ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 255
197#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
200#endif 259#endif
202#ifndef CLOCK_REALTIME 261#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 262# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME 0
205#endif 264#endif
206 265
266#if !EV_STAT_ENABLE
267# undef EV_USE_INOTIFY
268# define EV_USE_INOTIFY 0
269#endif
270
271#if !EV_USE_NANOSLEEP
272# ifndef _WIN32
273# include <sys/select.h>
274# endif
275#endif
276
277#if EV_USE_INOTIFY
278# include <sys/inotify.h>
279#endif
280
207#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 282# include <winsock.h>
209#endif 283#endif
210 284
211#if !EV_STAT_ENABLE 285#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
213#endif 290# endif
214 291int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 292# ifdef __cplusplus
216# include <sys/inotify.h> 293}
294# endif
217#endif 295#endif
218 296
219/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
309
310/*
311 * This is used to avoid floating point rounding problems.
312 * It is added to ev_rt_now when scheduling periodics
313 * to ensure progress, time-wise, even when rounding
314 * errors are against us.
315 * This value is good at least till the year 4000.
316 * Better solutions welcome.
317 */
318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 319
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 323
225#if __GNUC__ >= 3 324#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 326# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 327#else
236# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 329# define noinline
330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
331# define inline
332# endif
240#endif 333#endif
241 334
242#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 336#define expect_true(expr) expect ((expr) != 0, 1)
337#define inline_size static inline
338
339#if EV_MINIMAL
340# define inline_speed static noinline
341#else
342# define inline_speed static inline
343#endif
244 344
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 345#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 346#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 347
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 348#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 350
251typedef ev_watcher *W; 351typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
254 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
358#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
362#endif
256 363
257#ifdef _WIN32 364#ifdef _WIN32
258# include "ev_win32.c" 365# include "ev_win32.c"
259#endif 366#endif
260 367
281 perror (msg); 388 perror (msg);
282 abort (); 389 abort ();
283 } 390 }
284} 391}
285 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
286static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 409
288void 410void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 412{
291 alloc = cb; 413 alloc = cb;
292} 414}
293 415
294inline_speed void * 416inline_speed void *
295ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
296{ 418{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
298 420
299 if (!ptr && size) 421 if (!ptr && size)
300 { 422 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 424 abort ();
325 W w; 447 W w;
326 int events; 448 int events;
327} ANPENDING; 449} ANPENDING;
328 450
329#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
330typedef struct 453typedef struct
331{ 454{
332 WL head; 455 WL head;
333} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
334#endif 475#endif
335 476
336#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
337 478
338 struct ev_loop 479 struct ev_loop
396{ 537{
397 return ev_rt_now; 538 return ev_rt_now;
398} 539}
399#endif 540#endif
400 541
542void
543ev_sleep (ev_tstamp delay)
544{
545 if (delay > 0.)
546 {
547#if EV_USE_NANOSLEEP
548 struct timespec ts;
549
550 ts.tv_sec = (time_t)delay;
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0);
554#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3));
556#else
557 struct timeval tv;
558
559 tv.tv_sec = (time_t)delay;
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
561
562 select (0, 0, 0, 0, &tv);
563#endif
564 }
565}
566
567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570
401int inline_size 571int inline_size
402array_nextsize (int elem, int cur, int cnt) 572array_nextsize (int elem, int cur, int cnt)
403{ 573{
404 int ncur = cur + 1; 574 int ncur = cur + 1;
405 575
406 do 576 do
407 ncur <<= 1; 577 ncur <<= 1;
408 while (cnt > ncur); 578 while (cnt > ncur);
409 579
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 582 {
413 ncur *= elem; 583 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 585 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 586 ncur /= elem;
417 } 587 }
418 588
419 return ncur; 589 return ncur;
420} 590}
421 591
422inline_speed void * 592static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 593array_realloc (int elem, void *base, int *cur, int cnt)
424{ 594{
425 *cur = array_nextsize (elem, *cur, cnt); 595 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 596 return ev_realloc (base, elem * *cur);
427} 597}
452 622
453void noinline 623void noinline
454ev_feed_event (EV_P_ void *w, int revents) 624ev_feed_event (EV_P_ void *w, int revents)
455{ 625{
456 W w_ = (W)w; 626 W w_ = (W)w;
627 int pri = ABSPRI (w_);
457 628
458 if (expect_false (w_->pending)) 629 if (expect_false (w_->pending))
630 pendings [pri][w_->pending - 1].events |= revents;
631 else
459 { 632 {
633 w_->pending = ++pendingcnt [pri];
634 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
635 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 636 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 637 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 638}
469 639
470void inline_size 640void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 641queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 642{
473 int i; 643 int i;
474 644
475 for (i = 0; i < eventcnt; ++i) 645 for (i = 0; i < eventcnt; ++i)
507} 677}
508 678
509void 679void
510ev_feed_fd_event (EV_P_ int fd, int revents) 680ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 681{
682 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 683 fd_event (EV_A_ fd, revents);
513} 684}
514 685
515void inline_size 686void inline_size
516fd_reify (EV_P) 687fd_reify (EV_P)
517{ 688{
521 { 692 {
522 int fd = fdchanges [i]; 693 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 694 ANFD *anfd = anfds + fd;
524 ev_io *w; 695 ev_io *w;
525 696
526 int events = 0; 697 unsigned char events = 0;
527 698
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 700 events |= (unsigned char)w->events;
530 701
531#if EV_SELECT_IS_WINSOCKET 702#if EV_SELECT_IS_WINSOCKET
532 if (events) 703 if (events)
533 { 704 {
534 unsigned long argp; 705 unsigned long argp;
706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
535 anfd->handle = _get_osfhandle (fd); 709 anfd->handle = _get_osfhandle (fd);
710 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 712 }
538#endif 713#endif
539 714
715 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
540 anfd->reify = 0; 719 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 720 anfd->events = events;
721
722 if (o_events != events || o_reify & EV_IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events);
724 }
544 } 725 }
545 726
546 fdchangecnt = 0; 727 fdchangecnt = 0;
547} 728}
548 729
549void inline_size 730void inline_size
550fd_change (EV_P_ int fd) 731fd_change (EV_P_ int fd, int flags)
551{ 732{
552 if (expect_false (anfds [fd].reify)) 733 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 734 anfds [fd].reify |= flags;
556 735
736 if (expect_true (!reify))
737 {
557 ++fdchangecnt; 738 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 740 fdchanges [fdchangecnt - 1] = fd;
741 }
560} 742}
561 743
562void inline_speed 744void inline_speed
563fd_kill (EV_P_ int fd) 745fd_kill (EV_P_ int fd)
564{ 746{
615 797
616 for (fd = 0; fd < anfdmax; ++fd) 798 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 799 if (anfds [fd].events)
618 { 800 {
619 anfds [fd].events = 0; 801 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 802 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 803 }
622} 804}
623 805
624/*****************************************************************************/ 806/*****************************************************************************/
625 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
626void inline_speed 828void inline_speed
627upheap (WT *heap, int k) 829downheap (ANHE *heap, int N, int k)
628{ 830{
629 WT w = heap [k]; 831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
630 833
631 while (k && heap [k >> 1]->at > w->at) 834 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
638 heap [k] = w; 867 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 868 ev_active (ANHE_w (he)) = k;
640
641} 869}
642 870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
643void inline_speed 878void inline_speed
644downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
645{ 880{
646 WT w = heap [k]; 881 ANHE he = heap [k];
647 882
648 while (k < (N >> 1)) 883 for (;;)
649 { 884 {
650 int j = k << 1; 885 int c = k << 1;
651 886
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 887 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 888 break;
657 889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
658 heap [k] = heap [j]; 896 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (heap [k])) = k;
898
660 k = j; 899 k = c;
661 } 900 }
662 901
663 heap [k] = w; 902 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
920 heap [k] = heap [p];
921 ev_active (ANHE_w (heap [k])) = k;
922 k = p;
923 }
924
925 heap [k] = he;
926 ev_active (ANHE_w (he)) = k;
665} 927}
666 928
667void inline_size 929void inline_size
668adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
669{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 933 upheap (heap, k);
934 else
671 downheap (heap, N, k); 935 downheap (heap, N, k);
672} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
673 963
674/*****************************************************************************/ 964/*****************************************************************************/
675 965
676typedef struct 966typedef struct
677{ 967{
678 WL head; 968 WL head;
679 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
680} ANSIG; 970} ANSIG;
681 971
682static ANSIG *signals; 972static ANSIG *signals;
683static int signalmax; 973static int signalmax;
684 974
685static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 976
689void inline_size 977void inline_size
690signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
691{ 979{
692 while (count--) 980 while (count--)
696 984
697 ++base; 985 ++base;
698 } 986 }
699} 987}
700 988
701static void 989/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 990
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 991void inline_speed
753fd_intern (int fd) 992fd_intern (int fd)
754{ 993{
755#ifdef _WIN32 994#ifdef _WIN32
756 int arg = 1; 995 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 996 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 999 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1000#endif
762} 1001}
763 1002
764static void noinline 1003static void noinline
765siginit (EV_P) 1004evpipe_init (EV_P)
766{ 1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
767 fd_intern (sigpipe [0]); 1021 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
769 1025
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1026 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
1054static void
1055pipecb (EV_P_ ev_io *iow, int revents)
1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
1069
1070 if (gotsig && ev_is_default_loop (EV_A))
1071 {
1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
773} 1094}
774 1095
775/*****************************************************************************/ 1096/*****************************************************************************/
776 1097
1098static void
1099ev_sighandler (int signum)
1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
1109 signals [signum - 1].gotsig = 1;
1110 evpipe_write (EV_A_ &gotsig);
1111}
1112
1113void noinline
1114ev_feed_signal_event (EV_P_ int signum)
1115{
1116 WL w;
1117
1118#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
1121
1122 --signum;
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
1127 signals [signum].gotsig = 0;
1128
1129 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1131}
1132
1133/*****************************************************************************/
1134
777static ev_child *childs [EV_PID_HASHSIZE]; 1135static WL childs [EV_PID_HASHSIZE];
778 1136
779#ifndef _WIN32 1137#ifndef _WIN32
780 1138
781static ev_signal childev; 1139static ev_signal childev;
782 1140
1141#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0
1143#endif
1144
783void inline_speed 1145void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1146child_reap (EV_P_ int chain, int pid, int status)
785{ 1147{
786 ev_child *w; 1148 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1150
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 {
789 if (w->pid == pid || !w->pid) 1153 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1)))
790 { 1155 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1157 w->rpid = pid;
793 w->rstatus = status; 1158 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1160 }
1161 }
796} 1162}
797 1163
798#ifndef WCONTINUED 1164#ifndef WCONTINUED
799# define WCONTINUED 0 1165# define WCONTINUED 0
800#endif 1166#endif
809 if (!WCONTINUED 1175 if (!WCONTINUED
810 || errno != EINVAL 1176 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1178 return;
813 1179
814 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1181 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1183
818 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1185 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1187}
822 1188
823#endif 1189#endif
824 1190
825/*****************************************************************************/ 1191/*****************************************************************************/
897} 1263}
898 1264
899unsigned int 1265unsigned int
900ev_embeddable_backends (void) 1266ev_embeddable_backends (void)
901{ 1267{
902 return EVBACKEND_EPOLL 1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1269
904 | EVBACKEND_PORT; 1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */
1272 flags &= ~EVBACKEND_EPOLL;
1273
1274 return flags;
905} 1275}
906 1276
907unsigned int 1277unsigned int
908ev_backend (EV_P) 1278ev_backend (EV_P)
909{ 1279{
912 1282
913unsigned int 1283unsigned int
914ev_loop_count (EV_P) 1284ev_loop_count (EV_P)
915{ 1285{
916 return loop_count; 1286 return loop_count;
1287}
1288
1289void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 io_blocktime = interval;
1293}
1294
1295void
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{
1298 timeout_blocktime = interval;
917} 1299}
918 1300
919static void noinline 1301static void noinline
920loop_init (EV_P_ unsigned int flags) 1302loop_init (EV_P_ unsigned int flags)
921{ 1303{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1310 have_monotonic = 1;
929 } 1311 }
930#endif 1312#endif
931 1313
932 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1315 mn_now = get_clock ();
934 now_floor = mn_now; 1316 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1318
1319 io_blocktime = 0.;
1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
936 1327
937 /* pid check not overridable via env */ 1328 /* pid check not overridable via env */
938#ifndef _WIN32 1329#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1330 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1331 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1335 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1338
948 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1341
957#if EV_USE_PORT 1342#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1344#endif
960#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
968#endif 1353#endif
969#if EV_USE_SELECT 1354#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1356#endif
972 1357
973 ev_init (&sigev, sigcb); 1358 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1359 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1360 }
976} 1361}
977 1362
978static void noinline 1363static void noinline
979loop_destroy (EV_P) 1364loop_destroy (EV_P)
980{ 1365{
981 int i; 1366 int i;
1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1383 }
982 1384
983#if EV_USE_INOTIFY 1385#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1386 if (fs_fd >= 0)
985 close (fs_fd); 1387 close (fs_fd);
986#endif 1388#endif
1009 array_free (pending, [i]); 1411 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1412#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1413 array_free (idle, [i]);
1012#endif 1414#endif
1013 } 1415 }
1416
1417 ev_free (anfds); anfdmax = 0;
1014 1418
1015 /* have to use the microsoft-never-gets-it-right macro */ 1419 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1420 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1421 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1422#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1423 array_free (periodic, EMPTY);
1020#endif 1424#endif
1425#if EV_FORK_ENABLE
1426 array_free (fork, EMPTY);
1427#endif
1021 array_free (prepare, EMPTY); 1428 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
1023 1433
1024 backend = 0; 1434 backend = 0;
1025} 1435}
1026 1436
1437#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1438void inline_size infy_fork (EV_P);
1439#endif
1028 1440
1029void inline_size 1441void inline_size
1030loop_fork (EV_P) 1442loop_fork (EV_P)
1031{ 1443{
1032#if EV_USE_PORT 1444#if EV_USE_PORT
1040#endif 1452#endif
1041#if EV_USE_INOTIFY 1453#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1454 infy_fork (EV_A);
1043#endif 1455#endif
1044 1456
1045 if (ev_is_active (&sigev)) 1457 if (ev_is_active (&pipeev))
1046 { 1458 {
1047 /* default loop */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
1048 1465
1049 ev_ref (EV_A); 1466 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1051 close (sigpipe [0]); 1476 close (evpipe [0]);
1052 close (sigpipe [1]); 1477 close (evpipe [1]);
1478 }
1053 1479
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1483 }
1059 1484
1060 postfork = 0; 1485 postfork = 0;
1061} 1486}
1062 1487
1084} 1509}
1085 1510
1086void 1511void
1087ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1088{ 1513{
1089 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1090} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1091 1549
1092#endif 1550#endif
1093 1551
1094#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1095struct ev_loop * 1553struct ev_loop *
1097#else 1555#else
1098int 1556int
1099ev_default_loop (unsigned int flags) 1557ev_default_loop (unsigned int flags)
1100#endif 1558#endif
1101{ 1559{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1560 if (!ev_default_loop_ptr)
1107 { 1561 {
1108#if EV_MULTIPLICITY 1562#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1564#else
1113 1567
1114 loop_init (EV_A_ flags); 1568 loop_init (EV_A_ flags);
1115 1569
1116 if (ev_backend (EV_A)) 1570 if (ev_backend (EV_A))
1117 { 1571 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1572#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1574 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1575 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1593#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1594 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1595 ev_signal_stop (EV_A_ &childev);
1144#endif 1596#endif
1145 1597
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1598 loop_destroy (EV_A);
1153} 1599}
1154 1600
1155void 1601void
1156ev_default_fork (void) 1602ev_default_fork (void)
1158#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1605 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1606#endif
1161 1607
1162 if (backend) 1608 if (backend)
1163 postfork = 1; 1609 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1610}
1165 1611
1166/*****************************************************************************/ 1612/*****************************************************************************/
1613
1614void
1615ev_invoke (EV_P_ void *w, int revents)
1616{
1617 EV_CB_INVOKE ((W)w, revents);
1618}
1167 1619
1168void inline_speed 1620void inline_speed
1169call_pending (EV_P) 1621call_pending (EV_P)
1170{ 1622{
1171 int pri; 1623 int pri;
1624
1625 EV_FREQUENT_CHECK;
1172 1626
1173 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1175 { 1629 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1181 1635
1182 p->w->pending = 0; 1636 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1184 } 1638 }
1185 } 1639 }
1186}
1187 1640
1188void inline_size 1641 EV_FREQUENT_CHECK;
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213} 1642}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1643
1267#if EV_IDLE_ENABLE 1644#if EV_IDLE_ENABLE
1268void inline_size 1645void inline_size
1269idle_reify (EV_P) 1646idle_reify (EV_P)
1270{ 1647{
1285 } 1662 }
1286 } 1663 }
1287} 1664}
1288#endif 1665#endif
1289 1666
1290int inline_size 1667void inline_size
1291time_update_monotonic (EV_P) 1668timers_reify (EV_P)
1292{ 1669{
1670 EV_FREQUENT_CHECK;
1671
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686
1687 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0);
1689 }
1690 else
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692
1693 EV_FREQUENT_CHECK;
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 }
1696}
1697
1698#if EV_PERIODIC_ENABLE
1699void inline_size
1700periodics_reify (EV_P)
1701{
1702 EV_FREQUENT_CHECK;
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1744 }
1745}
1746
1747static void noinline
1748periodics_reschedule (EV_P)
1749{
1750 int i;
1751
1752 /* adjust periodics after time jump */
1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1766}
1767#endif
1768
1769void inline_speed
1770time_update (EV_P_ ev_tstamp max_block)
1771{
1772 int i;
1773
1774#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic))
1776 {
1777 ev_tstamp odiff = rtmn_diff;
1778
1293 mn_now = get_clock (); 1779 mn_now = get_clock ();
1294 1780
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1782 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1783 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1784 {
1297 ev_rt_now = rtmn_diff + mn_now; 1785 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1786 return;
1299 } 1787 }
1300 else 1788
1301 {
1302 now_floor = mn_now; 1789 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1790 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1791
1308void inline_size 1792 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1793 * on the choice of "4": one iteration isn't enough,
1310{ 1794 * in case we get preempted during the calls to
1311 int i; 1795 * ev_time and get_clock. a second call is almost guaranteed
1312 1796 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1797 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1798 * in the unlikely event of having been preempted here.
1315 { 1799 */
1316 if (time_update_monotonic (EV_A)) 1800 for (i = 4; --i; )
1317 { 1801 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1331 1803
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1805 return; /* all is well */
1334 1806
1335 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1808 mn_now = get_clock ();
1337 now_floor = mn_now; 1809 now_floor = mn_now;
1338 } 1810 }
1339 1811
1340# if EV_PERIODIC_ENABLE 1812# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1813 periodics_reschedule (EV_A);
1342# endif 1814# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1817 }
1347 else 1818 else
1348#endif 1819#endif
1349 { 1820 {
1350 ev_rt_now = ev_time (); 1821 ev_rt_now = ev_time ();
1351 1822
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1824 {
1354#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1356#endif 1827#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1361 } 1835 }
1362 1836
1363 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1364 } 1838 }
1365} 1839}
1379static int loop_done; 1853static int loop_done;
1380 1854
1381void 1855void
1382ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1383{ 1857{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1858 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1859
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1861
1390 do 1862 do
1391 { 1863 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1878 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1879 call_pending (EV_A);
1408 } 1880 }
1409#endif 1881#endif
1410 1882
1411 /* queue check watchers (and execute them) */ 1883 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1884 if (expect_false (preparecnt))
1413 { 1885 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1886 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1887 call_pending (EV_A);
1416 } 1888 }
1425 /* update fd-related kernel structures */ 1897 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1898 fd_reify (EV_A);
1427 1899
1428 /* calculate blocking time */ 1900 /* calculate blocking time */
1429 { 1901 {
1430 ev_tstamp block; 1902 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.;
1431 1904
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1906 {
1436 /* update time to cancel out callback processing overhead */ 1907 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1908 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1909
1447 block = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1448 1911
1449 if (timercnt) 1912 if (timercnt)
1450 { 1913 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1915 if (waittime > to) waittime = to;
1453 } 1916 }
1454 1917
1455#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1919 if (periodiccnt)
1457 { 1920 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1922 if (waittime > to) waittime = to;
1460 } 1923 }
1461#endif 1924#endif
1462 1925
1463 if (expect_false (block < 0.)) block = 0.; 1926 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime;
1928
1929 sleeptime = waittime - backend_fudge;
1930
1931 if (expect_true (sleeptime > io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 {
1936 ev_sleep (sleeptime);
1937 waittime -= sleeptime;
1938 }
1464 } 1939 }
1465 1940
1466 ++loop_count; 1941 ++loop_count;
1467 backend_poll (EV_A_ block); 1942 backend_poll (EV_A_ waittime);
1943
1944 /* update ev_rt_now, do magic */
1945 time_update (EV_A_ waittime + sleeptime);
1468 } 1946 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1947
1473 /* queue pending timers and reschedule them */ 1948 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1949 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1950#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1951 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 1962
1488 call_pending (EV_A); 1963 call_pending (EV_A);
1489
1490 } 1964 }
1491 while (expect_true (activecnt && !loop_done)); 1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1492 1970
1493 if (loop_done == EVUNLOOP_ONE) 1971 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 1972 loop_done = EVUNLOOP_CANCEL;
1495} 1973}
1496 1974
1538ev_clear_pending (EV_P_ void *w) 2016ev_clear_pending (EV_P_ void *w)
1539{ 2017{
1540 W w_ = (W)w; 2018 W w_ = (W)w;
1541 int pending = w_->pending; 2019 int pending = w_->pending;
1542 2020
1543 if (!pending) 2021 if (expect_true (pending))
2022 {
2023 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2024 w_->pending = 0;
2025 p->w = 0;
2026 return p->events;
2027 }
2028 else
1544 return 0; 2029 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 2030}
1552 2031
1553void inline_size 2032void inline_size
1554pri_adjust (EV_P_ W w) 2033pri_adjust (EV_P_ W w)
1555{ 2034{
1574 w->active = 0; 2053 w->active = 0;
1575} 2054}
1576 2055
1577/*****************************************************************************/ 2056/*****************************************************************************/
1578 2057
1579void 2058void noinline
1580ev_io_start (EV_P_ ev_io *w) 2059ev_io_start (EV_P_ ev_io *w)
1581{ 2060{
1582 int fd = w->fd; 2061 int fd = w->fd;
1583 2062
1584 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1585 return; 2064 return;
1586 2065
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1588 2067
2068 EV_FREQUENT_CHECK;
2069
1589 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1592 2073
1593 fd_change (EV_A_ fd); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1594} 2075 w->events &= ~EV_IOFDSET;
1595 2076
1596void 2077 EV_FREQUENT_CHECK;
2078}
2079
2080void noinline
1597ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1598{ 2082{
1599 clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1601 return; 2085 return;
1602 2086
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 2088
2089 EV_FREQUENT_CHECK;
2090
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1607 2093
1608 fd_change (EV_A_ w->fd); 2094 fd_change (EV_A_ w->fd, 1);
1609}
1610 2095
1611void 2096 EV_FREQUENT_CHECK;
2097}
2098
2099void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1613{ 2101{
1614 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1615 return; 2103 return;
1616 2104
1617 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1618 2106
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1621 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1623 timers [timercnt - 1] = w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1625 2117
2118 EV_FREQUENT_CHECK;
2119
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1627} 2121}
1628 2122
1629void 2123void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1631{ 2125{
1632 clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1634 return; 2128 return;
1635 2129
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2130 EV_FREQUENT_CHECK;
1637 2131
1638 { 2132 {
1639 int active = ((W)w)->active; 2133 int active = ev_active (w);
1640 2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
1641 if (expect_true (--active < --timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1642 { 2140 {
1643 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1644 adjustheap ((WT *)timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1645 } 2143 }
1646 } 2144 }
1647 2145
1648 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1649 2149
1650 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1651} 2151}
1652 2152
1653void 2153void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1655{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1656 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1657 { 2159 {
1658 if (w->repeat) 2160 if (w->repeat)
1659 { 2161 {
1660 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1662 } 2165 }
1663 else 2166 else
1664 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1665 } 2168 }
1666 else if (w->repeat) 2169 else if (w->repeat)
1667 { 2170 {
1668 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1669 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1670 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1671} 2176}
1672 2177
1673#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1674void 2179void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 2181{
1677 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1678 return; 2183 return;
1679 2184
1680 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 2187 else if (w->interval)
1683 { 2188 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 2192 }
2193 else
2194 ev_at (w) = w->offset;
1688 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1693 2204
2205 EV_FREQUENT_CHECK;
2206
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1695} 2208}
1696 2209
1697void 2210void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 2212{
1700 clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1702 return; 2215 return;
1703 2216
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2217 EV_FREQUENT_CHECK;
1705 2218
1706 { 2219 {
1707 int active = ((W)w)->active; 2220 int active = ev_active (w);
1708 2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
1709 if (expect_true (--active < --periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1710 { 2227 {
1711 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1713 } 2230 }
1714 } 2231 }
1715 2232
2233 EV_FREQUENT_CHECK;
2234
1716 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1717} 2236}
1718 2237
1719void 2238void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 2239ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 2240{
1722 /* TODO: use adjustheap and recalculation */ 2241 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 2242 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 2243 ev_periodic_start (EV_A_ w);
1727 2246
1728#ifndef SA_RESTART 2247#ifndef SA_RESTART
1729# define SA_RESTART 0 2248# define SA_RESTART 0
1730#endif 2249#endif
1731 2250
1732void 2251void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 2252ev_signal_start (EV_P_ ev_signal *w)
1734{ 2253{
1735#if EV_MULTIPLICITY 2254#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2255 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 2256#endif
1738 if (expect_false (ev_is_active (w))) 2257 if (expect_false (ev_is_active (w)))
1739 return; 2258 return;
1740 2259
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1742 2261
2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2265
2266 {
2267#ifndef _WIN32
2268 sigset_t full, prev;
2269 sigfillset (&full);
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272
2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2274
2275#ifndef _WIN32
2276 sigprocmask (SIG_SETMASK, &prev, 0);
2277#endif
2278 }
2279
1743 ev_start (EV_A_ (W)w, 1); 2280 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2282
1747 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1748 { 2284 {
1749#if _WIN32 2285#if _WIN32
1750 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1751#else 2287#else
1752 struct sigaction sa; 2288 struct sigaction sa;
1753 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1757#endif 2293#endif
1758 } 2294 }
1759}
1760 2295
1761void 2296 EV_FREQUENT_CHECK;
2297}
2298
2299void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2301{
1764 clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1766 return; 2304 return;
1767 2305
2306 EV_FREQUENT_CHECK;
2307
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1770 2310
1771 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1772 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
1773} 2315}
1774 2316
1775void 2317void
1776ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1777{ 2319{
1779 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1780#endif 2322#endif
1781 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1782 return; 2324 return;
1783 2325
2326 EV_FREQUENT_CHECK;
2327
1784 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
1786} 2332}
1787 2333
1788void 2334void
1789ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1790{ 2336{
1791 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1793 return; 2339 return;
1794 2340
2341 EV_FREQUENT_CHECK;
2342
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1797} 2347}
1798 2348
1799#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
1800 2350
1801# ifdef _WIN32 2351# ifdef _WIN32
1819 if (w->wd < 0) 2369 if (w->wd < 0)
1820 { 2370 {
1821 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1822 2372
1823 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
1824 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1825 { 2377 {
1826 char path [4096]; 2378 char path [4096];
1827 strcpy (path, w->path); 2379 strcpy (path, w->path);
1828 2380
2027 else 2579 else
2028#endif 2580#endif
2029 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
2030 2582
2031 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2032} 2586}
2033 2587
2034void 2588void
2035ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
2036{ 2590{
2037 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2039 return; 2593 return;
2040 2594
2595 EV_FREQUENT_CHECK;
2596
2041#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2042 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
2043#endif 2599#endif
2044 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
2045 2601
2046 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2047} 2605}
2048#endif 2606#endif
2049 2607
2050#if EV_IDLE_ENABLE 2608#if EV_IDLE_ENABLE
2051void 2609void
2053{ 2611{
2054 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2055 return; 2613 return;
2056 2614
2057 pri_adjust (EV_A_ (W)w); 2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2058 2618
2059 { 2619 {
2060 int active = ++idlecnt [ABSPRI (w)]; 2620 int active = ++idlecnt [ABSPRI (w)];
2061 2621
2062 ++idleall; 2622 ++idleall;
2063 ev_start (EV_A_ (W)w, active); 2623 ev_start (EV_A_ (W)w, active);
2064 2624
2065 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2066 idles [ABSPRI (w)][active - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2067 } 2627 }
2628
2629 EV_FREQUENT_CHECK;
2068} 2630}
2069 2631
2070void 2632void
2071ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
2072{ 2634{
2073 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2074 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2075 return; 2637 return;
2076 2638
2639 EV_FREQUENT_CHECK;
2640
2077 { 2641 {
2078 int active = ((W)w)->active; 2642 int active = ev_active (w);
2079 2643
2080 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2081 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2082 2646
2083 ev_stop (EV_A_ (W)w); 2647 ev_stop (EV_A_ (W)w);
2084 --idleall; 2648 --idleall;
2085 } 2649 }
2650
2651 EV_FREQUENT_CHECK;
2086} 2652}
2087#endif 2653#endif
2088 2654
2089void 2655void
2090ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
2091{ 2657{
2092 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
2093 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
2094 2662
2095 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
2096 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2097 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2098} 2668}
2099 2669
2100void 2670void
2101ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2102{ 2672{
2103 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2105 return; 2675 return;
2106 2676
2677 EV_FREQUENT_CHECK;
2678
2107 { 2679 {
2108 int active = ((W)w)->active; 2680 int active = ev_active (w);
2681
2109 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2110 ((W)prepares [active - 1])->active = active; 2683 ev_active (prepares [active - 1]) = active;
2111 } 2684 }
2112 2685
2113 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2114} 2689}
2115 2690
2116void 2691void
2117ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2118{ 2693{
2119 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2120 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2121 2698
2122 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2124 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2125} 2704}
2126 2705
2127void 2706void
2128ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2129{ 2708{
2130 clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2132 return; 2711 return;
2133 2712
2713 EV_FREQUENT_CHECK;
2714
2134 { 2715 {
2135 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2136 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2137 ((W)checks [active - 1])->active = active; 2719 ev_active (checks [active - 1]) = active;
2138 } 2720 }
2139 2721
2140 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2141} 2725}
2142 2726
2143#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2144void noinline 2728void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 2730{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 2731 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 2732}
2149 2733
2150static void 2734static void
2151embed_cb (EV_P_ ev_io *io, int revents) 2735embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 2736{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 2738
2155 if (ev_cb (w)) 2739 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 2741 else
2158 ev_embed_sweep (loop, w); 2742 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2743}
2744
2745static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749
2750 {
2751 struct ev_loop *loop = w->other;
2752
2753 while (fdchangecnt)
2754 {
2755 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2757 }
2758 }
2759}
2760
2761#if 0
2762static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2764{
2765 ev_idle_stop (EV_A_ idle);
2766}
2767#endif
2160 2768
2161void 2769void
2162ev_embed_start (EV_P_ ev_embed *w) 2770ev_embed_start (EV_P_ ev_embed *w)
2163{ 2771{
2164 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
2165 return; 2773 return;
2166 2774
2167 { 2775 {
2168 struct ev_loop *loop = w->loop; 2776 struct ev_loop *loop = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 2779 }
2780
2781 EV_FREQUENT_CHECK;
2172 2782
2173 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2175 2785
2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare);
2789
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791
2176 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2177} 2795}
2178 2796
2179void 2797void
2180ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2181{ 2799{
2182 clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2184 return; 2802 return;
2185 2803
2804 EV_FREQUENT_CHECK;
2805
2186 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare);
2187 2808
2188 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2189} 2812}
2190#endif 2813#endif
2191 2814
2192#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2193void 2816void
2194ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2195{ 2818{
2196 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2197 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2198 2823
2199 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2200 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2201 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2202} 2829}
2203 2830
2204void 2831void
2205ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2206{ 2833{
2207 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2209 return; 2836 return;
2210 2837
2838 EV_FREQUENT_CHECK;
2839
2211 { 2840 {
2212 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2213 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2214 ((W)forks [active - 1])->active = active; 2844 ev_active (forks [active - 1]) = active;
2215 } 2845 }
2216 2846
2217 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2218} 2897}
2219#endif 2898#endif
2220 2899
2221/*****************************************************************************/ 2900/*****************************************************************************/
2222 2901
2280 ev_timer_set (&once->to, timeout, 0.); 2959 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 2960 ev_timer_start (EV_A_ &once->to);
2282 } 2961 }
2283} 2962}
2284 2963
2964#if EV_MULTIPLICITY
2965 #include "ev_wrap.h"
2966#endif
2967
2285#ifdef __cplusplus 2968#ifdef __cplusplus
2286} 2969}
2287#endif 2970#endif
2288 2971

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines