2151
2019 if (ev_is_active (w)) 2152 if (ev_is_active (w))
2020 { 2153 {
2021 if (w->repeat) 2154 if (w->repeat)
2022 { 2155 {
2023 ev_at (w) = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2158 adjustheap (timers, timercnt, ev_active (w));
2025 } 2159 }
2026 else 2160 else
2027 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
2028 } 2162 }
2029 else if (w->repeat) 2163 else if (w->repeat)
2030 { 2164 {
2031 ev_at (w) = w->repeat; 2165 ev_at (w) = w->repeat;
2032 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
2033 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
2034} 2170}
2035 2171
2036#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
2037void noinline 2173void noinline
2038ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 } 2186 }
2051 else 2187 else
2052 ev_at (w) = w->offset; 2188 ev_at (w) = w->offset;
2053 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2196 ANHE_at_cache (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 2197 upheap (periodics, ev_active (w));
2058 2198
2199 EV_FREQUENT_CHECK;
2200
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2202}
2061 2203
2062void noinline 2204void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2206{
2065 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
2067 return; 2209 return;
2068 2210
2211 EV_FREQUENT_CHECK;
2212
2069 { 2213 {
2070 int active = ev_active (w); 2214 int active = ev_active (w);
2071 2215
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2217
2218 --periodiccnt;
2219
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2220 if (expect_true (active < periodiccnt + HEAP0))
2075 { 2221 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
2077 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
2078 } 2224 }
2079
2080 --periodiccnt;
2081 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
2082 2228
2083 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
2084} 2230}
2085 2231
2086void noinline 2232void noinline
2106 return; 2252 return;
2107 2253
2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2109 2255
2110 evpipe_init (EV_A); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2111 2259
2112 { 2260 {
2113#ifndef _WIN32 2261#ifndef _WIN32
2114 sigset_t full, prev; 2262 sigset_t full, prev;
2115 sigfillset (&full); 2263 sigfillset (&full);
2136 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2138 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2139#endif 2287#endif
2140 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
2141} 2291}
2142 2292
2143void noinline 2293void noinline
2144ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
2145{ 2295{
2146 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
2148 return; 2298 return;
2149 2299
2300 EV_FREQUENT_CHECK;
2301
2150 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
2151 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
2152 2304
2153 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
2154 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
2155} 2309}
2156 2310
2157void 2311void
2158ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
2159{ 2313{
2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2162#endif 2316#endif
2163 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
2164 return; 2318 return;
2165 2319
2320 EV_FREQUENT_CHECK;
2321
2166 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2168} 2326}
2169 2327
2170void 2328void
2171ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
2172{ 2330{
2173 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2174 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2175 return; 2333 return;
2176 2334
2335 EV_FREQUENT_CHECK;
2336
2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2178 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
2179} 2341}
2180 2342
2181#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
2182 2344
2183# ifdef _WIN32 2345# ifdef _WIN32
2411 else 2573 else
2412#endif 2574#endif
2413 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2414 2576
2415 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2416} 2580}
2417 2581
2418void 2582void
2419ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2420{ 2584{
2421 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2423 return; 2587 return;
2424 2588
2589 EV_FREQUENT_CHECK;
2590
2425#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2427#endif 2593#endif
2428 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2429 2595
2430 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2431} 2599}
2432#endif 2600#endif
2433 2601
2434#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2435void 2603void
2437{ 2605{
2438 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2439 return; 2607 return;
2440 2608
2441 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2442 2612
2443 { 2613 {
2444 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2445 2615
2446 ++idleall; 2616 ++idleall;
2447 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2448 2618
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2451 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2452} 2624}
2453 2625
2454void 2626void
2455ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2456{ 2628{
2457 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2459 return; 2631 return;
2460 2632
2633 EV_FREQUENT_CHECK;
2634
2461 { 2635 {
2462 int active = ev_active (w); 2636 int active = ev_active (w);
2463 2637
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466 2640
2467 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2468 --idleall; 2642 --idleall;
2469 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2470} 2646}
2471#endif 2647#endif
2472 2648
2473void 2649void
2474ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2475{ 2651{
2476 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2477 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2478 2656
2479 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2482} 2662}
2483 2663
2484void 2664void
2485ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2486{ 2666{
2487 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2489 return; 2669 return;
2490 2670
2671 EV_FREQUENT_CHECK;
2672
2491 { 2673 {
2492 int active = ev_active (w); 2674 int active = ev_active (w);
2493 2675
2494 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active; 2677 ev_active (prepares [active - 1]) = active;
2496 } 2678 }
2497 2679
2498 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2499} 2683}
2500 2684
2501void 2685void
2502ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2503{ 2687{
2504 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2505 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2506 2692
2507 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2510} 2698}
2511 2699
2512void 2700void
2513ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2514{ 2702{
2515 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2517 return; 2705 return;
2518 2706
2707 EV_FREQUENT_CHECK;
2708
2519 { 2709 {
2520 int active = ev_active (w); 2710 int active = ev_active (w);
2521 2711
2522 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active; 2713 ev_active (checks [active - 1]) = active;
2524 } 2714 }
2525 2715
2526 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2527} 2719}
2528 2720
2529#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2530void noinline 2722void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2578 struct ev_loop *loop = w->other; 2770 struct ev_loop *loop = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 } 2773 }
2582 2774
2775 EV_FREQUENT_CHECK;
2776
2583 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2585 2779
2586 ev_prepare_init (&w->prepare, embed_prepare_cb); 2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI); 2781 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare); 2782 ev_prepare_start (EV_A_ &w->prepare);
2589 2783
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591 2785
2592 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2593} 2789}
2594 2790
2595void 2791void
2596ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2597{ 2793{
2598 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2600 return; 2796 return;
2601 2797
2798 EV_FREQUENT_CHECK;
2799
2602 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare); 2801 ev_prepare_stop (EV_A_ &w->prepare);
2604 2802
2605 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2606} 2806}
2607#endif 2807#endif
2608 2808
2609#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2610void 2810void
2611ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2612{ 2812{
2613 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2614 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2615 2817
2616 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2619} 2823}
2620 2824
2621void 2825void
2622ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2623{ 2827{
2624 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2626 return; 2830 return;
2627 2831
2832 EV_FREQUENT_CHECK;
2833
2628 { 2834 {
2629 int active = ev_active (w); 2835 int active = ev_active (w);
2630 2836
2631 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active; 2838 ev_active (forks [active - 1]) = active;
2633 } 2839 }
2634 2840
2635 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2636} 2844}
2637#endif 2845#endif
2638 2846
2639#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
2640void 2848void
2642{ 2850{
2643 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2644 return; 2852 return;
2645 2853
2646 evpipe_init (EV_A); 2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2647 2857
2648 ev_start (EV_A_ (W)w, ++asynccnt); 2858 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w; 2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2651} 2863}
2652 2864
2653void 2865void
2654ev_async_stop (EV_P_ ev_async *w) 2866ev_async_stop (EV_P_ ev_async *w)
2655{ 2867{
2656 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2658 return; 2870 return;
2659 2871
2872 EV_FREQUENT_CHECK;
2873
2660 { 2874 {
2661 int active = ev_active (w); 2875 int active = ev_active (w);
2662 2876
2663 asyncs [active - 1] = asyncs [--asynccnt]; 2877 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active; 2878 ev_active (asyncs [active - 1]) = active;
2665 } 2879 }
2666 2880
2667 ev_stop (EV_A_ (W)w); 2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2668} 2884}
2669 2885
2670void 2886void
2671ev_async_send (EV_P_ ev_async *w) 2887ev_async_send (EV_P_ ev_async *w)
2672{ 2888{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines