ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 255
197#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
200#endif 259#endif
202#ifndef CLOCK_REALTIME 261#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 262# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME 0
205#endif 264#endif
206 265
266#if !EV_STAT_ENABLE
267# undef EV_USE_INOTIFY
268# define EV_USE_INOTIFY 0
269#endif
270
271#if !EV_USE_NANOSLEEP
272# ifndef _WIN32
273# include <sys/select.h>
274# endif
275#endif
276
277#if EV_USE_INOTIFY
278# include <sys/inotify.h>
279#endif
280
207#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 282# include <winsock.h>
209#endif 283#endif
210 284
211#if !EV_STAT_ENABLE 285#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
213#endif 290# endif
214 291int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 292# ifdef __cplusplus
216# include <sys/inotify.h> 293}
294# endif
217#endif 295#endif
218 296
219/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
220 309
221/* 310/*
222 * This is used to avoid floating point rounding problems. 311 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 312 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 313 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 314 * errors are against us.
226 * This value is good at least till the year 4000 315 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 316 * Better solutions welcome.
229 */ 317 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 319
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 323
236#if __GNUC__ >= 3 324#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 326# define noinline __attribute__ ((noinline))
239#else 327#else
240# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
241# define noinline 329# define noinline
242# if __STDC_VERSION__ < 199901L 330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 331# define inline
244# endif 332# endif
245#endif 333#endif
246 334
247#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
262 350
263typedef ev_watcher *W; 351typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
266 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
358#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
362#endif
268 363
269#ifdef _WIN32 364#ifdef _WIN32
270# include "ev_win32.c" 365# include "ev_win32.c"
271#endif 366#endif
272 367
293 perror (msg); 388 perror (msg);
294 abort (); 389 abort ();
295 } 390 }
296} 391}
297 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
298static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 409
300void 410void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 412{
303 alloc = cb; 413 alloc = cb;
304} 414}
305 415
306inline_speed void * 416inline_speed void *
307ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
308{ 418{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
310 420
311 if (!ptr && size) 421 if (!ptr && size)
312 { 422 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 424 abort ();
337 W w; 447 W w;
338 int events; 448 int events;
339} ANPENDING; 449} ANPENDING;
340 450
341#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
342typedef struct 453typedef struct
343{ 454{
344 WL head; 455 WL head;
345} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
346#endif 475#endif
347 476
348#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
349 478
350 struct ev_loop 479 struct ev_loop
408{ 537{
409 return ev_rt_now; 538 return ev_rt_now;
410} 539}
411#endif 540#endif
412 541
542void
543ev_sleep (ev_tstamp delay)
544{
545 if (delay > 0.)
546 {
547#if EV_USE_NANOSLEEP
548 struct timespec ts;
549
550 ts.tv_sec = (time_t)delay;
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0);
554#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3));
556#else
557 struct timeval tv;
558
559 tv.tv_sec = (time_t)delay;
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
561
562 select (0, 0, 0, 0, &tv);
563#endif
564 }
565}
566
567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570
413int inline_size 571int inline_size
414array_nextsize (int elem, int cur, int cnt) 572array_nextsize (int elem, int cur, int cnt)
415{ 573{
416 int ncur = cur + 1; 574 int ncur = cur + 1;
417 575
418 do 576 do
419 ncur <<= 1; 577 ncur <<= 1;
420 while (cnt > ncur); 578 while (cnt > ncur);
421 579
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 582 {
425 ncur *= elem; 583 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 585 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 586 ncur /= elem;
429 } 587 }
430 588
431 return ncur; 589 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 635 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 636 pendings [pri][w_->pending - 1].events = revents;
479 } 637 }
480} 638}
481 639
482void inline_size 640void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 641queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 642{
485 int i; 643 int i;
486 644
487 for (i = 0; i < eventcnt; ++i) 645 for (i = 0; i < eventcnt; ++i)
534 { 692 {
535 int fd = fdchanges [i]; 693 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 694 ANFD *anfd = anfds + fd;
537 ev_io *w; 695 ev_io *w;
538 696
539 int events = 0; 697 unsigned char events = 0;
540 698
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 700 events |= (unsigned char)w->events;
543 701
544#if EV_SELECT_IS_WINSOCKET 702#if EV_SELECT_IS_WINSOCKET
545 if (events) 703 if (events)
546 { 704 {
547 unsigned long argp; 705 unsigned long argp;
706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
548 anfd->handle = _get_osfhandle (fd); 709 anfd->handle = _get_osfhandle (fd);
710 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 712 }
551#endif 713#endif
552 714
715 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
553 anfd->reify = 0; 719 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 720 anfd->events = events;
721
722 if (o_events != events || o_reify & EV_IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events);
724 }
557 } 725 }
558 726
559 fdchangecnt = 0; 727 fdchangecnt = 0;
560} 728}
561 729
562void inline_size 730void inline_size
563fd_change (EV_P_ int fd) 731fd_change (EV_P_ int fd, int flags)
564{ 732{
565 if (expect_false (anfds [fd].reify)) 733 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 734 anfds [fd].reify |= flags;
569 735
736 if (expect_true (!reify))
737 {
570 ++fdchangecnt; 738 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 740 fdchanges [fdchangecnt - 1] = fd;
741 }
573} 742}
574 743
575void inline_speed 744void inline_speed
576fd_kill (EV_P_ int fd) 745fd_kill (EV_P_ int fd)
577{ 746{
628 797
629 for (fd = 0; fd < anfdmax; ++fd) 798 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 799 if (anfds [fd].events)
631 { 800 {
632 anfds [fd].events = 0; 801 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 802 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 803 }
635} 804}
636 805
637/*****************************************************************************/ 806/*****************************************************************************/
638 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
639void inline_speed 828void inline_speed
640upheap (WT *heap, int k) 829downheap (ANHE *heap, int N, int k)
641{ 830{
642 WT w = heap [k]; 831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
643 833
644 while (k && heap [k >> 1]->at > w->at) 834 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
651 heap [k] = w; 867 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 868 ev_active (ANHE_w (he)) = k;
653
654} 869}
655 870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
656void inline_speed 878void inline_speed
657downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
658{ 880{
659 WT w = heap [k]; 881 ANHE he = heap [k];
660 882
661 while (k < (N >> 1)) 883 for (;;)
662 { 884 {
663 int j = k << 1; 885 int c = k << 1;
664 886
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 887 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 888 break;
670 889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
671 heap [k] = heap [j]; 896 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (heap [k])) = k;
898
673 k = j; 899 k = c;
674 } 900 }
675 901
676 heap [k] = w; 902 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
920 heap [k] = heap [p];
921 ev_active (ANHE_w (heap [k])) = k;
922 k = p;
923 }
924
925 heap [k] = he;
926 ev_active (ANHE_w (he)) = k;
678} 927}
679 928
680void inline_size 929void inline_size
681adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
682{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 933 upheap (heap, k);
934 else
684 downheap (heap, N, k); 935 downheap (heap, N, k);
685} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
686 963
687/*****************************************************************************/ 964/*****************************************************************************/
688 965
689typedef struct 966typedef struct
690{ 967{
691 WL head; 968 WL head;
692 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
693} ANSIG; 970} ANSIG;
694 971
695static ANSIG *signals; 972static ANSIG *signals;
696static int signalmax; 973static int signalmax;
697 974
698static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 976
702void inline_size 977void inline_size
703signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
704{ 979{
705 while (count--) 980 while (count--)
709 984
710 ++base; 985 ++base;
711 } 986 }
712} 987}
713 988
714static void 989/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 990
765void inline_speed 991void inline_speed
766fd_intern (int fd) 992fd_intern (int fd)
767{ 993{
768#ifdef _WIN32 994#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 999 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1000#endif
775} 1001}
776 1002
777static void noinline 1003static void noinline
778siginit (EV_P) 1004evpipe_init (EV_P)
779{ 1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
780 fd_intern (sigpipe [0]); 1021 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
782 1025
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1026 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
1054static void
1055pipecb (EV_P_ ev_io *iow, int revents)
1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
1069
1070 if (gotsig && ev_is_default_loop (EV_A))
1071 {
1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
786} 1094}
787 1095
788/*****************************************************************************/ 1096/*****************************************************************************/
789 1097
1098static void
1099ev_sighandler (int signum)
1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
1109 signals [signum - 1].gotsig = 1;
1110 evpipe_write (EV_A_ &gotsig);
1111}
1112
1113void noinline
1114ev_feed_signal_event (EV_P_ int signum)
1115{
1116 WL w;
1117
1118#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
1121
1122 --signum;
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
1127 signals [signum].gotsig = 0;
1128
1129 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1131}
1132
1133/*****************************************************************************/
1134
790static ev_child *childs [EV_PID_HASHSIZE]; 1135static WL childs [EV_PID_HASHSIZE];
791 1136
792#ifndef _WIN32 1137#ifndef _WIN32
793 1138
794static ev_signal childev; 1139static ev_signal childev;
795 1140
1141#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0
1143#endif
1144
796void inline_speed 1145void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1146child_reap (EV_P_ int chain, int pid, int status)
798{ 1147{
799 ev_child *w; 1148 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1150
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 {
802 if (w->pid == pid || !w->pid) 1153 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1)))
803 { 1155 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1157 w->rpid = pid;
806 w->rstatus = status; 1158 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1160 }
1161 }
809} 1162}
810 1163
811#ifndef WCONTINUED 1164#ifndef WCONTINUED
812# define WCONTINUED 0 1165# define WCONTINUED 0
813#endif 1166#endif
822 if (!WCONTINUED 1175 if (!WCONTINUED
823 || errno != EINVAL 1176 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1178 return;
826 1179
827 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1181 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1183
831 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1185 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1187}
835 1188
836#endif 1189#endif
837 1190
838/*****************************************************************************/ 1191/*****************************************************************************/
910} 1263}
911 1264
912unsigned int 1265unsigned int
913ev_embeddable_backends (void) 1266ev_embeddable_backends (void)
914{ 1267{
915 return EVBACKEND_EPOLL 1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1269
917 | EVBACKEND_PORT; 1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */
1272 flags &= ~EVBACKEND_EPOLL;
1273
1274 return flags;
918} 1275}
919 1276
920unsigned int 1277unsigned int
921ev_backend (EV_P) 1278ev_backend (EV_P)
922{ 1279{
925 1282
926unsigned int 1283unsigned int
927ev_loop_count (EV_P) 1284ev_loop_count (EV_P)
928{ 1285{
929 return loop_count; 1286 return loop_count;
1287}
1288
1289void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 io_blocktime = interval;
1293}
1294
1295void
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{
1298 timeout_blocktime = interval;
930} 1299}
931 1300
932static void noinline 1301static void noinline
933loop_init (EV_P_ unsigned int flags) 1302loop_init (EV_P_ unsigned int flags)
934{ 1303{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1310 have_monotonic = 1;
942 } 1311 }
943#endif 1312#endif
944 1313
945 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1315 mn_now = get_clock ();
947 now_floor = mn_now; 1316 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1318
1319 io_blocktime = 0.;
1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
949 1327
950 /* pid check not overridable via env */ 1328 /* pid check not overridable via env */
951#ifndef _WIN32 1329#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1330 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1331 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1335 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1338
961 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1341
970#if EV_USE_PORT 1342#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1344#endif
973#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
981#endif 1353#endif
982#if EV_USE_SELECT 1354#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1356#endif
985 1357
986 ev_init (&sigev, sigcb); 1358 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1359 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1360 }
989} 1361}
990 1362
991static void noinline 1363static void noinline
992loop_destroy (EV_P) 1364loop_destroy (EV_P)
993{ 1365{
994 int i; 1366 int i;
1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1383 }
995 1384
996#if EV_USE_INOTIFY 1385#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1386 if (fs_fd >= 0)
998 close (fs_fd); 1387 close (fs_fd);
999#endif 1388#endif
1022 array_free (pending, [i]); 1411 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1412#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1413 array_free (idle, [i]);
1025#endif 1414#endif
1026 } 1415 }
1416
1417 ev_free (anfds); anfdmax = 0;
1027 1418
1028 /* have to use the microsoft-never-gets-it-right macro */ 1419 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1420 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1421 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1422#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1423 array_free (periodic, EMPTY);
1033#endif 1424#endif
1425#if EV_FORK_ENABLE
1426 array_free (fork, EMPTY);
1427#endif
1034 array_free (prepare, EMPTY); 1428 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
1036 1433
1037 backend = 0; 1434 backend = 0;
1038} 1435}
1039 1436
1437#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1438void inline_size infy_fork (EV_P);
1439#endif
1041 1440
1042void inline_size 1441void inline_size
1043loop_fork (EV_P) 1442loop_fork (EV_P)
1044{ 1443{
1045#if EV_USE_PORT 1444#if EV_USE_PORT
1053#endif 1452#endif
1054#if EV_USE_INOTIFY 1453#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1454 infy_fork (EV_A);
1056#endif 1455#endif
1057 1456
1058 if (ev_is_active (&sigev)) 1457 if (ev_is_active (&pipeev))
1059 { 1458 {
1060 /* default loop */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
1061 1465
1062 ev_ref (EV_A); 1466 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1064 close (sigpipe [0]); 1476 close (evpipe [0]);
1065 close (sigpipe [1]); 1477 close (evpipe [1]);
1478 }
1066 1479
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1483 }
1072 1484
1073 postfork = 0; 1485 postfork = 0;
1074} 1486}
1075 1487
1097} 1509}
1098 1510
1099void 1511void
1100ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1101{ 1513{
1102 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1103} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1104 1549
1105#endif 1550#endif
1106 1551
1107#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1108struct ev_loop * 1553struct ev_loop *
1110#else 1555#else
1111int 1556int
1112ev_default_loop (unsigned int flags) 1557ev_default_loop (unsigned int flags)
1113#endif 1558#endif
1114{ 1559{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1560 if (!ev_default_loop_ptr)
1120 { 1561 {
1121#if EV_MULTIPLICITY 1562#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1564#else
1126 1567
1127 loop_init (EV_A_ flags); 1568 loop_init (EV_A_ flags);
1128 1569
1129 if (ev_backend (EV_A)) 1570 if (ev_backend (EV_A))
1130 { 1571 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1572#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1574 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1575 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1593#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1594 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1595 ev_signal_stop (EV_A_ &childev);
1157#endif 1596#endif
1158 1597
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1598 loop_destroy (EV_A);
1166} 1599}
1167 1600
1168void 1601void
1169ev_default_fork (void) 1602ev_default_fork (void)
1171#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1605 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1606#endif
1174 1607
1175 if (backend) 1608 if (backend)
1176 postfork = 1; 1609 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1610}
1178 1611
1179/*****************************************************************************/ 1612/*****************************************************************************/
1180 1613
1181void 1614void
1186 1619
1187void inline_speed 1620void inline_speed
1188call_pending (EV_P) 1621call_pending (EV_P)
1189{ 1622{
1190 int pri; 1623 int pri;
1624
1625 EV_FREQUENT_CHECK;
1191 1626
1192 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1194 { 1629 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1200 1635
1201 p->w->pending = 0; 1636 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1203 } 1638 }
1204 } 1639 }
1205}
1206 1640
1207void inline_size 1641 EV_FREQUENT_CHECK;
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232} 1642}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1643
1286#if EV_IDLE_ENABLE 1644#if EV_IDLE_ENABLE
1287void inline_size 1645void inline_size
1288idle_reify (EV_P) 1646idle_reify (EV_P)
1289{ 1647{
1304 } 1662 }
1305 } 1663 }
1306} 1664}
1307#endif 1665#endif
1308 1666
1309int inline_size 1667void inline_size
1310time_update_monotonic (EV_P) 1668timers_reify (EV_P)
1311{ 1669{
1670 EV_FREQUENT_CHECK;
1671
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686
1687 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0);
1689 }
1690 else
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692
1693 EV_FREQUENT_CHECK;
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 }
1696}
1697
1698#if EV_PERIODIC_ENABLE
1699void inline_size
1700periodics_reify (EV_P)
1701{
1702 EV_FREQUENT_CHECK;
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1744 }
1745}
1746
1747static void noinline
1748periodics_reschedule (EV_P)
1749{
1750 int i;
1751
1752 /* adjust periodics after time jump */
1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1766}
1767#endif
1768
1769void inline_speed
1770time_update (EV_P_ ev_tstamp max_block)
1771{
1772 int i;
1773
1774#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic))
1776 {
1777 ev_tstamp odiff = rtmn_diff;
1778
1312 mn_now = get_clock (); 1779 mn_now = get_clock ();
1313 1780
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1782 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1783 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1784 {
1316 ev_rt_now = rtmn_diff + mn_now; 1785 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1786 return;
1318 } 1787 }
1319 else 1788
1320 {
1321 now_floor = mn_now; 1789 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1790 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1791
1327void inline_size 1792 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1793 * on the choice of "4": one iteration isn't enough,
1329{ 1794 * in case we get preempted during the calls to
1330 int i; 1795 * ev_time and get_clock. a second call is almost guaranteed
1331 1796 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1797 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1798 * in the unlikely event of having been preempted here.
1334 { 1799 */
1335 if (time_update_monotonic (EV_A)) 1800 for (i = 4; --i; )
1336 { 1801 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1350 1803
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1805 return; /* all is well */
1353 1806
1354 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1808 mn_now = get_clock ();
1356 now_floor = mn_now; 1809 now_floor = mn_now;
1357 } 1810 }
1358 1811
1359# if EV_PERIODIC_ENABLE 1812# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1813 periodics_reschedule (EV_A);
1361# endif 1814# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1817 }
1366 else 1818 else
1367#endif 1819#endif
1368 { 1820 {
1369 ev_rt_now = ev_time (); 1821 ev_rt_now = ev_time ();
1370 1822
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1824 {
1373#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1375#endif 1827#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1380 } 1835 }
1381 1836
1382 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1383 } 1838 }
1384} 1839}
1398static int loop_done; 1853static int loop_done;
1399 1854
1400void 1855void
1401ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1402{ 1857{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1858 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1859
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1861
1409 do 1862 do
1410 { 1863 {
1444 /* update fd-related kernel structures */ 1897 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1898 fd_reify (EV_A);
1446 1899
1447 /* calculate blocking time */ 1900 /* calculate blocking time */
1448 { 1901 {
1449 ev_tstamp block; 1902 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.;
1450 1904
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1906 {
1455 /* update time to cancel out callback processing overhead */ 1907 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1908 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1909
1466 block = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1467 1911
1468 if (timercnt) 1912 if (timercnt)
1469 { 1913 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1915 if (waittime > to) waittime = to;
1472 } 1916 }
1473 1917
1474#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1919 if (periodiccnt)
1476 { 1920 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1922 if (waittime > to) waittime = to;
1479 } 1923 }
1480#endif 1924#endif
1481 1925
1482 if (expect_false (block < 0.)) block = 0.; 1926 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime;
1928
1929 sleeptime = waittime - backend_fudge;
1930
1931 if (expect_true (sleeptime > io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 {
1936 ev_sleep (sleeptime);
1937 waittime -= sleeptime;
1938 }
1483 } 1939 }
1484 1940
1485 ++loop_count; 1941 ++loop_count;
1486 backend_poll (EV_A_ block); 1942 backend_poll (EV_A_ waittime);
1943
1944 /* update ev_rt_now, do magic */
1945 time_update (EV_A_ waittime + sleeptime);
1487 } 1946 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1947
1492 /* queue pending timers and reschedule them */ 1948 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1949 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1950#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1951 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 1962
1507 call_pending (EV_A); 1963 call_pending (EV_A);
1508
1509 } 1964 }
1510 while (expect_true (activecnt && !loop_done)); 1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1511 1970
1512 if (loop_done == EVUNLOOP_ONE) 1971 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 1972 loop_done = EVUNLOOP_CANCEL;
1514} 1973}
1515 1974
1604 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1605 return; 2064 return;
1606 2065
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1608 2067
2068 EV_FREQUENT_CHECK;
2069
1609 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1612 2073
1613 fd_change (EV_A_ fd); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2075 w->events &= ~EV_IOFDSET;
2076
2077 EV_FREQUENT_CHECK;
1614} 2078}
1615 2079
1616void noinline 2080void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1618{ 2082{
1619 clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1621 return; 2085 return;
1622 2086
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2088
2089 EV_FREQUENT_CHECK;
2090
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1627 2093
1628 fd_change (EV_A_ w->fd); 2094 fd_change (EV_A_ w->fd, 1);
2095
2096 EV_FREQUENT_CHECK;
1629} 2097}
1630 2098
1631void noinline 2099void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1633{ 2101{
1634 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1635 return; 2103 return;
1636 2104
1637 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1638 2106
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1645 2117
2118 EV_FREQUENT_CHECK;
2119
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2121}
1648 2122
1649void noinline 2123void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2125{
1652 clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1654 return; 2128 return;
1655 2129
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2130 EV_FREQUENT_CHECK;
1657 2131
1658 { 2132 {
1659 int active = ((W)w)->active; 2133 int active = ev_active (w);
1660 2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
1661 if (expect_true (--active < --timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1662 { 2140 {
1663 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1665 } 2143 }
1666 } 2144 }
1667 2145
1668 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1669 2149
1670 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1671} 2151}
1672 2152
1673void noinline 2153void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1675{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1676 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1677 { 2159 {
1678 if (w->repeat) 2160 if (w->repeat)
1679 { 2161 {
1680 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1682 } 2165 }
1683 else 2166 else
1684 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1685 } 2168 }
1686 else if (w->repeat) 2169 else if (w->repeat)
1687 { 2170 {
1688 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1690 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1691} 2176}
1692 2177
1693#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1694void noinline 2179void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2181{
1697 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1698 return; 2183 return;
1699 2184
1700 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2187 else if (w->interval)
1703 { 2188 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2192 }
1708 else 2193 else
1709 ((WT)w)->at = w->offset; 2194 ev_at (w) = w->offset;
1710 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1715 2204
2205 EV_FREQUENT_CHECK;
2206
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2208}
1718 2209
1719void noinline 2210void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2212{
1722 clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1724 return; 2215 return;
1725 2216
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2217 EV_FREQUENT_CHECK;
1727 2218
1728 { 2219 {
1729 int active = ((W)w)->active; 2220 int active = ev_active (w);
1730 2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
1731 if (expect_true (--active < --periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2227 {
1733 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1735 } 2230 }
1736 } 2231 }
2232
2233 EV_FREQUENT_CHECK;
1737 2234
1738 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1739} 2236}
1740 2237
1741void noinline 2238void noinline
1760 if (expect_false (ev_is_active (w))) 2257 if (expect_false (ev_is_active (w)))
1761 return; 2258 return;
1762 2259
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2261
2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2265
2266 {
2267#ifndef _WIN32
2268 sigset_t full, prev;
2269 sigfillset (&full);
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272
2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2274
2275#ifndef _WIN32
2276 sigprocmask (SIG_SETMASK, &prev, 0);
2277#endif
2278 }
2279
1765 ev_start (EV_A_ (W)w, 1); 2280 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2282
1769 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1770 { 2284 {
1771#if _WIN32 2285#if _WIN32
1772 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1773#else 2287#else
1774 struct sigaction sa; 2288 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1779#endif 2293#endif
1780 } 2294 }
2295
2296 EV_FREQUENT_CHECK;
1781} 2297}
1782 2298
1783void noinline 2299void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2301{
1786 clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1788 return; 2304 return;
1789 2305
2306 EV_FREQUENT_CHECK;
2307
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1792 2310
1793 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
1795} 2315}
1796 2316
1797void 2317void
1798ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1799{ 2319{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2322#endif
1803 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1804 return; 2324 return;
1805 2325
2326 EV_FREQUENT_CHECK;
2327
1806 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
1808} 2332}
1809 2333
1810void 2334void
1811ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1812{ 2336{
1813 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1815 return; 2339 return;
1816 2340
2341 EV_FREQUENT_CHECK;
2342
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1819} 2347}
1820 2348
1821#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
1822 2350
1823# ifdef _WIN32 2351# ifdef _WIN32
1841 if (w->wd < 0) 2369 if (w->wd < 0)
1842 { 2370 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2372
1845 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2377 {
1848 char path [4096]; 2378 char path [4096];
1849 strcpy (path, w->path); 2379 strcpy (path, w->path);
1850 2380
2049 else 2579 else
2050#endif 2580#endif
2051 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
2052 2582
2053 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2054} 2586}
2055 2587
2056void 2588void
2057ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2590{
2059 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2061 return; 2593 return;
2062 2594
2595 EV_FREQUENT_CHECK;
2596
2063#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
2065#endif 2599#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
2067 2601
2068 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2069} 2605}
2070#endif 2606#endif
2071 2607
2072#if EV_IDLE_ENABLE 2608#if EV_IDLE_ENABLE
2073void 2609void
2075{ 2611{
2076 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2077 return; 2613 return;
2078 2614
2079 pri_adjust (EV_A_ (W)w); 2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2080 2618
2081 { 2619 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2620 int active = ++idlecnt [ABSPRI (w)];
2083 2621
2084 ++idleall; 2622 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2623 ev_start (EV_A_ (W)w, active);
2086 2624
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2089 } 2627 }
2628
2629 EV_FREQUENT_CHECK;
2090} 2630}
2091 2631
2092void 2632void
2093ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2634{
2095 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2097 return; 2637 return;
2098 2638
2639 EV_FREQUENT_CHECK;
2640
2099 { 2641 {
2100 int active = ((W)w)->active; 2642 int active = ev_active (w);
2101 2643
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2646
2105 ev_stop (EV_A_ (W)w); 2647 ev_stop (EV_A_ (W)w);
2106 --idleall; 2648 --idleall;
2107 } 2649 }
2650
2651 EV_FREQUENT_CHECK;
2108} 2652}
2109#endif 2653#endif
2110 2654
2111void 2655void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2657{
2114 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
2115 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
2116 2662
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2120} 2668}
2121 2669
2122void 2670void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2672{
2125 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2127 return; 2675 return;
2128 2676
2677 EV_FREQUENT_CHECK;
2678
2129 { 2679 {
2130 int active = ((W)w)->active; 2680 int active = ev_active (w);
2681
2131 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2683 ev_active (prepares [active - 1]) = active;
2133 } 2684 }
2134 2685
2135 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2136} 2689}
2137 2690
2138void 2691void
2139ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2140{ 2693{
2141 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2142 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2143 2698
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2147} 2704}
2148 2705
2149void 2706void
2150ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2151{ 2708{
2152 clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2154 return; 2711 return;
2155 2712
2713 EV_FREQUENT_CHECK;
2714
2156 { 2715 {
2157 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2158 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2719 ev_active (checks [active - 1]) = active;
2160 } 2720 }
2161 2721
2162 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2163} 2725}
2164 2726
2165#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2166void noinline 2728void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2730{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2731 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2732}
2171 2733
2172static void 2734static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2735embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2736{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2738
2177 if (ev_cb (w)) 2739 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2741 else
2180 ev_embed_sweep (loop, w); 2742 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2743}
2744
2745static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749
2750 {
2751 struct ev_loop *loop = w->other;
2752
2753 while (fdchangecnt)
2754 {
2755 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2757 }
2758 }
2759}
2760
2761#if 0
2762static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2764{
2765 ev_idle_stop (EV_A_ idle);
2766}
2767#endif
2182 2768
2183void 2769void
2184ev_embed_start (EV_P_ ev_embed *w) 2770ev_embed_start (EV_P_ ev_embed *w)
2185{ 2771{
2186 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
2187 return; 2773 return;
2188 2774
2189 { 2775 {
2190 struct ev_loop *loop = w->loop; 2776 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2779 }
2780
2781 EV_FREQUENT_CHECK;
2194 2782
2195 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2197 2785
2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare);
2789
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791
2198 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2199} 2795}
2200 2796
2201void 2797void
2202ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2799{
2204 clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2206 return; 2802 return;
2207 2803
2804 EV_FREQUENT_CHECK;
2805
2208 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare);
2209 2808
2210 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2211} 2812}
2212#endif 2813#endif
2213 2814
2214#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2215void 2816void
2216ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2217{ 2818{
2218 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2219 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2220 2823
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2224} 2829}
2225 2830
2226void 2831void
2227ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2833{
2229 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2231 return; 2836 return;
2232 2837
2838 EV_FREQUENT_CHECK;
2839
2233 { 2840 {
2234 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2235 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2844 ev_active (forks [active - 1]) = active;
2237 } 2845 }
2238 2846
2239 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2240} 2897}
2241#endif 2898#endif
2242 2899
2243/*****************************************************************************/ 2900/*****************************************************************************/
2244 2901
2302 ev_timer_set (&once->to, timeout, 0.); 2959 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2960 ev_timer_start (EV_A_ &once->to);
2304 } 2961 }
2305} 2962}
2306 2963
2964#if EV_MULTIPLICITY
2965 #include "ev_wrap.h"
2966#endif
2967
2307#ifdef __cplusplus 2968#ifdef __cplusplus
2308} 2969}
2309#endif 2970#endif
2310 2971

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines