ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
240#ifndef EV_USE_4HEAP 281#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
242#endif 283#endif
243 284
244#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
246#endif 301#endif
247 302
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 304
250#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 322# include <sys/select.h>
268# endif 323# endif
269#endif 324#endif
270 325
271#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
272# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
273#endif 335#endif
274 336
275#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 338# include <winsock.h>
277#endif 339#endif
288# endif 350# endif
289#endif 351#endif
290 352
291/**/ 353/**/
292 354
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1 355#if EV_VERIFY >= 3
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else 357#else
301# define EV_FREQUENT_CHECK do { } while (0) 358# define EV_FREQUENT_CHECK do { } while (0)
302#endif 359#endif
303 360
334# define inline_speed static noinline 391# define inline_speed static noinline
335#else 392#else
336# define inline_speed static inline 393# define inline_speed static inline
337#endif 394#endif
338 395
339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
341 403
342#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
343#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
344 406
345typedef ev_watcher *W; 407typedef ev_watcher *W;
347typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
348 410
349#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
351 413
352#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif 422#endif
357 423
358#ifdef _WIN32 424#ifdef _WIN32
359# include "ev_win32.c" 425# include "ev_win32.c"
368{ 434{
369 syserr_cb = cb; 435 syserr_cb = cb;
370} 436}
371 437
372static void noinline 438static void noinline
373syserr (const char *msg) 439ev_syserr (const char *msg)
374{ 440{
375 if (!msg) 441 if (!msg)
376 msg = "(libev) system error"; 442 msg = "(libev) system error";
377 443
378 if (syserr_cb) 444 if (syserr_cb)
424#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
425#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
426 492
427/*****************************************************************************/ 493/*****************************************************************************/
428 494
495/* file descriptor info structure */
429typedef struct 496typedef struct
430{ 497{
431 WL head; 498 WL head;
432 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
433 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
434#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
435 SOCKET handle; 507 SOCKET handle;
436#endif 508#endif
437} ANFD; 509} ANFD;
438 510
511/* stores the pending event set for a given watcher */
439typedef struct 512typedef struct
440{ 513{
441 W w; 514 W w;
442 int events; 515 int events; /* the pending event set for the given watcher */
443} ANPENDING; 516} ANPENDING;
444 517
445#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
447typedef struct 520typedef struct
450} ANFS; 523} ANFS;
451#endif 524#endif
452 525
453/* Heap Entry */ 526/* Heap Entry */
454#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
455 typedef struct { 529 typedef struct {
456 ev_tstamp at; 530 ev_tstamp at;
457 WT w; 531 WT w;
458 } ANHE; 532 } ANHE;
459 533
460 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else 537#else
538 /* a heap element */
464 typedef WT ANHE; 539 typedef WT ANHE;
465 540
466 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
492 567
493 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
494 569
495#endif 570#endif
496 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
497/*****************************************************************************/ 582/*****************************************************************************/
498 583
584#ifndef EV_HAVE_EV_TIME
499ev_tstamp 585ev_tstamp
500ev_time (void) 586ev_time (void)
501{ 587{
502#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
503 struct timespec ts; 591 struct timespec ts;
504 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
505 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
506#else 594 }
595#endif
596
507 struct timeval tv; 597 struct timeval tv;
508 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
509 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
510#endif
511} 600}
601#endif
512 602
513ev_tstamp inline_size 603inline_size ev_tstamp
514get_clock (void) 604get_clock (void)
515{ 605{
516#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
517 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
518 { 608 {
551 struct timeval tv; 641 struct timeval tv;
552 642
553 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
556 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
557#endif 650#endif
558 } 651 }
559} 652}
560 653
561/*****************************************************************************/ 654/*****************************************************************************/
562 655
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564 657
565int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
566array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
567{ 662{
568 int ncur = cur + 1; 663 int ncur = cur + 1;
569 664
570 do 665 do
587array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
588{ 683{
589 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
591} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
592 690
593#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
594 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
595 { \ 693 { \
596 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
609 } 707 }
610#endif 708#endif
611 709
612#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
614 712
615/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
616 720
617void noinline 721void noinline
618ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
619{ 723{
620 W w_ = (W)w; 724 W w_ = (W)w;
629 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
631 } 735 }
632} 736}
633 737
634void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
635queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
636{ 755{
637 int i; 756 int i;
638 757
639 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
641} 760}
642 761
643/*****************************************************************************/ 762/*****************************************************************************/
644 763
645void inline_size 764inline_speed void
646anfds_init (ANFD *base, int count)
647{
648 while (count--)
649 {
650 base->head = 0;
651 base->events = EV_NONE;
652 base->reify = 0;
653
654 ++base;
655 }
656}
657
658void inline_speed
659fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
660{ 766{
661 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
662 ev_io *w; 768 ev_io *w;
663 769
675{ 781{
676 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
677 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
678} 784}
679 785
680void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
681fd_reify (EV_P) 789fd_reify (EV_P)
682{ 790{
683 int i; 791 int i;
684 792
685 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
694 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
695 803
696#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
697 if (events) 805 if (events)
698 { 806 {
699 unsigned long argp; 807 unsigned long arg;
700 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else 810 #else
703 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
704 #endif 812 #endif
705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
706 } 814 }
707#endif 815#endif
708 816
709 { 817 {
710 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
712 820
713 anfd->reify = 0; 821 anfd->reify = 0;
714 anfd->events = events; 822 anfd->events = events;
715 823
716 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
718 } 826 }
719 } 827 }
720 828
721 fdchangecnt = 0; 829 fdchangecnt = 0;
722} 830}
723 831
724void inline_size 832/* something about the given fd changed */
833inline_size void
725fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
726{ 835{
727 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
728 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
729 838
733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
734 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
735 } 844 }
736} 845}
737 846
738void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
739fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
740{ 850{
741 ev_io *w; 851 ev_io *w;
742 852
743 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
745 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
747 } 857 }
748} 858}
749 859
750int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
751fd_valid (int fd) 862fd_valid (int fd)
752{ 863{
753#ifdef _WIN32 864#ifdef _WIN32
754 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
755#else 866#else
763{ 874{
764 int fd; 875 int fd;
765 876
766 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
767 if (anfds [fd].events) 878 if (anfds [fd].events)
768 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
769 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
770} 881}
771 882
772/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
773static void noinline 884static void noinline
791 902
792 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
793 if (anfds [fd].events) 904 if (anfds [fd].events)
794 { 905 {
795 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
796 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
797 } 909 }
798} 910}
799 911
800/*****************************************************************************/ 912/*****************************************************************************/
801 913
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k)) 931#define UPHEAP_DONE(p,k) ((p) == (k))
820 932
821/* away from the root */ 933/* away from the root */
822void inline_speed 934inline_speed void
823downheap (ANHE *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
824{ 936{
825 ANHE he = heap [k]; 937 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0; 938 ANHE *E = heap + N + HEAP0;
827 939
867#define HEAP0 1 979#define HEAP0 1
868#define HPARENT(k) ((k) >> 1) 980#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p)) 981#define UPHEAP_DONE(p,k) (!(p))
870 982
871/* away from the root */ 983/* away from the root */
872void inline_speed 984inline_speed void
873downheap (ANHE *heap, int N, int k) 985downheap (ANHE *heap, int N, int k)
874{ 986{
875 ANHE he = heap [k]; 987 ANHE he = heap [k];
876 988
877 for (;;) 989 for (;;)
897 ev_active (ANHE_w (he)) = k; 1009 ev_active (ANHE_w (he)) = k;
898} 1010}
899#endif 1011#endif
900 1012
901/* towards the root */ 1013/* towards the root */
902void inline_speed 1014inline_speed void
903upheap (ANHE *heap, int k) 1015upheap (ANHE *heap, int k)
904{ 1016{
905 ANHE he = heap [k]; 1017 ANHE he = heap [k];
906 1018
907 for (;;) 1019 for (;;)
918 1030
919 heap [k] = he; 1031 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 1032 ev_active (ANHE_w (he)) = k;
921} 1033}
922 1034
923void inline_size 1035/* move an element suitably so it is in a correct place */
1036inline_size void
924adjustheap (ANHE *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
925{ 1038{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k); 1040 upheap (heap, k);
928 else 1041 else
929 downheap (heap, N, k); 1042 downheap (heap, N, k);
930} 1043}
931 1044
932/* rebuild the heap: this function is used only once and executed rarely */ 1045/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size 1046inline_size void
934reheap (ANHE *heap, int N) 1047reheap (ANHE *heap, int N)
935{ 1048{
936 int i; 1049 int i;
1050
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i) 1053 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0); 1054 upheap (heap, i + HEAP0);
941} 1055}
942 1056
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
957
958/*****************************************************************************/ 1057/*****************************************************************************/
959 1058
1059/* associate signal watchers to a signal signal */
960typedef struct 1060typedef struct
961{ 1061{
962 WL head; 1062 WL head;
963 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
964} ANSIG; 1064} ANSIG;
966static ANSIG *signals; 1066static ANSIG *signals;
967static int signalmax; 1067static int signalmax;
968 1068
969static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
970 1070
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982
983/*****************************************************************************/ 1071/*****************************************************************************/
984 1072
985void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
986fd_intern (int fd) 1076fd_intern (int fd)
987{ 1077{
988#ifdef _WIN32 1078#ifdef _WIN32
989 int arg = 1; 1079 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else 1081#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif 1084#endif
995} 1085}
996 1086
997static void noinline 1087static void noinline
998evpipe_init (EV_P) 1088evpipe_init (EV_P)
999{ 1089{
1000 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
1001 { 1091 {
1002#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
1004 { 1094 {
1005 evpipe [0] = -1; 1095 evpipe [0] = -1;
1006 fd_intern (evfd); 1096 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
1008 } 1098 }
1009 else 1099 else
1010#endif 1100#endif
1011 { 1101 {
1012 while (pipe (evpipe)) 1102 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
1014 1104
1015 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1018 } 1108 }
1019 1109
1020 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 } 1112 }
1023} 1113}
1024 1114
1025void inline_size 1115inline_size void
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{ 1117{
1028 if (!*flag) 1118 if (!*flag)
1029 { 1119 {
1030 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1043 1133
1044 errno = old_errno; 1134 errno = old_errno;
1045 } 1135 }
1046} 1136}
1047 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1048static void 1140static void
1049pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1050{ 1142{
1051#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1052 if (evfd >= 0) 1144 if (evfd >= 0)
1108ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1109{ 1201{
1110 WL w; 1202 WL w;
1111 1203
1112#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif 1206#endif
1115 1207
1116 --signum; 1208 --signum;
1117 1209
1118 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1134 1226
1135#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1137#endif 1229#endif
1138 1230
1139void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1141{ 1234{
1142 ev_child *w; 1235 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 1237
1157 1250
1158#ifndef WCONTINUED 1251#ifndef WCONTINUED
1159# define WCONTINUED 0 1252# define WCONTINUED 0
1160#endif 1253#endif
1161 1254
1255/* called on sigchld etc., calls waitpid */
1162static void 1256static void
1163childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1164{ 1258{
1165 int pid, status; 1259 int pid, status;
1166 1260
1247 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1250#endif 1344#endif
1251#ifdef __APPLE__ 1345#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1254#endif 1349#endif
1255 1350
1256 return flags; 1351 return flags;
1257} 1352}
1258 1353
1272ev_backend (EV_P) 1367ev_backend (EV_P)
1273{ 1368{
1274 return backend; 1369 return backend;
1275} 1370}
1276 1371
1372#if EV_MINIMAL < 2
1277unsigned int 1373unsigned int
1278ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1279{ 1375{
1280 return loop_count; 1376 return loop_count;
1281} 1377}
1282 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1283void 1385void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1387{
1286 io_blocktime = interval; 1388 io_blocktime = interval;
1287} 1389}
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{ 1393{
1292 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1293} 1395}
1294 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1295static void noinline 1422static void noinline
1296loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1297{ 1424{
1298 if (!backend) 1425 if (!backend)
1299 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1300#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1301 { 1439 {
1302 struct timespec ts; 1440 struct timespec ts;
1441
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 1443 have_monotonic = 1;
1305 } 1444 }
1306#endif 1445#endif
1307 1446
1308 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1309 mn_now = get_clock (); 1448 mn_now = get_clock ();
1310 now_floor = mn_now; 1449 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1312 1454
1313 io_blocktime = 0.; 1455 io_blocktime = 0.;
1314 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1315 backend = 0; 1457 backend = 0;
1316 backend_fd = -1; 1458 backend_fd = -1;
1347#endif 1489#endif
1348#if EV_USE_SELECT 1490#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 1492#endif
1351 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1352 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1354 } 1498 }
1355} 1499}
1356 1500
1501/* free up a loop structure */
1357static void noinline 1502static void noinline
1358loop_destroy (EV_P) 1503loop_destroy (EV_P)
1359{ 1504{
1360 int i; 1505 int i;
1361 1506
1362 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1363 { 1508 {
1364 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1366 1511
1367#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1368 if (evfd >= 0) 1513 if (evfd >= 0)
1369 close (evfd); 1514 close (evfd);
1370#endif 1515#endif
1409 } 1554 }
1410 1555
1411 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1412 1557
1413 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1418#endif 1564#endif
1427 1573
1428 backend = 0; 1574 backend = 0;
1429} 1575}
1430 1576
1431#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1433#endif 1579#endif
1434 1580
1435void inline_size 1581inline_size void
1436loop_fork (EV_P) 1582loop_fork (EV_P)
1437{ 1583{
1438#if EV_USE_PORT 1584#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 1586#endif
1446#endif 1592#endif
1447#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 1594 infy_fork (EV_A);
1449#endif 1595#endif
1450 1596
1451 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1452 { 1598 {
1453 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1455 gotsig = 1; 1601 gotsig = 1;
1456#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1457 gotasync = 1; 1603 gotasync = 1;
1458#endif 1604#endif
1459 1605
1460 ev_ref (EV_A); 1606 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1462 1608
1463#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1464 if (evfd >= 0) 1610 if (evfd >= 0)
1465 close (evfd); 1611 close (evfd);
1466#endif 1612#endif
1471 close (evpipe [1]); 1617 close (evpipe [1]);
1472 } 1618 }
1473 1619
1474 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1477 } 1623 }
1478 1624
1479 postfork = 0; 1625 postfork = 0;
1480} 1626}
1481 1627
1482#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1483struct ev_loop * 1630struct ev_loop *
1484ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1485{ 1632{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 1634
1505void 1652void
1506ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1507{ 1654{
1508 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1509} 1656}
1657#endif /* multiplicity */
1510 1658
1511#if EV_VERIFY 1659#if EV_VERIFY
1512static void 1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1513array_check (W **ws, int cnt) 1685array_verify (EV_P_ W *ws, int cnt)
1514{ 1686{
1515 while (cnt--) 1687 while (cnt--)
1688 {
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1517} 1692}
1693#endif
1518 1694
1519static void 1695#if EV_MINIMAL < 2
1696void
1520ev_loop_verify (EV_P) 1697ev_loop_verify (EV_P)
1521{ 1698{
1699#if EV_VERIFY
1522 int i; 1700 int i;
1701 WL w;
1523 1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1524 checkheap (timers, timercnt); 1719 verify_heap (EV_A_ timers, timercnt);
1720
1525#if EV_PERIODIC_ENABLE 1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1526 checkheap (periodics, periodiccnt); 1723 verify_heap (EV_A_ periodics, periodiccnt);
1527#endif 1724#endif
1528 1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1529#if EV_IDLE_ENABLE 1729#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; ) 1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1531 array_check ((W **)idles [i], idlecnt [i]); 1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1532#endif 1733#endif
1734 }
1735
1533#if EV_FORK_ENABLE 1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1534 array_check ((W **)forks, forkcnt); 1738 array_verify (EV_A_ (W *)forks, forkcnt);
1535#endif 1739#endif
1536 array_check ((W **)prepares, preparecnt); 1740
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE 1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1539 array_check ((W **)asyncs, asynccnt); 1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1540#endif 1755# endif
1541}
1542#endif 1756#endif
1543 1757}
1544#endif 1758#endif
1545 1759
1546#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1547struct ev_loop * 1761struct ev_loop *
1548ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1582{ 1796{
1583#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1584 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1585#endif 1799#endif
1586 1800
1801 ev_default_loop_ptr = 0;
1802
1587#ifndef _WIN32 1803#ifndef _WIN32
1588 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1589 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1590#endif 1806#endif
1591 1807
1597{ 1813{
1598#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1599 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1600#endif 1816#endif
1601 1817
1602 if (backend)
1603 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1604} 1819}
1605 1820
1606/*****************************************************************************/ 1821/*****************************************************************************/
1607 1822
1608void 1823void
1609ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1610{ 1825{
1611 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1612} 1827}
1613 1828
1614void inline_speed 1829void noinline
1615call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1616{ 1831{
1617 int pri; 1832 int pri;
1618
1619 EV_FREQUENT_CHECK;
1620 1833
1621 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1622 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1623 { 1836 {
1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1625 1838
1626 if (expect_true (p->w))
1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1629 1841
1630 p->w->pending = 0; 1842 p->w->pending = 0;
1631 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1632 } 1844 EV_FREQUENT_CHECK;
1633 } 1845 }
1634
1635 EV_FREQUENT_CHECK;
1636} 1846}
1637 1847
1638#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1639void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1640idle_reify (EV_P) 1852idle_reify (EV_P)
1641{ 1853{
1642 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1643 { 1855 {
1644 int pri; 1856 int pri;
1656 } 1868 }
1657 } 1869 }
1658} 1870}
1659#endif 1871#endif
1660 1872
1661void inline_size 1873/* make timers pending */
1874inline_size void
1662timers_reify (EV_P) 1875timers_reify (EV_P)
1663{ 1876{
1664 EV_FREQUENT_CHECK; 1877 EV_FREQUENT_CHECK;
1665 1878
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 { 1880 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1881 do
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1675 ev_at (w) += w->repeat; 1890 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now) 1891 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now; 1892 ev_at (w) = mn_now;
1678 1893
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680 1895
1681 ANHE_at_cache (timers [HEAP0]); 1896 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1683 } 1904 }
1684 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686 1906
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1689 } 1908 }
1690} 1909}
1691 1910
1692#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1693void inline_size 1912/* make periodics pending */
1913inline_size void
1694periodics_reify (EV_P) 1914periodics_reify (EV_P)
1695{ 1915{
1696 EV_FREQUENT_CHECK; 1916 EV_FREQUENT_CHECK;
1917
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 { 1919 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1920 int feed_count = 0;
1700 1921
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 1932
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709 1934
1710 ANHE_at_cache (periodics [HEAP0]); 1935 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1712 EV_FREQUENT_CHECK; 1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1713 } 1962 }
1714 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722 1964
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1738 } 1966 }
1739} 1967}
1740 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1741static void noinline 1971static void noinline
1742periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1743{ 1973{
1744 int i; 1974 int i;
1745 1975
1758 1988
1759 reheap (periodics, periodiccnt); 1989 reheap (periodics, periodiccnt);
1760} 1990}
1761#endif 1991#endif
1762 1992
1763void inline_speed 1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1764time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1765{ 2011{
1766 int i;
1767
1768#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1770 { 2014 {
2015 int i;
1771 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1772 2017
1773 mn_now = get_clock (); 2018 mn_now = get_clock ();
1774 2019
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1801 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1802 mn_now = get_clock (); 2047 mn_now = get_clock ();
1803 now_floor = mn_now; 2048 now_floor = mn_now;
1804 } 2049 }
1805 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1806# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1808# endif 2055# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 } 2056 }
1812 else 2057 else
1813#endif 2058#endif
1814 { 2059 {
1815 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1816 2061
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1819#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1821#endif 2068#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1829 } 2069 }
1830 2070
1831 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1832 } 2072 }
1833} 2073}
1834 2074
1835void 2075void
1836ev_ref (EV_P)
1837{
1838 ++activecnt;
1839}
1840
1841void
1842ev_unref (EV_P)
1843{
1844 --activecnt;
1845}
1846
1847static int loop_done;
1848
1849void
1850ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1851{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1852 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1853 2083
1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1855 2085
1856 do 2086 do
1857 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1858#ifndef _WIN32 2092#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1861 { 2095 {
1862 curpid = getpid (); 2096 curpid = getpid ();
1868 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1870 if (forkcnt) 2104 if (forkcnt)
1871 { 2105 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1874 } 2108 }
1875#endif 2109#endif
1876 2110
1877 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1878 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1879 { 2113 {
1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1881 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1882 } 2116 }
1883
1884 if (expect_false (!activecnt))
1885 break;
1886 2117
1887 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1888 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1889 loop_fork (EV_A); 2120 loop_fork (EV_A);
1890 2121
1896 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1898 2129
1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1900 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1901 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1902 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1903 2137
1904 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1905 2139
1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1916 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1917 } 2151 }
1918#endif 2152#endif
1919 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1920 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1922 2157
1923 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1924
1925 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1930 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1931 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1932 } 2171 }
1933 } 2172 }
1934 2173
2174#if EV_MINIMAL < 2
1935 ++loop_count; 2175 ++loop_count;
2176#endif
1936 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1937 2178
1938 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1940 } 2181 }
1952 2193
1953 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1954 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1956 2197
1957 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1958 } 2199 }
1959 while (expect_true ( 2200 while (expect_true (
1960 activecnt 2201 activecnt
1961 && !loop_done 2202 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 )); 2204 ));
1964 2205
1965 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1966 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1967} 2212}
1968 2213
1969void 2214void
1970ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1971{ 2216{
1972 loop_done = how; 2217 loop_done = how;
1973} 2218}
1974 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1975/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1976 2259
1977void inline_size 2260inline_size void
1978wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1979{ 2262{
1980 elem->next = *head; 2263 elem->next = *head;
1981 *head = elem; 2264 *head = elem;
1982} 2265}
1983 2266
1984void inline_size 2267inline_size void
1985wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1986{ 2269{
1987 while (*head) 2270 while (*head)
1988 { 2271 {
1989 if (*head == elem) 2272 if (*head == elem)
1994 2277
1995 head = &(*head)->next; 2278 head = &(*head)->next;
1996 } 2279 }
1997} 2280}
1998 2281
1999void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
2000clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
2001{ 2285{
2002 if (w->pending) 2286 if (w->pending)
2003 { 2287 {
2004 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2005 w->pending = 0; 2289 w->pending = 0;
2006 } 2290 }
2007} 2291}
2008 2292
2009int 2293int
2013 int pending = w_->pending; 2297 int pending = w_->pending;
2014 2298
2015 if (expect_true (pending)) 2299 if (expect_true (pending))
2016 { 2300 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2018 w_->pending = 0; 2303 w_->pending = 0;
2019 p->w = 0;
2020 return p->events; 2304 return p->events;
2021 } 2305 }
2022 else 2306 else
2023 return 0; 2307 return 0;
2024} 2308}
2025 2309
2026void inline_size 2310inline_size void
2027pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
2028{ 2312{
2029 int pri = w->priority; 2313 int pri = ev_priority (w);
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri; 2316 ev_set_priority (w, pri);
2033} 2317}
2034 2318
2035void inline_speed 2319inline_speed void
2036ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
2037{ 2321{
2038 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
2039 w->active = active; 2323 w->active = active;
2040 ev_ref (EV_A); 2324 ev_ref (EV_A);
2041} 2325}
2042 2326
2043void inline_size 2327inline_size void
2044ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
2045{ 2329{
2046 ev_unref (EV_A); 2330 ev_unref (EV_A);
2047 w->active = 0; 2331 w->active = 0;
2048} 2332}
2055 int fd = w->fd; 2339 int fd = w->fd;
2056 2340
2057 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
2058 return; 2342 return;
2059 2343
2060 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2061 2346
2062 EV_FREQUENT_CHECK; 2347 EV_FREQUENT_CHECK;
2063 2348
2064 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2066 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
2067 2352
2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2069 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2070 2355
2071 EV_FREQUENT_CHECK; 2356 EV_FREQUENT_CHECK;
2072} 2357}
2073 2358
2074void noinline 2359void noinline
2076{ 2361{
2077 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2079 return; 2364 return;
2080 2365
2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082 2367
2083 EV_FREQUENT_CHECK; 2368 EV_FREQUENT_CHECK;
2084 2369
2085 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
2086 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2096 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
2097 return; 2382 return;
2098 2383
2099 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
2100 2385
2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2102 2387
2103 EV_FREQUENT_CHECK; 2388 EV_FREQUENT_CHECK;
2104 2389
2105 ++timercnt; 2390 ++timercnt;
2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2109 ANHE_at_cache (timers [ev_active (w)]); 2394 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
2111 2396
2112 EV_FREQUENT_CHECK; 2397 EV_FREQUENT_CHECK;
2113 2398
2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2115} 2400}
2116 2401
2117void noinline 2402void noinline
2118ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
2119{ 2404{
2124 EV_FREQUENT_CHECK; 2409 EV_FREQUENT_CHECK;
2125 2410
2126 { 2411 {
2127 int active = ev_active (w); 2412 int active = ev_active (w);
2128 2413
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130 2415
2131 --timercnt; 2416 --timercnt;
2132 2417
2133 if (expect_true (active < timercnt + HEAP0)) 2418 if (expect_true (active < timercnt + HEAP0))
2134 { 2419 {
2178 2463
2179 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2181 else if (w->interval) 2466 else if (w->interval)
2182 { 2467 {
2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2184 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 } 2471 }
2187 else 2472 else
2188 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2196 ANHE_at_cache (periodics [ev_active (w)]); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2198 2483
2199 EV_FREQUENT_CHECK; 2484 EV_FREQUENT_CHECK;
2200 2485
2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2202} 2487}
2203 2488
2204void noinline 2489void noinline
2205ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2206{ 2491{
2211 EV_FREQUENT_CHECK; 2496 EV_FREQUENT_CHECK;
2212 2497
2213 { 2498 {
2214 int active = ev_active (w); 2499 int active = ev_active (w);
2215 2500
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217 2502
2218 --periodiccnt; 2503 --periodiccnt;
2219 2504
2220 if (expect_true (active < periodiccnt + HEAP0)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2221 { 2506 {
2244 2529
2245void noinline 2530void noinline
2246ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2247{ 2532{
2248#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif 2535#endif
2251 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2252 return; 2537 return;
2253 2538
2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2255 2540
2256 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2257 2542
2258 EV_FREQUENT_CHECK; 2543 EV_FREQUENT_CHECK;
2259 2544
2262 sigset_t full, prev; 2547 sigset_t full, prev;
2263 sigfillset (&full); 2548 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif 2550#endif
2266 2551
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2268 2553
2269#ifndef _WIN32 2554#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif 2556#endif
2272 } 2557 }
2310 2595
2311void 2596void
2312ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2313{ 2598{
2314#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif 2601#endif
2317 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2318 return; 2603 return;
2319 2604
2320 EV_FREQUENT_CHECK; 2605 EV_FREQUENT_CHECK;
2345# ifdef _WIN32 2630# ifdef _WIN32
2346# undef lstat 2631# undef lstat
2347# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
2348# endif 2633# endif
2349 2634
2350#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2351#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
2352 2638
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354 2640
2355#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2360{ 2646{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362 2648
2363 if (w->wd < 0) 2649 if (w->wd < 0)
2364 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366 2653
2367 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2369 /* but an efficiency issue only */ 2656 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 { 2658 {
2372 char path [4096]; 2659 char path [4096];
2373 strcpy (path, w->path); 2660 strcpy (path, w->path);
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379 2666
2380 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2381 2668
2382 if (!pend) 2669 if (!pend || pend == path)
2383 break; /* whoops, no '/', complain to your admin */ 2670 break;
2384 2671
2385 *pend = 0; 2672 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 } 2674 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 } 2676 }
2390 } 2677 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393 2678
2394 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2396} 2700}
2397 2701
2398static void noinline 2702static void noinline
2399infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2400{ 2704{
2414 2718
2415static void noinline 2719static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{ 2721{
2418 if (slot < 0) 2722 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2422 else 2726 else
2423 { 2727 {
2424 WL w_; 2728 WL w_;
2430 2734
2431 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2432 { 2736 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2435 w->wd = -1; 2740 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2437 } 2742 }
2438 2743
2439 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2452 2757
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455} 2760}
2456 2761
2457void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2458infy_init (EV_P) 2786infy_init (EV_P)
2459{ 2787{
2460 if (fs_fd != -2) 2788 if (fs_fd != -2)
2461 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2462 2794
2463 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2464 2796
2465 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2466 { 2798 {
2468 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2470 } 2802 }
2471} 2803}
2472 2804
2473void inline_size 2805inline_size void
2474infy_fork (EV_P) 2806infy_fork (EV_P)
2475{ 2807{
2476 int slot; 2808 int slot;
2477 2809
2478 if (fs_fd < 0) 2810 if (fs_fd < 0)
2494 w->wd = -1; 2826 w->wd = -1;
2495 2827
2496 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else 2830 else
2499 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2500 } 2832 }
2501
2502 } 2833 }
2503} 2834}
2504 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2505#endif 2842#endif
2506 2843
2507void 2844void
2508ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2509{ 2846{
2536 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2539 ) { 2876 ) {
2540 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2541 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2544 #endif 2884 #endif
2545 2885
2546 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2547 } 2887 }
2548} 2888}
2551ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2552{ 2892{
2553 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2554 return; 2894 return;
2555 2895
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2561 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2562 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564 2900
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2566 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2567 2903
2568#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2569 infy_init (EV_A); 2905 infy_init (EV_A);
2570 2906
2571 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2572 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2573 else 2909 else
2574#endif 2910#endif
2575 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2576 2912
2577 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2578 2914
2579 EV_FREQUENT_CHECK; 2915 EV_FREQUENT_CHECK;
2580} 2916}
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 } 3087 }
2752 } 3088 }
2753} 3089}
2754 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2755#if 0 3108#if 0
2756static void 3109static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{ 3111{
2759 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2766 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2767 return; 3120 return;
2768 3121
2769 { 3122 {
2770 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 } 3126 }
2774 3127
2775 EV_FREQUENT_CHECK; 3128 EV_FREQUENT_CHECK;
2776 3129
2779 3132
2780 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2783 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785 3141
2786 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
2787 3143
2788 EV_FREQUENT_CHECK; 3144 EV_FREQUENT_CHECK;
2795 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2796 return; 3152 return;
2797 3153
2798 EV_FREQUENT_CHECK; 3154 EV_FREQUENT_CHECK;
2799 3155
2800 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
2802 3158 ev_fork_stop (EV_A_ &w->fork);
2803 ev_stop (EV_A_ (W)w);
2804 3159
2805 EV_FREQUENT_CHECK; 3160 EV_FREQUENT_CHECK;
2806} 3161}
2807#endif 3162#endif
2808 3163
2905once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2906{ 3261{
2907 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2908 void *arg = once->arg; 3263 void *arg = once->arg;
2909 3264
2910 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2911 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2912 ev_free (once); 3267 ev_free (once);
2913 3268
2914 cb (revents, arg); 3269 cb (revents, arg);
2915} 3270}
2916 3271
2917static void 3272static void
2918once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2919{ 3274{
2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2921} 3278}
2922 3279
2923static void 3280static void
2924once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2925{ 3282{
2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2927} 3286}
2928 3287
2929void 3288void
2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2931{ 3290{
2953 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2954 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2955 } 3314 }
2956} 3315}
2957 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2958#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2959 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2960#endif 3427#endif
2961 3428
2962#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines