ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC vs.
Revision 1.348 by root, Fri Oct 15 22:48:25 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
240#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 339#endif
243 340
244#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
246#endif 357#endif
247 358
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
249 366
250#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
253#endif 370#endif
267# include <sys/select.h> 384# include <sys/select.h>
268# endif 385# endif
269#endif 386#endif
270 387
271#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
272# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
273#endif 397#endif
274 398
275#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 400# include <winsock.h>
277#endif 401#endif
278 402
279#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
282# ifdef __cplusplus 416# ifdef __cplusplus
283extern "C" { 417extern "C" {
284# endif 418# endif
285int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
286# ifdef __cplusplus 420# ifdef __cplusplus
287} 421}
288# endif 422# endif
289#endif 423#endif
290 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
291/**/ 453/**/
292 454
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1 455#if EV_VERIFY >= 3
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 456# define EV_FREQUENT_CHECK ev_verify (EV_A)
300#else 457#else
301# define EV_FREQUENT_CHECK do { } while (0) 458# define EV_FREQUENT_CHECK do { } while (0)
302#endif 459#endif
303 460
304/* 461/*
311 */ 468 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
313 470
314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
317 476
318#if __GNUC__ >= 4 477#if __GNUC__ >= 4
319# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
320# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
321#else 480#else
328 487
329#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
330#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline 490#define inline_size static inline
332 491
333#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
334# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
335#else 502#else
336# define inline_speed static inline
337#endif
338
339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
341 505
342#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
343#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
344 508
345typedef ev_watcher *W; 509typedef ev_watcher *W;
347typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
348 512
349#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
351 515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
352#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
356#endif 534#endif
357 535
358#ifdef _WIN32 536#ifdef _WIN32
359# include "ev_win32.c" 537# include "ev_win32.c"
360#endif 538#endif
361 539
362/*****************************************************************************/ 540/*****************************************************************************/
363 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
364static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
365 551
366void 552void
367ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
368{ 554{
369 syserr_cb = cb; 555 syserr_cb = cb;
370} 556}
371 557
372static void noinline 558static void noinline
373syserr (const char *msg) 559ev_syserr (const char *msg)
374{ 560{
375 if (!msg) 561 if (!msg)
376 msg = "(libev) system error"; 562 msg = "(libev) system error";
377 563
378 if (syserr_cb) 564 if (syserr_cb)
379 syserr_cb (msg); 565 syserr_cb (msg);
380 else 566 else
381 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
382 perror (msg); 576 perror (msg);
577#endif
383 abort (); 578 abort ();
384 } 579 }
385} 580}
386 581
387static void * 582static void *
388ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
389{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
390 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
392 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
393 */ 591 */
394 592
395 if (size) 593 if (size)
396 return realloc (ptr, size); 594 return realloc (ptr, size);
397 595
398 free (ptr); 596 free (ptr);
399 return 0; 597 return 0;
598#endif
400} 599}
401 600
402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
403 602
404void 603void
412{ 611{
413 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
414 613
415 if (!ptr && size) 614 if (!ptr && size)
416 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
418 abort (); 621 abort ();
419 } 622 }
420 623
421 return ptr; 624 return ptr;
422} 625}
424#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
425#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
426 629
427/*****************************************************************************/ 630/*****************************************************************************/
428 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
429typedef struct 636typedef struct
430{ 637{
431 WL head; 638 WL head;
432 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
433 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
434#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
435 SOCKET handle; 647 SOCKET handle;
436#endif 648#endif
437} ANFD; 649} ANFD;
438 650
651/* stores the pending event set for a given watcher */
439typedef struct 652typedef struct
440{ 653{
441 W w; 654 W w;
442 int events; 655 int events; /* the pending event set for the given watcher */
443} ANPENDING; 656} ANPENDING;
444 657
445#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */ 659/* hash table entry per inotify-id */
447typedef struct 660typedef struct
450} ANFS; 663} ANFS;
451#endif 664#endif
452 665
453/* Heap Entry */ 666/* Heap Entry */
454#if EV_HEAP_CACHE_AT 667#if EV_HEAP_CACHE_AT
668 /* a heap element */
455 typedef struct { 669 typedef struct {
456 ev_tstamp at; 670 ev_tstamp at;
457 WT w; 671 WT w;
458 } ANHE; 672 } ANHE;
459 673
460 #define ANHE_w(he) (he).w /* access watcher, read-write */ 674 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */ 675 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else 677#else
678 /* a heap element */
464 typedef WT ANHE; 679 typedef WT ANHE;
465 680
466 #define ANHE_w(he) (he) 681 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at 682 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he) 683 #define ANHE_at_cache(he)
492 707
493 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
494 709
495#endif 710#endif
496 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
497/*****************************************************************************/ 724/*****************************************************************************/
498 725
726#ifndef EV_HAVE_EV_TIME
499ev_tstamp 727ev_tstamp
500ev_time (void) 728ev_time (void)
501{ 729{
502#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
503 struct timespec ts; 733 struct timespec ts;
504 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
505 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
506#else 736 }
737#endif
738
507 struct timeval tv; 739 struct timeval tv;
508 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
509 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
510#endif
511} 742}
743#endif
512 744
513ev_tstamp inline_size 745inline_size ev_tstamp
514get_clock (void) 746get_clock (void)
515{ 747{
516#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
517 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
518 { 750 {
539 if (delay > 0.) 771 if (delay > 0.)
540 { 772 {
541#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
542 struct timespec ts; 774 struct timespec ts;
543 775
544 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
548#elif defined(_WIN32) 778#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
550#else 780#else
551 struct timeval tv; 781 struct timeval tv;
552 782
553 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
555 785 /* by older ones */
786 EV_TS_SET (tv, delay);
556 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
557#endif 788#endif
558 } 789 }
559} 790}
560 791
561/*****************************************************************************/ 792/*****************************************************************************/
562 793
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564 795
565int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
566array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
567{ 800{
568 int ncur = cur + 1; 801 int ncur = cur + 1;
569 802
570 do 803 do
587array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
588{ 821{
589 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
591} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
592 828
593#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
594 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
595 { \ 831 { \
596 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
609 } 845 }
610#endif 846#endif
611 847
612#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
614 850
615/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
616 858
617void noinline 859void noinline
618ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
619{ 861{
620 W w_ = (W)w; 862 W w_ = (W)w;
629 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
631 } 873 }
632} 874}
633 875
634void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
635queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
636{ 893{
637 int i; 894 int i;
638 895
639 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
641} 898}
642 899
643/*****************************************************************************/ 900/*****************************************************************************/
644 901
645void inline_size 902inline_speed void
646anfds_init (ANFD *base, int count)
647{
648 while (count--)
649 {
650 base->head = 0;
651 base->events = EV_NONE;
652 base->reify = 0;
653
654 ++base;
655 }
656}
657
658void inline_speed
659fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
660{ 904{
661 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
662 ev_io *w; 906 ev_io *w;
663 907
664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
668 if (ev) 912 if (ev)
669 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
670 } 914 }
671} 915}
672 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
673void 928void
674ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
675{ 930{
676 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
677 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
678} 933}
679 934
680void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
681fd_reify (EV_P) 938fd_reify (EV_P)
682{ 939{
683 int i; 940 int i;
684 941
685 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
694 events |= (unsigned char)w->events; 951 events |= (unsigned char)w->events;
695 952
696#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
697 if (events) 954 if (events)
698 { 955 {
699 unsigned long argp; 956 unsigned long arg;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
703 anfd->handle = _get_osfhandle (fd);
704 #endif
705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
706 } 959 }
707#endif 960#endif
708 961
709 { 962 {
710 unsigned char o_events = anfd->events; 963 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
712 965
713 anfd->reify = 0; 966 anfd->reify = 0;
714 anfd->events = events; 967 anfd->events = events;
715 968
716 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
718 } 971 }
719 } 972 }
720 973
721 fdchangecnt = 0; 974 fdchangecnt = 0;
722} 975}
723 976
724void inline_size 977/* something about the given fd changed */
978inline_size void
725fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
726{ 980{
727 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
728 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
729 983
733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
734 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
735 } 989 }
736} 990}
737 991
738void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
739fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
740{ 995{
741 ev_io *w; 996 ev_io *w;
742 997
743 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
745 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
747 } 1002 }
748} 1003}
749 1004
750int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
751fd_valid (int fd) 1007fd_valid (int fd)
752{ 1008{
753#ifdef _WIN32 1009#ifdef _WIN32
754 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
755#else 1011#else
756 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
757#endif 1013#endif
758} 1014}
759 1015
763{ 1019{
764 int fd; 1020 int fd;
765 1021
766 for (fd = 0; fd < anfdmax; ++fd) 1022 for (fd = 0; fd < anfdmax; ++fd)
767 if (anfds [fd].events) 1023 if (anfds [fd].events)
768 if (!fd_valid (fd) == -1 && errno == EBADF) 1024 if (!fd_valid (fd) && errno == EBADF)
769 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
770} 1026}
771 1027
772/* called on ENOMEM in select/poll to kill some fds and retry */ 1028/* called on ENOMEM in select/poll to kill some fds and retry */
773static void noinline 1029static void noinline
777 1033
778 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
779 if (anfds [fd].events) 1035 if (anfds [fd].events)
780 { 1036 {
781 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
782 return; 1038 break;
783 } 1039 }
784} 1040}
785 1041
786/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
787static void noinline 1043static void noinline
791 1047
792 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
793 if (anfds [fd].events) 1049 if (anfds [fd].events)
794 { 1050 {
795 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
1052 anfds [fd].emask = 0;
796 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
797 } 1054 }
798} 1055}
799 1056
1057/* used to prepare libev internal fd's */
1058/* this is not fork-safe */
1059inline_speed void
1060fd_intern (int fd)
1061{
1062#ifdef _WIN32
1063 unsigned long arg = 1;
1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1065#else
1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
1067 fcntl (fd, F_SETFL, O_NONBLOCK);
1068#endif
1069}
1070
800/*****************************************************************************/ 1071/*****************************************************************************/
801 1072
802/* 1073/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not 1074 * the heap functions want a real array index. array index 0 is guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree. 1076 * the branching factor of the d-tree.
806 */ 1077 */
807 1078
808/* 1079/*
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k)) 1090#define UPHEAP_DONE(p,k) ((p) == (k))
820 1091
821/* away from the root */ 1092/* away from the root */
822void inline_speed 1093inline_speed void
823downheap (ANHE *heap, int N, int k) 1094downheap (ANHE *heap, int N, int k)
824{ 1095{
825 ANHE he = heap [k]; 1096 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0; 1097 ANHE *E = heap + N + HEAP0;
827 1098
867#define HEAP0 1 1138#define HEAP0 1
868#define HPARENT(k) ((k) >> 1) 1139#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p)) 1140#define UPHEAP_DONE(p,k) (!(p))
870 1141
871/* away from the root */ 1142/* away from the root */
872void inline_speed 1143inline_speed void
873downheap (ANHE *heap, int N, int k) 1144downheap (ANHE *heap, int N, int k)
874{ 1145{
875 ANHE he = heap [k]; 1146 ANHE he = heap [k];
876 1147
877 for (;;) 1148 for (;;)
878 { 1149 {
879 int c = k << 1; 1150 int c = k << 1;
880 1151
881 if (c > N + HEAP0 - 1) 1152 if (c >= N + HEAP0)
882 break; 1153 break;
883 1154
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0; 1156 ? 1 : 0;
886 1157
897 ev_active (ANHE_w (he)) = k; 1168 ev_active (ANHE_w (he)) = k;
898} 1169}
899#endif 1170#endif
900 1171
901/* towards the root */ 1172/* towards the root */
902void inline_speed 1173inline_speed void
903upheap (ANHE *heap, int k) 1174upheap (ANHE *heap, int k)
904{ 1175{
905 ANHE he = heap [k]; 1176 ANHE he = heap [k];
906 1177
907 for (;;) 1178 for (;;)
918 1189
919 heap [k] = he; 1190 heap [k] = he;
920 ev_active (ANHE_w (he)) = k; 1191 ev_active (ANHE_w (he)) = k;
921} 1192}
922 1193
923void inline_size 1194/* move an element suitably so it is in a correct place */
1195inline_size void
924adjustheap (ANHE *heap, int N, int k) 1196adjustheap (ANHE *heap, int N, int k)
925{ 1197{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
927 upheap (heap, k); 1199 upheap (heap, k);
928 else 1200 else
929 downheap (heap, N, k); 1201 downheap (heap, N, k);
930} 1202}
931 1203
932/* rebuild the heap: this function is used only once and executed rarely */ 1204/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size 1205inline_size void
934reheap (ANHE *heap, int N) 1206reheap (ANHE *heap, int N)
935{ 1207{
936 int i; 1208 int i;
1209
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1211 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i) 1212 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0); 1213 upheap (heap, i + HEAP0);
941} 1214}
942 1215
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
957
958/*****************************************************************************/ 1216/*****************************************************************************/
959 1217
1218/* associate signal watchers to a signal signal */
960typedef struct 1219typedef struct
961{ 1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
962 WL head; 1225 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG; 1226} ANSIG;
965 1227
966static ANSIG *signals; 1228static ANSIG signals [EV_NSIG - 1];
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982 1229
983/*****************************************************************************/ 1230/*****************************************************************************/
984 1231
985void inline_speed 1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 int arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996 1233
997static void noinline 1234static void noinline
998evpipe_init (EV_P) 1235evpipe_init (EV_P)
999{ 1236{
1000 if (!ev_is_active (&pipeev)) 1237 if (!ev_is_active (&pipe_w))
1001 { 1238 {
1002#if EV_USE_EVENTFD 1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
1003 if ((evfd = eventfd (0, 0)) >= 0) 1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
1004 { 1245 {
1005 evpipe [0] = -1; 1246 evpipe [0] = -1;
1006 fd_intern (evfd); 1247 fd_intern (evfd); /* doing it twice doesn't hurt */
1007 ev_io_set (&pipeev, evfd, EV_READ); 1248 ev_io_set (&pipe_w, evfd, EV_READ);
1008 } 1249 }
1009 else 1250 else
1010#endif 1251# endif
1011 { 1252 {
1012 while (pipe (evpipe)) 1253 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe"); 1254 ev_syserr ("(libev) error creating signal/async pipe");
1014 1255
1015 fd_intern (evpipe [0]); 1256 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]); 1257 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1018 } 1259 }
1019 1260
1020 ev_io_start (EV_A_ &pipeev); 1261 ev_io_start (EV_A_ &pipe_w);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 } 1263 }
1023} 1264}
1024 1265
1025void inline_size 1266inline_size void
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{ 1268{
1028 if (!*flag) 1269 if (!*flag)
1029 { 1270 {
1030 int old_errno = errno; /* save errno because write might clobber it */ 1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
1031 1273
1032 *flag = 1; 1274 *flag = 1;
1033 1275
1034#if EV_USE_EVENTFD 1276#if EV_USE_EVENTFD
1035 if (evfd >= 0) 1277 if (evfd >= 0)
1037 uint64_t counter = 1; 1279 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t)); 1280 write (evfd, &counter, sizeof (uint64_t));
1039 } 1281 }
1040 else 1282 else
1041#endif 1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
1042 write (evpipe [1], &old_errno, 1); 1289 write (evpipe [1], &dummy, 1);
1043 1290
1044 errno = old_errno; 1291 errno = old_errno;
1045 } 1292 }
1046} 1293}
1047 1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
1048static void 1297static void
1049pipecb (EV_P_ ev_io *iow, int revents) 1298pipecb (EV_P_ ev_io *iow, int revents)
1050{ 1299{
1300 int i;
1301
1051#if EV_USE_EVENTFD 1302#if EV_USE_EVENTFD
1052 if (evfd >= 0) 1303 if (evfd >= 0)
1053 { 1304 {
1054 uint64_t counter; 1305 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t)); 1306 read (evfd, &counter, sizeof (uint64_t));
1056 } 1307 }
1057 else 1308 else
1058#endif 1309#endif
1059 { 1310 {
1060 char dummy; 1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1061 read (evpipe [0], &dummy, 1); 1313 read (evpipe [0], &dummy, 1);
1062 } 1314 }
1063 1315
1064 if (gotsig && ev_is_default_loop (EV_A)) 1316 if (sig_pending)
1065 { 1317 {
1066 int signum; 1318 sig_pending = 0;
1067 gotsig = 0;
1068 1319
1069 for (signum = signalmax; signum--; ) 1320 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 1321 if (expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 1322 ev_feed_signal_event (EV_A_ i + 1);
1072 } 1323 }
1073 1324
1074#if EV_ASYNC_ENABLE 1325#if EV_ASYNC_ENABLE
1075 if (gotasync) 1326 if (async_pending)
1076 { 1327 {
1077 int i; 1328 async_pending = 0;
1078 gotasync = 0;
1079 1329
1080 for (i = asynccnt; i--; ) 1330 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 1331 if (asyncs [i]->sent)
1082 { 1332 {
1083 asyncs [i]->sent = 0; 1333 asyncs [i]->sent = 0;
1091 1341
1092static void 1342static void
1093ev_sighandler (int signum) 1343ev_sighandler (int signum)
1094{ 1344{
1095#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct; 1346 EV_P = signals [signum - 1].loop;
1097#endif 1347#endif
1098 1348
1099#if _WIN32 1349#ifdef _WIN32
1100 signal (signum, ev_sighandler); 1350 signal (signum, ev_sighandler);
1101#endif 1351#endif
1102 1352
1103 signals [signum - 1].gotsig = 1; 1353 signals [signum - 1].pending = 1;
1104 evpipe_write (EV_A_ &gotsig); 1354 evpipe_write (EV_A_ &sig_pending);
1105} 1355}
1106 1356
1107void noinline 1357void noinline
1108ev_feed_signal_event (EV_P_ int signum) 1358ev_feed_signal_event (EV_P_ int signum)
1109{ 1359{
1110 WL w; 1360 WL w;
1111 1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1112#if EV_MULTIPLICITY 1367#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1368 /* it is permissible to try to feed a signal to the wrong loop */
1114#endif 1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1115 1370
1116 --signum; 1371 if (expect_false (signals [signum].loop != EV_A))
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 1372 return;
1373#endif
1120 1374
1121 signals [signum].gotsig = 0; 1375 signals [signum].pending = 0;
1122 1376
1123 for (w = signals [signum].head; w; w = w->next) 1377 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 1379}
1126 1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1127/*****************************************************************************/ 1403/*****************************************************************************/
1128 1404
1405#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 1407
1133static ev_signal childev; 1408static ev_signal childev;
1134 1409
1135#ifndef WIFCONTINUED 1410#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 1411# define WIFCONTINUED(status) 0
1137#endif 1412#endif
1138 1413
1139void inline_speed 1414/* handle a single child status event */
1415inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
1141{ 1417{
1142 ev_child *w; 1418 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 1420
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 1422 {
1147 if ((w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 1424 && (!traced || (w->flags & 1)))
1149 { 1425 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 1433
1158#ifndef WCONTINUED 1434#ifndef WCONTINUED
1159# define WCONTINUED 0 1435# define WCONTINUED 0
1160#endif 1436#endif
1161 1437
1438/* called on sigchld etc., calls waitpid */
1162static void 1439static void
1163childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
1164{ 1441{
1165 int pid, status; 1442 int pid, status;
1166 1443
1174 /* make sure we are called again until all children have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 1454
1178 child_reap (EV_A_ pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 1458}
1182 1459
1183#endif 1460#endif
1184 1461
1247 /* kqueue is borked on everything but netbsd apparently */ 1524 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 1525 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 1526 flags &= ~EVBACKEND_KQUEUE;
1250#endif 1527#endif
1251#ifdef __APPLE__ 1528#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 1529 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1254#endif 1535#endif
1255 1536
1256 return flags; 1537 return flags;
1257} 1538}
1258 1539
1272ev_backend (EV_P) 1553ev_backend (EV_P)
1273{ 1554{
1274 return backend; 1555 return backend;
1275} 1556}
1276 1557
1558#if EV_FEATURE_API
1277unsigned int 1559unsigned int
1278ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1279{ 1561{
1280 return loop_count; 1562 return loop_count;
1281} 1563}
1282 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1283void 1571void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1573{
1286 io_blocktime = interval; 1574 io_blocktime = interval;
1287} 1575}
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{ 1579{
1292 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1293} 1581}
1294 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1295static void noinline 1608static void noinline
1296loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1297{ 1610{
1298 if (!backend) 1611 if (!backend)
1299 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
1300#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
1301 { 1625 {
1302 struct timespec ts; 1626 struct timespec ts;
1627
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 1629 have_monotonic = 1;
1305 } 1630 }
1306#endif 1631#endif
1632
1633 /* pid check not overridable via env */
1634#ifndef _WIN32
1635 if (flags & EVFLAG_FORKCHECK)
1636 curpid = getpid ();
1637#endif
1638
1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1307 1643
1308 ev_rt_now = ev_time (); 1644 ev_rt_now = ev_time ();
1309 mn_now = get_clock (); 1645 mn_now = get_clock ();
1310 now_floor = mn_now; 1646 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now; 1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1312 1651
1313 io_blocktime = 0.; 1652 io_blocktime = 0.;
1314 timeout_blocktime = 0.; 1653 timeout_blocktime = 0.;
1315 backend = 0; 1654 backend = 0;
1316 backend_fd = -1; 1655 backend_fd = -1;
1317 gotasync = 0; 1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1318#if EV_USE_INOTIFY 1660#if EV_USE_INOTIFY
1319 fs_fd = -2; 1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1320#endif 1662#endif
1321 1663#if EV_USE_SIGNALFD
1322 /* pid check not overridable via env */ 1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif 1665#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1332 1666
1333 if (!(flags & 0x0000ffffU)) 1667 if (!(flags & 0x0000ffffU))
1334 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1335 1669
1336#if EV_USE_PORT 1670#if EV_USE_PORT
1347#endif 1681#endif
1348#if EV_USE_SELECT 1682#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 1684#endif
1351 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 1689 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1354 } 1692 }
1355} 1693}
1356 1694
1695/* free up a loop structure */
1357static void noinline 1696static void noinline
1358loop_destroy (EV_P) 1697loop_destroy (EV_P)
1359{ 1698{
1360 int i; 1699 int i;
1361 1700
1362 if (ev_is_active (&pipeev)) 1701 if (ev_is_active (&pipe_w))
1363 { 1702 {
1364 ev_ref (EV_A); /* signal watcher */ 1703 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 1705
1367#if EV_USE_EVENTFD 1706#if EV_USE_EVENTFD
1368 if (evfd >= 0) 1707 if (evfd >= 0)
1369 close (evfd); 1708 close (evfd);
1370#endif 1709#endif
1371 1710
1372 if (evpipe [0] >= 0) 1711 if (evpipe [0] >= 0)
1373 { 1712 {
1374 close (evpipe [0]); 1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1375 close (evpipe [1]); 1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1376 } 1715 }
1377 } 1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1378 1722
1379#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1381 close (fs_fd); 1725 close (fs_fd);
1382#endif 1726#endif
1406#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 1751 array_free (idle, [i]);
1408#endif 1752#endif
1409 } 1753 }
1410 1754
1411 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 1756
1413 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1418#endif 1763#endif
1427 1772
1428 backend = 0; 1773 backend = 0;
1429} 1774}
1430 1775
1431#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1433#endif 1778#endif
1434 1779
1435void inline_size 1780inline_size void
1436loop_fork (EV_P) 1781loop_fork (EV_P)
1437{ 1782{
1438#if EV_USE_PORT 1783#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 1785#endif
1446#endif 1791#endif
1447#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 1793 infy_fork (EV_A);
1449#endif 1794#endif
1450 1795
1451 if (ev_is_active (&pipeev)) 1796 if (ev_is_active (&pipe_w))
1452 { 1797 {
1453 /* this "locks" the handlers against writing to the pipe */ 1798 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */ 1799 /* while we modify the fd vars */
1455 gotsig = 1; 1800 sig_pending = 1;
1456#if EV_ASYNC_ENABLE 1801#if EV_ASYNC_ENABLE
1457 gotasync = 1; 1802 async_pending = 1;
1458#endif 1803#endif
1459 1804
1460 ev_ref (EV_A); 1805 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 1806 ev_io_stop (EV_A_ &pipe_w);
1462 1807
1463#if EV_USE_EVENTFD 1808#if EV_USE_EVENTFD
1464 if (evfd >= 0) 1809 if (evfd >= 0)
1465 close (evfd); 1810 close (evfd);
1466#endif 1811#endif
1467 1812
1468 if (evpipe [0] >= 0) 1813 if (evpipe [0] >= 0)
1469 { 1814 {
1470 close (evpipe [0]); 1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1471 close (evpipe [1]); 1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1472 } 1817 }
1473 1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 evpipe_init (EV_A); 1820 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 1821 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1477 } 1824 }
1478 1825
1479 postfork = 0; 1826 postfork = 0;
1480} 1827}
1481 1828
1482#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1830
1483struct ev_loop * 1831struct ev_loop *
1484ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1485{ 1833{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 1835
1488 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1491 1838
1492 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1493 return loop; 1840 return EV_A;
1494 1841
1495 return 0; 1842 return 0;
1496} 1843}
1497 1844
1498void 1845void
1505void 1852void
1506ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1507{ 1854{
1508 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1509} 1856}
1857#endif /* multiplicity */
1510 1858
1511#if EV_VERIFY 1859#if EV_VERIFY
1512static void 1860static void noinline
1861verify_watcher (EV_P_ W w)
1862{
1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1864
1865 if (w->pending)
1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1867}
1868
1869static void noinline
1870verify_heap (EV_P_ ANHE *heap, int N)
1871{
1872 int i;
1873
1874 for (i = HEAP0; i < N + HEAP0; ++i)
1875 {
1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1879
1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1881 }
1882}
1883
1884static void noinline
1513array_check (W **ws, int cnt) 1885array_verify (EV_P_ W *ws, int cnt)
1514{ 1886{
1515 while (cnt--) 1887 while (cnt--)
1888 {
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1890 verify_watcher (EV_A_ ws [cnt]);
1891 }
1517} 1892}
1893#endif
1518 1894
1519static void 1895#if EV_FEATURE_API
1896void
1520ev_loop_verify (EV_P) 1897ev_verify (EV_P)
1521{ 1898{
1899#if EV_VERIFY
1522 int i; 1900 int i;
1901 WL w;
1523 1902
1903 assert (activecnt >= -1);
1904
1905 assert (fdchangemax >= fdchangecnt);
1906 for (i = 0; i < fdchangecnt; ++i)
1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1908
1909 assert (anfdmax >= 0);
1910 for (i = 0; i < anfdmax; ++i)
1911 for (w = anfds [i].head; w; w = w->next)
1912 {
1913 verify_watcher (EV_A_ (W)w);
1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1916 }
1917
1918 assert (timermax >= timercnt);
1524 checkheap (timers, timercnt); 1919 verify_heap (EV_A_ timers, timercnt);
1920
1525#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1922 assert (periodicmax >= periodiccnt);
1526 checkheap (periodics, periodiccnt); 1923 verify_heap (EV_A_ periodics, periodiccnt);
1527#endif 1924#endif
1528 1925
1926 for (i = NUMPRI; i--; )
1927 {
1928 assert (pendingmax [i] >= pendingcnt [i]);
1529#if EV_IDLE_ENABLE 1929#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; ) 1930 assert (idleall >= 0);
1931 assert (idlemax [i] >= idlecnt [i]);
1531 array_check ((W **)idles [i], idlecnt [i]); 1932 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1532#endif 1933#endif
1934 }
1935
1533#if EV_FORK_ENABLE 1936#if EV_FORK_ENABLE
1937 assert (forkmax >= forkcnt);
1534 array_check ((W **)forks, forkcnt); 1938 array_verify (EV_A_ (W *)forks, forkcnt);
1535#endif 1939#endif
1536 array_check ((W **)prepares, preparecnt); 1940
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE 1941#if EV_ASYNC_ENABLE
1942 assert (asyncmax >= asynccnt);
1539 array_check ((W **)asyncs, asynccnt); 1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1944#endif
1945
1946#if EV_PREPARE_ENABLE
1947 assert (preparemax >= preparecnt);
1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1950
1951#if EV_CHECK_ENABLE
1952 assert (checkmax >= checkcnt);
1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1955
1956# if 0
1957#if EV_CHILD_ENABLE
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1540#endif 1961# endif
1541}
1542#endif 1962#endif
1543 1963}
1544#endif 1964#endif
1545 1965
1546#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1547struct ev_loop * 1967struct ev_loop *
1548ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
1552#endif 1972#endif
1553{ 1973{
1554 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1555 { 1975 {
1556#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1558#else 1978#else
1559 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1560#endif 1980#endif
1561 1981
1562 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1563 1983
1564 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1565 { 1985 {
1566#ifndef _WIN32 1986#if EV_CHILD_ENABLE
1567 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1568 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1569 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1571#endif 1991#endif
1579 1999
1580void 2000void
1581ev_default_destroy (void) 2001ev_default_destroy (void)
1582{ 2002{
1583#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1584 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1585#endif 2005#endif
1586 2006
1587#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
1588 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1589 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1590#endif 2012#endif
1591 2013
1592 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1594 2016
1595void 2017void
1596ev_default_fork (void) 2018ev_default_fork (void)
1597{ 2019{
1598#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1599 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1600#endif 2022#endif
1601 2023
1602 if (backend)
1603 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1604} 2025}
1605 2026
1606/*****************************************************************************/ 2027/*****************************************************************************/
1607 2028
1608void 2029void
1609ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1610{ 2031{
1611 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1612} 2033}
1613 2034
1614void inline_speed 2035unsigned int
1615call_pending (EV_P) 2036ev_pending_count (EV_P)
1616{ 2037{
1617 int pri; 2038 int pri;
2039 unsigned int count = 0;
1618 2040
1619 EV_FREQUENT_CHECK; 2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
2049{
2050 int pri;
1620 2051
1621 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1622 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1623 { 2054 {
1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1625 2056
1626 if (expect_true (p->w))
1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1629 2059
1630 p->w->pending = 0; 2060 p->w->pending = 0;
1631 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1632 } 2062 EV_FREQUENT_CHECK;
1633 } 2063 }
1634
1635 EV_FREQUENT_CHECK;
1636} 2064}
1637 2065
1638#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1639void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1640idle_reify (EV_P) 2070idle_reify (EV_P)
1641{ 2071{
1642 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1643 { 2073 {
1644 int pri; 2074 int pri;
1656 } 2086 }
1657 } 2087 }
1658} 2088}
1659#endif 2089#endif
1660 2090
1661void inline_size 2091/* make timers pending */
2092inline_size void
1662timers_reify (EV_P) 2093timers_reify (EV_P)
1663{ 2094{
1664 EV_FREQUENT_CHECK; 2095 EV_FREQUENT_CHECK;
1665 2096
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 { 2098 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2099 do
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 { 2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
1675 ev_at (w) += w->repeat; 2108 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now) 2109 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now; 2110 ev_at (w) = mn_now;
1678 2111
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680 2113
1681 ANHE_at_cache (timers [HEAP0]); 2114 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0); 2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1683 } 2122 }
1684 else 2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686 2124
1687 EV_FREQUENT_CHECK; 2125 feed_reverse_done (EV_A_ EV_TIMER);
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 } 2126 }
1690} 2127}
1691 2128
1692#if EV_PERIODIC_ENABLE 2129#if EV_PERIODIC_ENABLE
1693void inline_size 2130/* make periodics pending */
2131inline_size void
1694periodics_reify (EV_P) 2132periodics_reify (EV_P)
1695{ 2133{
1696 EV_FREQUENT_CHECK; 2134 EV_FREQUENT_CHECK;
2135
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 { 2137 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2138 int feed_count = 0;
1700 2139
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2140 do
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 { 2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 2150
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709 2152
1710 ANHE_at_cache (periodics [HEAP0]); 2153 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0); 2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
1712 EV_FREQUENT_CHECK; 2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
1713 } 2180 }
1714 else if (w->interval) 2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722 2182
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2183 feed_reverse_done (EV_A_ EV_PERIODIC);
1738 } 2184 }
1739} 2185}
1740 2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
1741static void noinline 2189static void noinline
1742periodics_reschedule (EV_P) 2190periodics_reschedule (EV_P)
1743{ 2191{
1744 int i; 2192 int i;
1745 2193
1758 2206
1759 reheap (periodics, periodiccnt); 2207 reheap (periodics, periodiccnt);
1760} 2208}
1761#endif 2209#endif
1762 2210
1763void inline_speed 2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1764time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1765{ 2229{
1766 int i;
1767
1768#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1770 { 2232 {
2233 int i;
1771 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1772 2235
1773 mn_now = get_clock (); 2236 mn_now = get_clock ();
1774 2237
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1801 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1802 mn_now = get_clock (); 2265 mn_now = get_clock ();
1803 now_floor = mn_now; 2266 now_floor = mn_now;
1804 } 2267 }
1805 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1806# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1808# endif 2273# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 } 2274 }
1812 else 2275 else
1813#endif 2276#endif
1814 { 2277 {
1815 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1816 2279
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1819#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1821#endif 2286#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1829 } 2287 }
1830 2288
1831 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1832 } 2290 }
1833} 2291}
1834 2292
1835void 2293void
1836ev_ref (EV_P)
1837{
1838 ++activecnt;
1839}
1840
1841void
1842ev_unref (EV_P)
1843{
1844 --activecnt;
1845}
1846
1847static int loop_done;
1848
1849void
1850ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1851{ 2295{
2296#if EV_FEATURE_API
2297 ++loop_depth;
2298#endif
2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
1852 loop_done = EVUNLOOP_CANCEL; 2302 loop_done = EVUNLOOP_CANCEL;
1853 2303
1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1855 2305
1856 do 2306 do
1857 { 2307 {
2308#if EV_VERIFY >= 2
2309 ev_verify (EV_A);
2310#endif
2311
1858#ifndef _WIN32 2312#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1861 { 2315 {
1862 curpid = getpid (); 2316 curpid = getpid ();
1868 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1870 if (forkcnt) 2324 if (forkcnt)
1871 { 2325 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1874 } 2328 }
1875#endif 2329#endif
1876 2330
2331#if EV_PREPARE_ENABLE
1877 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1878 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1879 { 2334 {
1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1881 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1882 } 2337 }
2338#endif
1883 2339
1884 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
1885 break; 2341 break;
1886 2342
1887 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1888 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1889 loop_fork (EV_A); 2345 loop_fork (EV_A);
1896 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
1898 2354
1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1900 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
1901 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
1902 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
1903 2362
1904 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1905 2364
1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1916 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
1917 } 2376 }
1918#endif 2377#endif
1919 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
1920 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
1922 2382
1923 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
1924
1925 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
1930 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
1931 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
1932 } 2396 }
1933 } 2397 }
1934 2398
2399#if EV_FEATURE_API
1935 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1936 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1937 2405
1938 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
1940 } 2408 }
1941 2409
1948#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
1949 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
1950 idle_reify (EV_A); 2418 idle_reify (EV_A);
1951#endif 2419#endif
1952 2420
2421#if EV_CHECK_ENABLE
1953 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
1954 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
1956 2426
1957 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
1958 } 2428 }
1959 while (expect_true ( 2429 while (expect_true (
1960 activecnt 2430 activecnt
1961 && !loop_done 2431 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 )); 2433 ));
1964 2434
1965 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
1966 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
1967} 2441}
1968 2442
1969void 2443void
1970ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
1971{ 2445{
1972 loop_done = how; 2446 loop_done = how;
1973} 2447}
1974 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
1975/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
1976 2488
1977void inline_size 2489inline_size void
1978wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
1979{ 2491{
1980 elem->next = *head; 2492 elem->next = *head;
1981 *head = elem; 2493 *head = elem;
1982} 2494}
1983 2495
1984void inline_size 2496inline_size void
1985wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
1986{ 2498{
1987 while (*head) 2499 while (*head)
1988 { 2500 {
1989 if (*head == elem) 2501 if (expect_true (*head == elem))
1990 { 2502 {
1991 *head = elem->next; 2503 *head = elem->next;
1992 return; 2504 break;
1993 } 2505 }
1994 2506
1995 head = &(*head)->next; 2507 head = &(*head)->next;
1996 } 2508 }
1997} 2509}
1998 2510
1999void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
2000clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
2001{ 2514{
2002 if (w->pending) 2515 if (w->pending)
2003 { 2516 {
2004 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2005 w->pending = 0; 2518 w->pending = 0;
2006 } 2519 }
2007} 2520}
2008 2521
2009int 2522int
2013 int pending = w_->pending; 2526 int pending = w_->pending;
2014 2527
2015 if (expect_true (pending)) 2528 if (expect_true (pending))
2016 { 2529 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
2018 w_->pending = 0; 2532 w_->pending = 0;
2019 p->w = 0;
2020 return p->events; 2533 return p->events;
2021 } 2534 }
2022 else 2535 else
2023 return 0; 2536 return 0;
2024} 2537}
2025 2538
2026void inline_size 2539inline_size void
2027pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
2028{ 2541{
2029 int pri = w->priority; 2542 int pri = ev_priority (w);
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri; 2545 ev_set_priority (w, pri);
2033} 2546}
2034 2547
2035void inline_speed 2548inline_speed void
2036ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
2037{ 2550{
2038 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
2039 w->active = active; 2552 w->active = active;
2040 ev_ref (EV_A); 2553 ev_ref (EV_A);
2041} 2554}
2042 2555
2043void inline_size 2556inline_size void
2044ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
2045{ 2558{
2046 ev_unref (EV_A); 2559 ev_unref (EV_A);
2047 w->active = 0; 2560 w->active = 0;
2048} 2561}
2055 int fd = w->fd; 2568 int fd = w->fd;
2056 2569
2057 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
2058 return; 2571 return;
2059 2572
2060 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2061 2575
2062 EV_FREQUENT_CHECK; 2576 EV_FREQUENT_CHECK;
2063 2577
2064 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2066 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
2067 2581
2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2069 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2070 2584
2071 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2072} 2586}
2073 2587
2074void noinline 2588void noinline
2076{ 2590{
2077 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2079 return; 2593 return;
2080 2594
2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082 2596
2083 EV_FREQUENT_CHECK; 2597 EV_FREQUENT_CHECK;
2084 2598
2085 wlist_del (&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
2086 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
2096 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
2097 return; 2611 return;
2098 2612
2099 ev_at (w) += mn_now; 2613 ev_at (w) += mn_now;
2100 2614
2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2102 2616
2103 EV_FREQUENT_CHECK; 2617 EV_FREQUENT_CHECK;
2104 2618
2105 ++timercnt; 2619 ++timercnt;
2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2109 ANHE_at_cache (timers [ev_active (w)]); 2623 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w)); 2624 upheap (timers, ev_active (w));
2111 2625
2112 EV_FREQUENT_CHECK; 2626 EV_FREQUENT_CHECK;
2113 2627
2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2115} 2629}
2116 2630
2117void noinline 2631void noinline
2118ev_timer_stop (EV_P_ ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
2119{ 2633{
2124 EV_FREQUENT_CHECK; 2638 EV_FREQUENT_CHECK;
2125 2639
2126 { 2640 {
2127 int active = ev_active (w); 2641 int active = ev_active (w);
2128 2642
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130 2644
2131 --timercnt; 2645 --timercnt;
2132 2646
2133 if (expect_true (active < timercnt + HEAP0)) 2647 if (expect_true (active < timercnt + HEAP0))
2134 { 2648 {
2135 timers [active] = timers [timercnt + HEAP0]; 2649 timers [active] = timers [timercnt + HEAP0];
2136 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
2137 } 2651 }
2138 } 2652 }
2139 2653
2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now; 2654 ev_at (w) -= mn_now;
2143 2655
2144 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
2145} 2659}
2146 2660
2147void noinline 2661void noinline
2148ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
2149{ 2663{
2167 } 2681 }
2168 2682
2169 EV_FREQUENT_CHECK; 2683 EV_FREQUENT_CHECK;
2170} 2684}
2171 2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2690}
2691
2172#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
2173void noinline 2693void noinline
2174ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
2175{ 2695{
2176 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
2178 2698
2179 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2181 else if (w->interval) 2701 else if (w->interval)
2182 { 2702 {
2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2184 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 } 2706 }
2187 else 2707 else
2188 ev_at (w) = w->offset; 2708 ev_at (w) = w->offset;
2196 ANHE_at_cache (periodics [ev_active (w)]); 2716 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w)); 2717 upheap (periodics, ev_active (w));
2198 2718
2199 EV_FREQUENT_CHECK; 2719 EV_FREQUENT_CHECK;
2200 2720
2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2202} 2722}
2203 2723
2204void noinline 2724void noinline
2205ev_periodic_stop (EV_P_ ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
2206{ 2726{
2211 EV_FREQUENT_CHECK; 2731 EV_FREQUENT_CHECK;
2212 2732
2213 { 2733 {
2214 int active = ev_active (w); 2734 int active = ev_active (w);
2215 2735
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217 2737
2218 --periodiccnt; 2738 --periodiccnt;
2219 2739
2220 if (expect_true (active < periodiccnt + HEAP0)) 2740 if (expect_true (active < periodiccnt + HEAP0))
2221 { 2741 {
2222 periodics [active] = periodics [periodiccnt + HEAP0]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
2223 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
2224 } 2744 }
2225 } 2745 }
2226 2746
2227 EV_FREQUENT_CHECK;
2228
2229 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2230} 2750}
2231 2751
2232void noinline 2752void noinline
2233ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
2234{ 2754{
2240 2760
2241#ifndef SA_RESTART 2761#ifndef SA_RESTART
2242# define SA_RESTART 0 2762# define SA_RESTART 0
2243#endif 2763#endif
2244 2764
2765#if EV_SIGNAL_ENABLE
2766
2245void noinline 2767void noinline
2246ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
2247{ 2769{
2248#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif
2251 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
2252 return; 2771 return;
2253 2772
2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2255 2774
2256 evpipe_init (EV_A); 2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2257 2778
2258 EV_FREQUENT_CHECK; 2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2259 2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2260 { 2786 {
2261#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2262 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
2263 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266 2790
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2268 2794
2269#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
2270 sigprocmask (SIG_SETMASK, &prev, 0); 2796
2271#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2272 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2273 2813
2274 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
2275 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
2276 2816
2277 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2278 { 2821 {
2279#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2280 signal (w->signum, ev_sighandler); 2825 signal (w->signum, ev_sighandler);
2281#else 2826# else
2282 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2283 sa.sa_handler = ev_sighandler; 2831 sa.sa_handler = ev_sighandler;
2284 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2286 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2287#endif 2839#endif
2288 } 2840 }
2289 2841
2290 EV_FREQUENT_CHECK; 2842 EV_FREQUENT_CHECK;
2291} 2843}
2292 2844
2293void noinline 2845void noinline
2301 2853
2302 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
2303 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
2304 2856
2305 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2306 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2307 2878
2308 EV_FREQUENT_CHECK; 2879 EV_FREQUENT_CHECK;
2309} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2310 2885
2311void 2886void
2312ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
2313{ 2888{
2314#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif 2891#endif
2317 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2318 return; 2893 return;
2319 2894
2320 EV_FREQUENT_CHECK; 2895 EV_FREQUENT_CHECK;
2321 2896
2322 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2324 2899
2325 EV_FREQUENT_CHECK; 2900 EV_FREQUENT_CHECK;
2326} 2901}
2327 2902
2328void 2903void
2332 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2333 return; 2908 return;
2334 2909
2335 EV_FREQUENT_CHECK; 2910 EV_FREQUENT_CHECK;
2336 2911
2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2338 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2339 2914
2340 EV_FREQUENT_CHECK; 2915 EV_FREQUENT_CHECK;
2341} 2916}
2917
2918#endif
2342 2919
2343#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
2344 2921
2345# ifdef _WIN32 2922# ifdef _WIN32
2346# undef lstat 2923# undef lstat
2347# define lstat(a,b) _stati64 (a,b) 2924# define lstat(a,b) _stati64 (a,b)
2348# endif 2925# endif
2349 2926
2350#define DEF_STAT_INTERVAL 5.0074891 2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2351#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
2352 2930
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354 2932
2355#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2357 2937
2358static void noinline 2938static void noinline
2359infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
2360{ 2940{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362 2942
2363 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2364 { 2963 }
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2366 2968
2367 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2369 /* but an efficiency issue only */ 2971 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 { 2973 {
2372 char path [4096]; 2974 char path [4096];
2373 strcpy (path, w->path); 2975 strcpy (path, w->path);
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379 2981
2380 char *pend = strrchr (path, '/'); 2982 char *pend = strrchr (path, '/');
2381 2983
2382 if (!pend) 2984 if (!pend || pend == path)
2383 break; /* whoops, no '/', complain to your admin */ 2985 break;
2384 2986
2385 *pend = 0; 2987 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask); 2988 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 } 2989 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 } 2991 }
2390 } 2992 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393 2993
2394 if (w->wd >= 0) 2994 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2396} 3001}
2397 3002
2398static void noinline 3003static void noinline
2399infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
2400{ 3005{
2403 3008
2404 if (wd < 0) 3009 if (wd < 0)
2405 return; 3010 return;
2406 3011
2407 w->wd = -2; 3012 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
2410 3015
2411 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
2413} 3018}
2414 3019
2415static void noinline 3020static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{ 3022{
2418 if (slot < 0) 3023 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */ 3024 /* overflow, need to check for all hash slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2421 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2422 else 3027 else
2423 { 3028 {
2424 WL w_; 3029 WL w_;
2425 3030
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2427 { 3032 {
2428 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2430 3035
2431 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2432 { 3037 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 { 3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2435 w->wd = -1; 3041 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2437 } 3043 }
2438 3044
2439 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2444 3050
2445static void 3051static void
2446infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2447{ 3053{
2448 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs; 3055 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2452 3057
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2455} 3064}
2456 3065
2457void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2458infy_init (EV_P) 3122infy_init (EV_P)
2459{ 3123{
2460 if (fs_fd != -2) 3124 if (fs_fd != -2)
2461 return; 3125 return;
2462 3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
2463 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2464 3132
2465 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2466 { 3134 {
3135 fd_intern (fs_fd);
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2470 } 3140 }
2471} 3141}
2472 3142
2473void inline_size 3143inline_size void
2474infy_fork (EV_P) 3144infy_fork (EV_P)
2475{ 3145{
2476 int slot; 3146 int slot;
2477 3147
2478 if (fs_fd < 0) 3148 if (fs_fd < 0)
2479 return; 3149 return;
2480 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2481 close (fs_fd); 3153 close (fs_fd);
2482 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2483 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2485 { 3165 {
2486 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2488 3168
2489 while (w_) 3169 while (w_)
2494 w->wd = -1; 3174 w->wd = -1;
2495 3175
2496 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2499 ev_timer_start (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2500 } 3185 }
2501
2502 } 3186 }
2503} 3187}
2504 3188
3189#endif
3190
3191#ifdef _WIN32
3192# define EV_LSTAT(p,b) _stati64 (p, b)
3193#else
3194# define EV_LSTAT(p,b) lstat (p, b)
2505#endif 3195#endif
2506 3196
2507void 3197void
2508ev_stat_stat (EV_P_ ev_stat *w) 3198ev_stat_stat (EV_P_ ev_stat *w)
2509{ 3199{
2516static void noinline 3206static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{ 3208{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520 3210
2521 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2525 3213
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if ( 3215 if (
2528 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2539 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2540 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
2541 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */ 3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
2544 #endif 3240 #endif
2545 3241
2546 ev_feed_event (EV_A_ w, EV_STAT); 3242 ev_feed_event (EV_A_ w, EV_STAT);
2547 } 3243 }
2548} 3244}
2551ev_stat_start (EV_P_ ev_stat *w) 3247ev_stat_start (EV_P_ ev_stat *w)
2552{ 3248{
2553 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
2554 return; 3250 return;
2555 3251
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w); 3252 ev_stat_stat (EV_A_ w);
2561 3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2562 if (w->interval < MIN_STAT_INTERVAL) 3255 w->interval = MIN_STAT_INTERVAL;
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564 3256
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2566 ev_set_priority (&w->timer, ev_priority (w)); 3258 ev_set_priority (&w->timer, ev_priority (w));
2567 3259
2568#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2569 infy_init (EV_A); 3261 infy_init (EV_A);
2570 3262
2571 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2572 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2573 else 3265 else
2574#endif 3266#endif
3267 {
2575 ev_timer_start (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2576 3271
2577 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
2578 3273
2579 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2580} 3275}
2589 EV_FREQUENT_CHECK; 3284 EV_FREQUENT_CHECK;
2590 3285
2591#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2593#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2594 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2595 3295
2596 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
2597 3297
2598 EV_FREQUENT_CHECK; 3298 EV_FREQUENT_CHECK;
2599} 3299}
2644 3344
2645 EV_FREQUENT_CHECK; 3345 EV_FREQUENT_CHECK;
2646} 3346}
2647#endif 3347#endif
2648 3348
3349#if EV_PREPARE_ENABLE
2649void 3350void
2650ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2651{ 3352{
2652 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2653 return; 3354 return;
2679 3380
2680 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2681 3382
2682 EV_FREQUENT_CHECK; 3383 EV_FREQUENT_CHECK;
2683} 3384}
3385#endif
2684 3386
3387#if EV_CHECK_ENABLE
2685void 3388void
2686ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2687{ 3390{
2688 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2689 return; 3392 return;
2715 3418
2716 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
2717 3420
2718 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2719} 3422}
3423#endif
2720 3424
2721#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2722void noinline 3426void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2724{ 3428{
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{ 3445{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743 3447
2744 { 3448 {
2745 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2746 3450
2747 while (fdchangecnt) 3451 while (fdchangecnt)
2748 { 3452 {
2749 fd_reify (EV_A); 3453 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 } 3455 }
2752 } 3456 }
2753} 3457}
2754 3458
3459static void
3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3463
3464 ev_embed_stop (EV_A_ w);
3465
3466 {
3467 EV_P = w->other;
3468
3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3471 }
3472
3473 ev_embed_start (EV_A_ w);
3474}
3475
2755#if 0 3476#if 0
2756static void 3477static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{ 3479{
2759 ev_idle_stop (EV_A_ idle); 3480 ev_idle_stop (EV_A_ idle);
2765{ 3486{
2766 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2767 return; 3488 return;
2768 3489
2769 { 3490 {
2770 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 } 3494 }
2774 3495
2775 EV_FREQUENT_CHECK; 3496 EV_FREQUENT_CHECK;
2776 3497
2779 3500
2780 ev_prepare_init (&w->prepare, embed_prepare_cb); 3501 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI); 3502 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare); 3503 ev_prepare_start (EV_A_ &w->prepare);
2783 3504
3505 ev_fork_init (&w->fork, embed_fork_cb);
3506 ev_fork_start (EV_A_ &w->fork);
3507
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3508 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785 3509
2786 ev_start (EV_A_ (W)w, 1); 3510 ev_start (EV_A_ (W)w, 1);
2787 3511
2788 EV_FREQUENT_CHECK; 3512 EV_FREQUENT_CHECK;
2795 if (expect_false (!ev_is_active (w))) 3519 if (expect_false (!ev_is_active (w)))
2796 return; 3520 return;
2797 3521
2798 EV_FREQUENT_CHECK; 3522 EV_FREQUENT_CHECK;
2799 3523
2800 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
3526 ev_fork_stop (EV_A_ &w->fork);
2802 3527
2803 ev_stop (EV_A_ (W)w); 3528 ev_stop (EV_A_ (W)w);
2804 3529
2805 EV_FREQUENT_CHECK; 3530 EV_FREQUENT_CHECK;
2806} 3531}
2885 3610
2886void 3611void
2887ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2888{ 3613{
2889 w->sent = 1; 3614 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2891} 3616}
2892#endif 3617#endif
2893 3618
2894/*****************************************************************************/ 3619/*****************************************************************************/
2895 3620
2905once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2906{ 3631{
2907 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2908 void *arg = once->arg; 3633 void *arg = once->arg;
2909 3634
2910 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2911 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2912 ev_free (once); 3637 ev_free (once);
2913 3638
2914 cb (revents, arg); 3639 cb (revents, arg);
2915} 3640}
2916 3641
2917static void 3642static void
2918once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2919{ 3644{
2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2921} 3648}
2922 3649
2923static void 3650static void
2924once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2925{ 3652{
2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2927} 3656}
2928 3657
2929void 3658void
2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2931{ 3660{
2932 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2933 3662
2934 if (expect_false (!once)) 3663 if (expect_false (!once))
2935 { 3664 {
2936 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2937 return; 3666 return;
2938 } 3667 }
2939 3668
2940 once->cb = cb; 3669 once->cb = cb;
2941 once->arg = arg; 3670 once->arg = arg;
2953 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2954 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2955 } 3684 }
2956} 3685}
2957 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2958#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2959 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2960#endif 3805#endif
2961 3806
2962#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines