ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
51/**/ 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
52 167
53#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
55#endif 178#endif
56 179
57#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
59#endif 182#endif
60 183
61#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
63#endif 190#endif
64 191
65#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
66# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
67#endif 198#endif
68 199
69#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
71#endif 202#endif
72 203
73#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
74# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
75#endif 213# endif
214#endif
76 215
77/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
78 249
79#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
80# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
82#endif 253#endif
84#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
85# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
86# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
87#endif 258#endif
88 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
89/**/ 291/**/
90 292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
313
91#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
92#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
93#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
94/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
95 317
96#include "ev.h"
97
98#if __GNUC__ >= 3 318#if __GNUC__ >= 4
99# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
100# define inline inline 320# define noinline __attribute__ ((noinline))
101#else 321#else
102# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
103# define inline static 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
104#endif 327#endif
105 328
106#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
107#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
108 338
109#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
110#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
111 341
342#define EMPTY /* required for microsofts broken pseudo-c compiler */
343#define EMPTY2(a,b) /* used to suppress some warnings */
344
112typedef struct ev_watcher *W; 345typedef ev_watcher *W;
113typedef struct ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
115 348
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
357
358#ifdef _WIN32
359# include "ev_win32.c"
360#endif
361
362/*****************************************************************************/
363
364static void (*syserr_cb)(const char *msg);
365
366void
367ev_set_syserr_cb (void (*cb)(const char *msg))
368{
369 syserr_cb = cb;
370}
371
372static void noinline
373syserr (const char *msg)
374{
375 if (!msg)
376 msg = "(libev) system error";
377
378 if (syserr_cb)
379 syserr_cb (msg);
380 else
381 {
382 perror (msg);
383 abort ();
384 }
385}
386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
403
404void
405ev_set_allocator (void *(*cb)(void *ptr, long size))
406{
407 alloc = cb;
408}
409
410inline_speed void *
411ev_realloc (void *ptr, long size)
412{
413 ptr = alloc (ptr, size);
414
415 if (!ptr && size)
416 {
417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
418 abort ();
419 }
420
421 return ptr;
422}
423
424#define ev_malloc(size) ev_realloc (0, (size))
425#define ev_free(ptr) ev_realloc ((ptr), 0)
426
427/*****************************************************************************/
428
429typedef struct
430{
431 WL head;
432 unsigned char events;
433 unsigned char reify;
434#if EV_SELECT_IS_WINSOCKET
435 SOCKET handle;
436#endif
437} ANFD;
438
439typedef struct
440{
441 W w;
442 int events;
443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
470
471#if EV_MULTIPLICITY
472
473 struct ev_loop
474 {
475 ev_tstamp ev_rt_now;
476 #define ev_rt_now ((loop)->ev_rt_now)
477 #define VAR(name,decl) decl;
478 #include "ev_vars.h"
479 #undef VAR
480 };
481 #include "ev_wrap.h"
482
483 static struct ev_loop default_loop_struct;
484 struct ev_loop *ev_default_loop_ptr;
485
486#else
487
117ev_tstamp ev_now; 488 ev_tstamp ev_rt_now;
118int ev_method; 489 #define VAR(name,decl) static decl;
490 #include "ev_vars.h"
491 #undef VAR
119 492
120static int have_monotonic; /* runtime */ 493 static int ev_default_loop_ptr;
121 494
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 495#endif
123static void (*method_modify)(int fd, int oev, int nev);
124static void (*method_poll)(ev_tstamp timeout);
125 496
126/*****************************************************************************/ 497/*****************************************************************************/
127 498
128ev_tstamp 499ev_tstamp
129ev_time (void) 500ev_time (void)
137 gettimeofday (&tv, 0); 508 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 509 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 510#endif
140} 511}
141 512
142static ev_tstamp 513ev_tstamp inline_size
143get_clock (void) 514get_clock (void)
144{ 515{
145#if EV_USE_MONOTONIC 516#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 517 if (expect_true (have_monotonic))
147 { 518 {
152#endif 523#endif
153 524
154 return ev_time (); 525 return ev_time ();
155} 526}
156 527
157#define array_roundsize(base,n) ((n) | 4 & ~3) 528#if EV_MULTIPLICITY
529ev_tstamp
530ev_now (EV_P)
531{
532 return ev_rt_now;
533}
534#endif
158 535
159#define array_needsize(base,cur,cnt,init) \ 536void
160 if (expect_false ((cnt) > cur)) \ 537ev_sleep (ev_tstamp delay)
161 { \ 538{
162 int newcnt = cur; \ 539 if (delay > 0.)
163 do \
164 { \
165 newcnt = array_roundsize (base, newcnt << 1); \
166 } \
167 while ((cnt) > newcnt); \
168 \
169 base = realloc (base, sizeof (*base) * (newcnt)); \
170 init (base + cur, newcnt - cur); \
171 cur = newcnt; \
172 } 540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
173 560
174/*****************************************************************************/ 561/*****************************************************************************/
175 562
176typedef struct 563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182 564
183static ANFD *anfds; 565int inline_size
184static int anfdmax; 566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
185 569
186static void 570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
592
593#define array_needsize(type,base,cur,cnt,init) \
594 if (expect_false ((cnt) > (cur))) \
595 { \
596 int ocur_ = (cur); \
597 (base) = (type *)array_realloc \
598 (sizeof (type), (base), &(cur), (cnt)); \
599 init ((base) + (ocur_), (cur) - ocur_); \
600 }
601
602#if 0
603#define array_slim(type,stem) \
604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
605 { \
606 stem ## max = array_roundsize (stem ## cnt >> 1); \
607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
609 }
610#endif
611
612#define array_free(stem, idx) \
613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
614
615/*****************************************************************************/
616
617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
642
643/*****************************************************************************/
644
645void inline_size
187anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
188{ 647{
189 while (count--) 648 while (count--)
190 { 649 {
191 base->head = 0; 650 base->head = 0;
194 653
195 ++base; 654 ++base;
196 } 655 }
197} 656}
198 657
199typedef struct 658void inline_speed
200{
201 W w;
202 int events;
203} ANPENDING;
204
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void
209event (W w, int events)
210{
211 if (w->pending)
212 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events;
214 return;
215 }
216
217 w->pending = ++pendingcnt [ABSPRI (w)];
218 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
219 pendings [ABSPRI (w)][w->pending - 1].w = w;
220 pendings [ABSPRI (w)][w->pending - 1].events = events;
221}
222
223static void
224queue_events (W *events, int eventcnt, int type)
225{
226 int i;
227
228 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type);
230}
231
232static void
233fd_event (int fd, int events) 659fd_event (EV_P_ int fd, int revents)
234{ 660{
235 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 662 ev_io *w;
237 663
238 for (w = anfd->head; w; w = w->next) 664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
239 { 665 {
240 int ev = w->events & events; 666 int ev = w->events & revents;
241 667
242 if (ev) 668 if (ev)
243 event ((W)w, ev); 669 ev_feed_event (EV_A_ (W)w, ev);
244 } 670 }
245} 671}
246 672
247/*****************************************************************************/ 673void
674ev_feed_fd_event (EV_P_ int fd, int revents)
675{
676 if (fd >= 0 && fd < anfdmax)
677 fd_event (EV_A_ fd, revents);
678}
248 679
249static int *fdchanges; 680void inline_size
250static int fdchangemax, fdchangecnt; 681fd_reify (EV_P)
251
252static void
253fd_reify (void)
254{ 682{
255 int i; 683 int i;
256 684
257 for (i = 0; i < fdchangecnt; ++i) 685 for (i = 0; i < fdchangecnt; ++i)
258 { 686 {
259 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
260 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 689 ev_io *w;
262 690
263 int events = 0; 691 unsigned char events = 0;
264 692
265 for (w = anfd->head; w; w = w->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
266 events |= w->events; 694 events |= (unsigned char)w->events;
267 695
268 anfd->reify = 0; 696#if EV_SELECT_IS_WINSOCKET
269 697 if (events)
270 if (anfd->events != events)
271 { 698 {
272 method_modify (fd, anfd->events, events); 699 unsigned long argp;
273 anfd->events = events; 700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
703 anfd->handle = _get_osfhandle (fd);
704 #endif
705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
274 } 706 }
707#endif
708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
713 anfd->reify = 0;
714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
275 } 719 }
276 720
277 fdchangecnt = 0; 721 fdchangecnt = 0;
278} 722}
279 723
280static void 724void inline_size
281fd_change (int fd) 725fd_change (EV_P_ int fd, int flags)
282{ 726{
283 if (anfds [fd].reify || fdchangecnt < 0) 727 unsigned char reify = anfds [fd].reify;
284 return;
285
286 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
287 729
730 if (expect_true (!reify))
731 {
288 ++fdchangecnt; 732 ++fdchangecnt;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
290 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
291} 736}
292 737
293static void 738void inline_speed
294fd_kill (int fd) 739fd_kill (EV_P_ int fd)
295{ 740{
296 struct ev_io *w; 741 ev_io *w;
297 742
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 743 while ((w = (ev_io *)anfds [fd].head))
300 { 744 {
301 ev_io_stop (w); 745 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 747 }
748}
749
750int inline_size
751fd_valid (int fd)
752{
753#ifdef _WIN32
754 return _get_osfhandle (fd) != -1;
755#else
756 return fcntl (fd, F_GETFD) != -1;
757#endif
304} 758}
305 759
306/* called on EBADF to verify fds */ 760/* called on EBADF to verify fds */
307static void 761static void noinline
308fd_ebadf (void) 762fd_ebadf (EV_P)
309{ 763{
310 int fd; 764 int fd;
311 765
312 for (fd = 0; fd < anfdmax; ++fd) 766 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 767 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 768 if (!fd_valid (fd) == -1 && errno == EBADF)
315 fd_kill (fd); 769 fd_kill (EV_A_ fd);
316} 770}
317 771
318/* called on ENOMEM in select/poll to kill some fds and retry */ 772/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 773static void noinline
320fd_enomem (void) 774fd_enomem (EV_P)
321{ 775{
322 int fd = anfdmax; 776 int fd;
323 777
324 while (fd--) 778 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 779 if (anfds [fd].events)
326 { 780 {
327 close (fd);
328 fd_kill (fd); 781 fd_kill (EV_A_ fd);
329 return; 782 return;
330 } 783 }
331} 784}
332 785
786/* usually called after fork if backend needs to re-arm all fds from scratch */
787static void noinline
788fd_rearm_all (EV_P)
789{
790 int fd;
791
792 for (fd = 0; fd < anfdmax; ++fd)
793 if (anfds [fd].events)
794 {
795 anfds [fd].events = 0;
796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
797 }
798}
799
333/*****************************************************************************/ 800/*****************************************************************************/
334 801
335static struct ev_timer **timers; 802/*
336static int timermax, timercnt; 803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
337 807
338static struct ev_periodic **periodics; 808/*
339static int periodicmax, periodiccnt; 809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
340 815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922
923void inline_size
924adjustheap (ANHE *heap, int N, int k)
925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k);
928 else
929 downheap (heap, N, k);
930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
341static void 944static void
342upheap (WT *timers, int k) 945checkheap (ANHE *heap, int N)
343{ 946{
344 WT w = timers [k]; 947 int i;
345 948
346 while (k && timers [k >> 1]->at > w->at) 949 for (i = HEAP0; i < N + HEAP0; ++i)
347 {
348 timers [k] = timers [k >> 1];
349 timers [k]->active = k + 1;
350 k >>= 1;
351 } 950 {
352 951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
353 timers [k] = w; 952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
354 timers [k]->active = k + 1; 953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
355
356}
357
358static void
359downheap (WT *timers, int N, int k)
360{
361 WT w = timers [k];
362
363 while (k < (N >> 1))
364 { 954 }
365 int j = k << 1;
366
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
368 ++j;
369
370 if (w->at <= timers [j]->at)
371 break;
372
373 timers [k] = timers [j];
374 timers [k]->active = k + 1;
375 k = j;
376 }
377
378 timers [k] = w;
379 timers [k]->active = k + 1;
380} 955}
956#endif
381 957
382/*****************************************************************************/ 958/*****************************************************************************/
383 959
384typedef struct 960typedef struct
385{ 961{
386 struct ev_signal *head; 962 WL head;
387 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
388} ANSIG; 964} ANSIG;
389 965
390static ANSIG *signals; 966static ANSIG *signals;
391static int signalmax; 967static int signalmax;
392 968
393static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
394static sig_atomic_t volatile gotsig;
395static struct ev_io sigev;
396 970
397static void 971void inline_size
398signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
399{ 973{
400 while (count--) 974 while (count--)
401 { 975 {
402 base->head = 0; 976 base->head = 0;
404 978
405 ++base; 979 ++base;
406 } 980 }
407} 981}
408 982
983/*****************************************************************************/
984
985void inline_speed
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 int arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
409static void 1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
1088}
1089
1090/*****************************************************************************/
1091
1092static void
410sighandler (int signum) 1093ev_sighandler (int signum)
411{ 1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
412 signals [signum - 1].gotsig = 1; 1103 signals [signum - 1].gotsig = 1;
413 1104 evpipe_write (EV_A_ &gotsig);
414 if (!gotsig)
415 {
416 gotsig = 1;
417 write (sigpipe [1], &signum, 1);
418 }
419} 1105}
420 1106
421static void 1107void noinline
422sigcb (struct ev_io *iow, int revents) 1108ev_feed_signal_event (EV_P_ int signum)
423{ 1109{
424 struct ev_signal *w; 1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
425 int signum; 1116 --signum;
426 1117
427 read (sigpipe [0], &revents, 1); 1118 if (signum < 0 || signum >= signalmax)
428 gotsig = 0; 1119 return;
429 1120
430 for (signum = signalmax; signum--; )
431 if (signals [signum].gotsig)
432 {
433 signals [signum].gotsig = 0; 1121 signals [signum].gotsig = 0;
434 1122
435 for (w = signals [signum].head; w; w = w->next) 1123 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
437 }
438}
439
440static void
441siginit (void)
442{
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445
446 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
449
450 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev);
452} 1125}
453 1126
454/*****************************************************************************/ 1127/*****************************************************************************/
455 1128
456static struct ev_idle **idles; 1129static WL childs [EV_PID_HASHSIZE];
457static int idlemax, idlecnt;
458 1130
459static struct ev_prepare **prepares; 1131#ifndef _WIN32
460static int preparemax, preparecnt;
461 1132
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466
467static struct ev_child *childs [PID_HASHSIZE];
468static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
469 1157
470#ifndef WCONTINUED 1158#ifndef WCONTINUED
471# define WCONTINUED 0 1159# define WCONTINUED 0
472#endif 1160#endif
473 1161
474static void 1162static void
475childcb (struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
476{ 1164{
477 struct ev_child *w;
478 int pid, status; 1165 int pid, status;
479 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1169 if (!WCONTINUED
482 if (w->pid == pid || !w->pid) 1170 || errno != EINVAL
483 { 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
484 w->status = status; 1172 return;
485 event ((W)w, EV_CHILD); 1173
486 } 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177
1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
487} 1181}
1182
1183#endif
488 1184
489/*****************************************************************************/ 1185/*****************************************************************************/
490 1186
1187#if EV_USE_PORT
1188# include "ev_port.c"
1189#endif
491#if EV_USE_KQUEUE 1190#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 1191# include "ev_kqueue.c"
493#endif 1192#endif
494#if EV_USE_EPOLL 1193#if EV_USE_EPOLL
495# include "ev_epoll.c" 1194# include "ev_epoll.c"
511ev_version_minor (void) 1210ev_version_minor (void)
512{ 1211{
513 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
514} 1213}
515 1214
516/* return true if we are running with elevated privileges and ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
517static int 1216int inline_size
518enable_secure () 1217enable_secure (void)
519{ 1218{
1219#ifdef _WIN32
1220 return 0;
1221#else
520 return getuid () != geteuid () 1222 return getuid () != geteuid ()
521 || getgid () != getegid (); 1223 || getgid () != getegid ();
1224#endif
522} 1225}
523 1226
524int ev_init (int methods) 1227unsigned int
1228ev_supported_backends (void)
525{ 1229{
526 if (!ev_method) 1230 unsigned int flags = 0;
1231
1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
1243{
1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
1296loop_init (EV_P_ unsigned int flags)
1297{
1298 if (!backend)
527 { 1299 {
528#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
529 { 1301 {
530 struct timespec ts; 1302 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 1304 have_monotonic = 1;
533 } 1305 }
534#endif 1306#endif
535 1307
536 ev_now = ev_time (); 1308 ev_rt_now = ev_time ();
537 now = get_clock (); 1309 mn_now = get_clock ();
538 now_floor = now; 1310 now_floor = mn_now;
539 diff = ev_now - now; 1311 rtmn_diff = ev_rt_now - mn_now;
540 1312
541 if (pipe (sigpipe)) 1313 io_blocktime = 0.;
542 return 0; 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
543 1321
544 if (methods == EVMETHOD_AUTO) 1322 /* pid check not overridable via env */
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
547 else
548 methods = EVMETHOD_ANY;
549 1332
550 ev_method = 0; 1333 if (!(flags & 0x0000ffffU))
1334 flags |= ev_recommended_backends ();
1335
1336#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif
551#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
553#endif 1341#endif
554#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
556#endif 1344#endif
557#if EV_USE_POLL 1345#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
559#endif 1347#endif
560#if EV_USE_SELECT 1348#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
562#endif 1350#endif
563 1351
564 if (ev_method) 1352 ev_init (&pipeev, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI);
1354 }
1355}
1356
1357static void noinline
1358loop_destroy (EV_P)
1359{
1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
565 { 1373 {
566 ev_watcher_init (&sigev, sigcb); 1374 close (evpipe [0]);
567 siginit (); 1375 close (evpipe [1]);
1376 }
1377 }
568 1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif
1390#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1392#endif
1393#if EV_USE_EPOLL
1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1395#endif
1396#if EV_USE_POLL
1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1398#endif
1399#if EV_USE_SELECT
1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1401#endif
1402
1403 for (i = NUMPRI; i--; )
1404 {
1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
1412
1413 /* have to use the microsoft-never-gets-it-right macro */
1414 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY);
1418#endif
1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1422 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1427
1428 backend = 0;
1429}
1430
1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
1436loop_fork (EV_P)
1437{
1438#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif
1441#if EV_USE_KQUEUE
1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1443#endif
1444#if EV_USE_EPOLL
1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
1450
1451 if (ev_is_active (&pipeev))
1452 {
1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1459
1460 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473
1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1477 }
1478
1479 postfork = 0;
1480}
1481
1482#if EV_MULTIPLICITY
1483struct ev_loop *
1484ev_loop_new (unsigned int flags)
1485{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487
1488 memset (loop, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags);
1491
1492 if (ev_backend (EV_A))
1493 return loop;
1494
1495 return 0;
1496}
1497
1498void
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1543
1544#endif
1545
1546#if EV_MULTIPLICITY
1547struct ev_loop *
1548ev_default_loop_init (unsigned int flags)
1549#else
1550int
1551ev_default_loop (unsigned int flags)
1552#endif
1553{
1554 if (!ev_default_loop_ptr)
1555 {
1556#if EV_MULTIPLICITY
1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1558#else
1559 ev_default_loop_ptr = 1;
1560#endif
1561
1562 loop_init (EV_A_ flags);
1563
1564 if (ev_backend (EV_A))
1565 {
1566#ifndef _WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1568 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 1569 ev_signal_start (EV_A_ &childev);
1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1571#endif
571 } 1572 }
1573 else
1574 ev_default_loop_ptr = 0;
572 } 1575 }
573 1576
574 return ev_method; 1577 return ev_default_loop_ptr;
1578}
1579
1580void
1581ev_default_destroy (void)
1582{
1583#if EV_MULTIPLICITY
1584 struct ev_loop *loop = ev_default_loop_ptr;
1585#endif
1586
1587#ifndef _WIN32
1588 ev_ref (EV_A); /* child watcher */
1589 ev_signal_stop (EV_A_ &childev);
1590#endif
1591
1592 loop_destroy (EV_A);
1593}
1594
1595void
1596ev_default_fork (void)
1597{
1598#if EV_MULTIPLICITY
1599 struct ev_loop *loop = ev_default_loop_ptr;
1600#endif
1601
1602 if (backend)
1603 postfork = 1; /* must be in line with ev_loop_fork */
575} 1604}
576 1605
577/*****************************************************************************/ 1606/*****************************************************************************/
578 1607
579void 1608void
580ev_fork_prepare (void) 1609ev_invoke (EV_P_ void *w, int revents)
581{ 1610{
582 /* nop */ 1611 EV_CB_INVOKE ((W)w, revents);
583} 1612}
584 1613
585void 1614void inline_speed
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif
598
599 ev_io_stop (&sigev);
600 close (sigpipe [0]);
601 close (sigpipe [1]);
602 pipe (sigpipe);
603 siginit ();
604}
605
606/*****************************************************************************/
607
608static void
609call_pending (void) 1615call_pending (EV_P)
610{ 1616{
611 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
612 1620
613 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
615 { 1623 {
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 1625
618 if (p->w) 1626 if (expect_true (p->w))
619 { 1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1629
620 p->w->pending = 0; 1630 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
622 } 1632 }
623 } 1633 }
624}
625 1634
626static void 1635 EV_FREQUENT_CHECK;
627timers_reify (void) 1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
628{ 1641{
629 while (timercnt && timers [0]->at <= now) 1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
630 { 1657 }
631 struct ev_timer *w = timers [0]; 1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
632 1671
633 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
634 if (w->repeat) 1673 if (w->repeat)
635 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 1680
1681 ANHE_at_cache (timers [HEAP0]);
638 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
639 } 1683 }
640 else 1684 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 1686
1687 EV_FREQUENT_CHECK;
643 event ((W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
644 } 1689 }
645} 1690}
646 1691
647static void 1692#if EV_PERIODIC_ENABLE
1693void inline_size
648periodics_reify (void) 1694periodics_reify (EV_P)
649{ 1695{
1696 EV_FREQUENT_CHECK;
650 while (periodiccnt && periodics [0]->at <= ev_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
651 { 1698 {
652 struct ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
653 1702
654 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
655 if (w->interval) 1704 if (w->reschedule_cb)
656 { 1705 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
659 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
660 } 1732 }
661 else 1733 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 1735
1736 EV_FREQUENT_CHECK;
664 event ((W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
665 } 1738 }
666} 1739}
667 1740
668static void 1741static void noinline
669periodics_reschedule (ev_tstamp diff) 1742periodics_reschedule (EV_P)
670{ 1743{
671 int i; 1744 int i;
672 1745
673 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
675 { 1748 {
676 struct ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
677 1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
678 if (w->interval) 1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1770 {
1771 ev_tstamp odiff = rtmn_diff;
1772
1773 mn_now = get_clock ();
1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
679 { 1778 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1779 ev_rt_now = rtmn_diff + mn_now;
1780 return;
1781 }
681 1782
682 if (fabs (diff) >= 1e-4) 1783 now_floor = mn_now;
1784 ev_rt_now = ev_time ();
1785
1786 /* loop a few times, before making important decisions.
1787 * on the choice of "4": one iteration isn't enough,
1788 * in case we get preempted during the calls to
1789 * ev_time and get_clock. a second call is almost guaranteed
1790 * to succeed in that case, though. and looping a few more times
1791 * doesn't hurt either as we only do this on time-jumps or
1792 * in the unlikely event of having been preempted here.
1793 */
1794 for (i = 4; --i; )
1795 {
1796 rtmn_diff = ev_rt_now - mn_now;
1797
1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1799 return; /* all is well */
1800
1801 ev_rt_now = ev_time ();
1802 mn_now = get_clock ();
1803 now_floor = mn_now;
1804 }
1805
1806# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A);
1808# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 }
1812 else
1813#endif
1814 {
1815 ev_rt_now = ev_time ();
1816
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 {
1819#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A);
1821#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
683 { 1824 {
684 ev_periodic_stop (w); 1825 ANHE *he = timers + i + HEAP0;
685 ev_periodic_start (w); 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
686 1827 ANHE_at_cache (*he);
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 } 1828 }
689 } 1829 }
690 }
691}
692 1830
693static int
694time_update_monotonic (void)
695{
696 now = get_clock ();
697
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
699 {
700 ev_now = now + diff;
701 return 0;
702 }
703 else
704 {
705 now_floor = now;
706 ev_now = ev_time ();
707 return 1;
708 }
709}
710
711static void
712time_update (void)
713{
714 int i;
715
716#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic))
718 {
719 if (time_update_monotonic ())
720 {
721 ev_tstamp odiff = diff;
722
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 {
725 diff = ev_now - now;
726
727 if (fabs (odiff - diff) < MIN_TIMEJUMP)
728 return; /* all is well */
729
730 ev_now = ev_time ();
731 now = get_clock ();
732 now_floor = now;
733 }
734
735 periodics_reschedule (diff - odiff);
736 /* no timer adjustment, as the monotonic clock doesn't jump */
737 }
738 }
739 else
740#endif
741 {
742 ev_now = ev_time ();
743
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 {
746 periodics_reschedule (ev_now - now);
747
748 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff;
751 }
752
753 now = ev_now; 1831 mn_now = ev_rt_now;
754 } 1832 }
755} 1833}
756 1834
757int ev_loop_done; 1835void
1836ev_ref (EV_P)
1837{
1838 ++activecnt;
1839}
758 1840
1841void
1842ev_unref (EV_P)
1843{
1844 --activecnt;
1845}
1846
1847static int loop_done;
1848
1849void
759void ev_loop (int flags) 1850ev_loop (EV_P_ int flags)
760{ 1851{
761 double block; 1852 loop_done = EVUNLOOP_CANCEL;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1853
1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
763 1855
764 do 1856 do
765 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
766 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
767 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
768 { 1879 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 1881 call_pending (EV_A);
771 } 1882 }
772 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1887 /* we might have forked, so reify kernel state if necessary */
1888 if (expect_false (postfork))
1889 loop_fork (EV_A);
1890
773 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
774 fd_reify (); 1892 fd_reify (EV_A);
775 1893
776 /* calculate blocking time */ 1894 /* calculate blocking time */
1895 {
1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
777 1898
778 /* we only need this for !monotonic clockor timers, but as we basically 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
779 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic))
782 time_update_monotonic ();
783 else
784#endif
785 { 1900 {
786 ev_now = ev_time (); 1901 /* update time to cancel out callback processing overhead */
787 now = ev_now; 1902 time_update (EV_A_ 1e100);
788 }
789 1903
790 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.;
792 else
793 {
794 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
795 1905
796 if (timercnt) 1906 if (timercnt)
797 { 1907 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
799 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
800 } 1910 }
801 1911
1912#if EV_PERIODIC_ENABLE
802 if (periodiccnt) 1913 if (periodiccnt)
803 { 1914 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
805 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
806 } 1917 }
1918#endif
807 1919
808 if (block < 0.) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
809 } 1933 }
810 1934
811 method_poll (block); 1935 ++loop_count;
1936 backend_poll (EV_A_ waittime);
812 1937
813 /* update ev_now, do magic */ 1938 /* update ev_rt_now, do magic */
814 time_update (); 1939 time_update (EV_A_ waittime + sleeptime);
1940 }
815 1941
816 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1944#if EV_PERIODIC_ENABLE
818 periodics_reify (); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1946#endif
819 1947
1948#if EV_IDLE_ENABLE
820 /* queue idle watchers unless io or timers are pending */ 1949 /* queue idle watchers unless other events are pending */
821 if (!pendingcnt) 1950 idle_reify (EV_A);
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1951#endif
823 1952
824 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
825 if (checkcnt) 1954 if (expect_false (checkcnt))
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1956
828 call_pending (); 1957 call_pending (EV_A);
829 } 1958 }
830 while (!ev_loop_done); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
831 1964
832 if (ev_loop_done != 2) 1965 if (loop_done == EVUNLOOP_ONE)
1966 loop_done = EVUNLOOP_CANCEL;
1967}
1968
1969void
1970ev_unloop (EV_P_ int how)
1971{
833 ev_loop_done = 0; 1972 loop_done = how;
834} 1973}
835 1974
836/*****************************************************************************/ 1975/*****************************************************************************/
837 1976
838static void 1977void inline_size
839wlist_add (WL *head, WL elem) 1978wlist_add (WL *head, WL elem)
840{ 1979{
841 elem->next = *head; 1980 elem->next = *head;
842 *head = elem; 1981 *head = elem;
843} 1982}
844 1983
845static void 1984void inline_size
846wlist_del (WL *head, WL elem) 1985wlist_del (WL *head, WL elem)
847{ 1986{
848 while (*head) 1987 while (*head)
849 { 1988 {
850 if (*head == elem) 1989 if (*head == elem)
855 1994
856 head = &(*head)->next; 1995 head = &(*head)->next;
857 } 1996 }
858} 1997}
859 1998
860static void 1999void inline_speed
861ev_clear_pending (W w) 2000clear_pending (EV_P_ W w)
862{ 2001{
863 if (w->pending) 2002 if (w->pending)
864 { 2003 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 2005 w->pending = 0;
867 } 2006 }
868} 2007}
869 2008
870static void 2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
2035void inline_speed
871ev_start (W w, int active) 2036ev_start (EV_P_ W w, int active)
872{ 2037{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875
876 w->active = active; 2039 w->active = active;
2040 ev_ref (EV_A);
877} 2041}
878 2042
879static void 2043void inline_size
880ev_stop (W w) 2044ev_stop (EV_P_ W w)
881{ 2045{
2046 ev_unref (EV_A);
882 w->active = 0; 2047 w->active = 0;
883} 2048}
884 2049
885/*****************************************************************************/ 2050/*****************************************************************************/
886 2051
887void 2052void noinline
888ev_io_start (struct ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
889{ 2054{
890 int fd = w->fd; 2055 int fd = w->fd;
891 2056
892 if (ev_is_active (w)) 2057 if (expect_false (ev_is_active (w)))
893 return; 2058 return;
894 2059
895 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
896 2061
2062 EV_FREQUENT_CHECK;
2063
897 ev_start ((W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
900 2067
901 fd_change (fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
902} 2069 w->events &= ~EV_IOFDSET;
903 2070
904void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
905ev_io_stop (struct ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
906{ 2076{
907 ev_clear_pending ((W)w); 2077 clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 2078 if (expect_false (!ev_is_active (w)))
909 return; 2079 return;
910 2080
2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
2084
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 2086 ev_stop (EV_A_ (W)w);
913 2087
914 fd_change (w->fd); 2088 fd_change (EV_A_ w->fd, 1);
915}
916 2089
917void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
918ev_timer_start (struct ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
919{ 2095{
920 if (ev_is_active (w)) 2096 if (expect_false (ev_is_active (w)))
921 return; 2097 return;
922 2098
923 w->at += now; 2099 ev_at (w) += mn_now;
924 2100
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 2102
927 ev_start ((W)w, ++timercnt); 2103 EV_FREQUENT_CHECK;
928 array_needsize (timers, timermax, timercnt, );
929 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1);
931}
932 2104
933void 2105 ++timercnt;
2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
2111
2112 EV_FREQUENT_CHECK;
2113
2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2115}
2116
2117void noinline
934ev_timer_stop (struct ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
935{ 2119{
936 ev_clear_pending ((W)w); 2120 clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
938 return; 2122 return;
939 2123
940 if (w->active < timercnt--) 2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
2133 if (expect_true (active < timercnt + HEAP0))
941 { 2134 {
942 timers [w->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
943 downheap ((WT *)timers, timercnt, w->active - 1); 2136 adjustheap (timers, timercnt, active);
944 } 2137 }
2138 }
945 2139
946 w->at = w->repeat; 2140 EV_FREQUENT_CHECK;
947 2141
2142 ev_at (w) -= mn_now;
2143
948 ev_stop ((W)w); 2144 ev_stop (EV_A_ (W)w);
949} 2145}
950 2146
951void 2147void noinline
952ev_timer_again (struct ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
953{ 2149{
2150 EV_FREQUENT_CHECK;
2151
954 if (ev_is_active (w)) 2152 if (ev_is_active (w))
955 { 2153 {
956 if (w->repeat) 2154 if (w->repeat)
957 { 2155 {
958 w->at = now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
959 downheap ((WT *)timers, timercnt, w->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
960 } 2159 }
961 else 2160 else
962 ev_timer_stop (w); 2161 ev_timer_stop (EV_A_ w);
963 } 2162 }
964 else if (w->repeat) 2163 else if (w->repeat)
2164 {
2165 ev_at (w) = w->repeat;
965 ev_timer_start (w); 2166 ev_timer_start (EV_A_ w);
966} 2167 }
967 2168
968void 2169 EV_FREQUENT_CHECK;
2170}
2171
2172#if EV_PERIODIC_ENABLE
2173void noinline
969ev_periodic_start (struct ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
970{ 2175{
971 if (ev_is_active (w)) 2176 if (expect_false (ev_is_active (w)))
972 return; 2177 return;
973 2178
2179 if (w->reschedule_cb)
2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2181 else if (w->interval)
2182 {
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 }
2187 else
2188 ev_at (w) = w->offset;
979 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
980 ev_start ((W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
982 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
983 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
984} 2197 upheap (periodics, ev_active (w));
985 2198
986void 2199 EV_FREQUENT_CHECK;
2200
2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2202}
2203
2204void noinline
987ev_periodic_stop (struct ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
988{ 2206{
989 ev_clear_pending ((W)w); 2207 clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
991 return; 2209 return;
992 2210
993 if (w->active < periodiccnt--) 2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
2220 if (expect_true (active < periodiccnt + HEAP0))
994 { 2221 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
997 } 2224 }
2225 }
998 2226
2227 EV_FREQUENT_CHECK;
2228
999 ev_stop ((W)w); 2229 ev_stop (EV_A_ (W)w);
1000} 2230}
1001 2231
1002void 2232void noinline
2233ev_periodic_again (EV_P_ ev_periodic *w)
2234{
2235 /* TODO: use adjustheap and recalculation */
2236 ev_periodic_stop (EV_A_ w);
2237 ev_periodic_start (EV_A_ w);
2238}
2239#endif
2240
2241#ifndef SA_RESTART
2242# define SA_RESTART 0
2243#endif
2244
2245void noinline
1003ev_signal_start (struct ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1004{ 2247{
2248#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif
1005 if (ev_is_active (w)) 2251 if (expect_false (ev_is_active (w)))
1006 return; 2252 return;
1007 2253
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 2255
1010 ev_start ((W)w, 1); 2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
1011 array_needsize (signals, signalmax, w->signum, signals_init); 2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
2274 ev_start (EV_A_ (W)w, 1);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1013 2276
1014 if (!w->next) 2277 if (!((WL)w)->next)
1015 { 2278 {
2279#if _WIN32
2280 signal (w->signum, ev_sighandler);
2281#else
1016 struct sigaction sa; 2282 struct sigaction sa;
1017 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1018 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
2287#endif
1021 } 2288 }
1022}
1023 2289
1024void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1025ev_signal_stop (struct ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1026{ 2295{
1027 ev_clear_pending ((W)w); 2296 clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 2297 if (expect_false (!ev_is_active (w)))
1029 return; 2298 return;
1030 2299
2300 EV_FREQUENT_CHECK;
2301
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 2303 ev_stop (EV_A_ (W)w);
1033 2304
1034 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
1036}
1037 2307
2308 EV_FREQUENT_CHECK;
2309}
2310
1038void 2311void
1039ev_idle_start (struct ev_idle *w) 2312ev_child_start (EV_P_ ev_child *w)
1040{ 2313{
2314#if EV_MULTIPLICITY
2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif
1041 if (ev_is_active (w)) 2317 if (expect_false (ev_is_active (w)))
1042 return; 2318 return;
1043 2319
1044 ev_start ((W)w, ++idlecnt); 2320 EV_FREQUENT_CHECK;
1045 array_needsize (idles, idlemax, idlecnt, );
1046 idles [idlecnt - 1] = w;
1047}
1048 2321
2322 ev_start (EV_A_ (W)w, 1);
2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
2326}
2327
1049void 2328void
1050ev_idle_stop (struct ev_idle *w) 2329ev_child_stop (EV_P_ ev_child *w)
1051{ 2330{
1052 ev_clear_pending ((W)w); 2331 clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 2332 if (expect_false (!ev_is_active (w)))
1054 return; 2333 return;
1055 2334
1056 idles [w->active - 1] = idles [--idlecnt]; 2335 EV_FREQUENT_CHECK;
2336
2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1057 ev_stop ((W)w); 2338 ev_stop (EV_A_ (W)w);
1058}
1059 2339
1060void 2340 EV_FREQUENT_CHECK;
1061ev_prepare_start (struct ev_prepare *w) 2341}
2342
2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
1062{ 2360{
1063 if (ev_is_active (w)) 2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
1064 return; 2405 return;
1065 2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
2445static void
2446infy_cb (EV_P_ ev_io *w, int revents)
2447{
2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
2506
2507void
2508ev_stat_stat (EV_P_ ev_stat *w)
2509{
2510 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1;
2514}
2515
2516static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520
2521 /* we copy this here each the time so that */
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w);
2525
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
2548}
2549
2550void
2551ev_stat_start (EV_P_ ev_stat *w)
2552{
2553 if (expect_false (ev_is_active (w)))
2554 return;
2555
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w);
2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
2575 ev_timer_start (EV_A_ &w->timer);
2576
2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2580}
2581
2582void
2583ev_stat_stop (EV_P_ ev_stat *w)
2584{
2585 clear_pending (EV_A_ (W)w);
2586 if (expect_false (!ev_is_active (w)))
2587 return;
2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
2594 ev_timer_stop (EV_A_ &w->timer);
2595
2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
1066 ev_start ((W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, ); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1068 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
1069}
1070 2660
2661 EV_FREQUENT_CHECK;
2662}
2663
1071void 2664void
1072ev_prepare_stop (struct ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
1073{ 2666{
1074 ev_clear_pending ((W)w); 2667 clear_pending (EV_A_ (W)w);
1075 if (ev_is_active (w)) 2668 if (expect_false (!ev_is_active (w)))
1076 return; 2669 return;
1077 2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
1078 prepares [w->active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
1079 ev_stop ((W)w); 2680 ev_stop (EV_A_ (W)w);
1080}
1081 2681
2682 EV_FREQUENT_CHECK;
2683}
2684
1082void 2685void
1083ev_check_start (struct ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
1084{ 2687{
1085 if (ev_is_active (w)) 2688 if (expect_false (ev_is_active (w)))
1086 return; 2689 return;
1087 2690
2691 EV_FREQUENT_CHECK;
2692
1088 ev_start ((W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, ); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1090 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
1091}
1092 2696
2697 EV_FREQUENT_CHECK;
2698}
2699
1093void 2700void
1094ev_check_stop (struct ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
1095{ 2702{
1096 ev_clear_pending ((W)w); 2703 clear_pending (EV_A_ (W)w);
1097 if (ev_is_active (w)) 2704 if (expect_false (!ev_is_active (w)))
1098 return; 2705 return;
1099 2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
1100 checks [w->active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
1101 ev_stop ((W)w); 2716 ev_stop (EV_A_ (W)w);
1102}
1103 2717
1104void 2718 EV_FREQUENT_CHECK;
1105ev_child_start (struct ev_child *w) 2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
1106{ 2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
1107 if (ev_is_active (w)) 2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
1108 return; 2767 return;
1109 2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
1110 ev_start ((W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113 2787
2788 EV_FREQUENT_CHECK;
2789}
2790
1114void 2791void
1115ev_child_stop (struct ev_child *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
1116{ 2793{
1117 ev_clear_pending ((W)w); 2794 clear_pending (EV_A_ (W)w);
1118 if (ev_is_active (w)) 2795 if (expect_false (!ev_is_active (w)))
1119 return; 2796 return;
1120 2797
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2798 EV_FREQUENT_CHECK;
2799
2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
1122 ev_stop ((W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
1123} 2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2891}
2892#endif
1124 2893
1125/*****************************************************************************/ 2894/*****************************************************************************/
1126 2895
1127struct ev_once 2896struct ev_once
1128{ 2897{
1129 struct ev_io io; 2898 ev_io io;
1130 struct ev_timer to; 2899 ev_timer to;
1131 void (*cb)(int revents, void *arg); 2900 void (*cb)(int revents, void *arg);
1132 void *arg; 2901 void *arg;
1133}; 2902};
1134 2903
1135static void 2904static void
1136once_cb (struct ev_once *once, int revents) 2905once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 2906{
1138 void (*cb)(int revents, void *arg) = once->cb; 2907 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 2908 void *arg = once->arg;
1140 2909
1141 ev_io_stop (&once->io); 2910 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 2911 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 2912 ev_free (once);
1144 2913
1145 cb (revents, arg); 2914 cb (revents, arg);
1146} 2915}
1147 2916
1148static void 2917static void
1149once_cb_io (struct ev_io *w, int revents) 2918once_cb_io (EV_P_ ev_io *w, int revents)
1150{ 2919{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 2921}
1153 2922
1154static void 2923static void
1155once_cb_to (struct ev_timer *w, int revents) 2924once_cb_to (EV_P_ ev_timer *w, int revents)
1156{ 2925{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 2927}
1159 2928
1160void 2929void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 2931{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 2932 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1164 2933
1165 if (!once) 2934 if (expect_false (!once))
2935 {
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2936 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167 else 2937 return;
1168 { 2938 }
2939
1169 once->cb = cb; 2940 once->cb = cb;
1170 once->arg = arg; 2941 once->arg = arg;
1171 2942
1172 ev_watcher_init (&once->io, once_cb_io); 2943 ev_init (&once->io, once_cb_io);
1173 if (fd >= 0) 2944 if (fd >= 0)
1174 { 2945 {
1175 ev_io_set (&once->io, fd, events); 2946 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 2947 ev_io_start (EV_A_ &once->io);
1177 } 2948 }
1178 2949
1179 ev_watcher_init (&once->to, once_cb_to); 2950 ev_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 2951 if (timeout >= 0.)
1181 { 2952 {
1182 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 2954 ev_timer_start (EV_A_ &once->to);
1184 }
1185 }
1186}
1187
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 { 2955 }
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264} 2956}
1265 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
1266#endif 2960#endif
1267 2961
2962#ifdef __cplusplus
2963}
2964#endif
1268 2965
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines