ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC vs.
Revision 1.367 by root, Tue Jan 11 02:15:58 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
240#if 0 /* debugging */ 325#if 0 /* debugging */
241# define EV_VERIFY 1 326# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
244#endif 329#endif
245 330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
246#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
248#endif 337#endif
249 338
250#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
252#endif 355#endif
253 356
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
255 364
256#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
257# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
258# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
259#endif 368#endif
273# include <sys/select.h> 382# include <sys/select.h>
274# endif 383# endif
275#endif 384#endif
276 385
277#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
278# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
279#endif 394#endif
280 395
281#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
282# include <winsock.h> 397# include <winsock.h>
283#endif 398#endif
284 399
285#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h> 402# include <stdint.h>
288# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
289extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
290# endif 405# endif
291int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
292# ifdef __cplusplus 407# ifdef O_CLOEXEC
293} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
294# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
295#endif 436#endif
296 437
297/**/ 438/**/
298 439
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1 440#if EV_VERIFY >= 3
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
306#else 442#else
307# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
308#endif 444#endif
309 445
310/* 446/*
317 */ 453 */
318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
319 455
320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
323 461
324#if __GNUC__ >= 4 462#if __GNUC__ >= 4
325# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
326# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
327#else 465#else
334 472
335#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
336#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
337#define inline_size static inline 475#define inline_size static inline
338 476
339#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
340# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
341#else 487#else
342# define inline_speed static inline
343#endif
344
345#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
346#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
347 490
348#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
349#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
350 493
351typedef ev_watcher *W; 494typedef ev_watcher *W;
353typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
354 497
355#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
357 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
358#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
362#endif 519#endif
363 520
364#ifdef _WIN32 521#ifdef _WIN32
365# include "ev_win32.c" 522# include "ev_win32.c"
366#endif 523#endif
367 524
368/*****************************************************************************/ 525/*****************************************************************************/
369 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
370static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
371 578
372void 579void
373ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
374{ 581{
375 syserr_cb = cb; 582 syserr_cb = cb;
376} 583}
377 584
378static void noinline 585static void noinline
379syserr (const char *msg) 586ev_syserr (const char *msg)
380{ 587{
381 if (!msg) 588 if (!msg)
382 msg = "(libev) system error"; 589 msg = "(libev) system error";
383 590
384 if (syserr_cb) 591 if (syserr_cb)
385 syserr_cb (msg); 592 syserr_cb (msg);
386 else 593 else
387 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
388 perror (msg); 601 perror (msg);
602#endif
389 abort (); 603 abort ();
390 } 604 }
391} 605}
392 606
393static void * 607static void *
394ev_realloc_emul (void *ptr, long size) 608ev_realloc_emul (void *ptr, long size)
395{ 609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
396 /* some systems, notably openbsd and darwin, fail to properly 613 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and 614 * implement realloc (x, 0) (as required by both ansi c-89 and
398 * the single unix specification, so work around them here. 615 * the single unix specification, so work around them here.
399 */ 616 */
400 617
401 if (size) 618 if (size)
402 return realloc (ptr, size); 619 return realloc (ptr, size);
403 620
404 free (ptr); 621 free (ptr);
405 return 0; 622 return 0;
623#endif
406} 624}
407 625
408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
409 627
410void 628void
418{ 636{
419 ptr = alloc (ptr, size); 637 ptr = alloc (ptr, size);
420 638
421 if (!ptr && size) 639 if (!ptr && size)
422 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
424 abort (); 646 abort ();
425 } 647 }
426 648
427 return ptr; 649 return ptr;
428} 650}
430#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
431#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
432 654
433/*****************************************************************************/ 655/*****************************************************************************/
434 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
435typedef struct 661typedef struct
436{ 662{
437 WL head; 663 WL head;
438 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
439 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
440#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 SOCKET handle; 672 SOCKET handle;
442#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
443} ANFD; 677} ANFD;
444 678
679/* stores the pending event set for a given watcher */
445typedef struct 680typedef struct
446{ 681{
447 W w; 682 W w;
448 int events; 683 int events; /* the pending event set for the given watcher */
449} ANPENDING; 684} ANPENDING;
450 685
451#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */ 687/* hash table entry per inotify-id */
453typedef struct 688typedef struct
456} ANFS; 691} ANFS;
457#endif 692#endif
458 693
459/* Heap Entry */ 694/* Heap Entry */
460#if EV_HEAP_CACHE_AT 695#if EV_HEAP_CACHE_AT
696 /* a heap element */
461 typedef struct { 697 typedef struct {
462 ev_tstamp at; 698 ev_tstamp at;
463 WT w; 699 WT w;
464 } ANHE; 700 } ANHE;
465 701
466 #define ANHE_w(he) (he).w /* access watcher, read-write */ 702 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */ 703 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else 705#else
706 /* a heap element */
470 typedef WT ANHE; 707 typedef WT ANHE;
471 708
472 #define ANHE_w(he) (he) 709 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at 710 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he) 711 #define ANHE_at_cache(he)
498 735
499 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
500 737
501#endif 738#endif
502 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
503/*****************************************************************************/ 752/*****************************************************************************/
504 753
754#ifndef EV_HAVE_EV_TIME
505ev_tstamp 755ev_tstamp
506ev_time (void) 756ev_time (void)
507{ 757{
508#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
509 struct timespec ts; 761 struct timespec ts;
510 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
511 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
512#else 764 }
765#endif
766
513 struct timeval tv; 767 struct timeval tv;
514 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
515 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
516#endif
517} 770}
771#endif
518 772
519ev_tstamp inline_size 773inline_size ev_tstamp
520get_clock (void) 774get_clock (void)
521{ 775{
522#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
523 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
524 { 778 {
545 if (delay > 0.) 799 if (delay > 0.)
546 { 800 {
547#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
548 struct timespec ts; 802 struct timespec ts;
549 803
550 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
554#elif defined(_WIN32) 806#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
556#else 808#else
557 struct timeval tv; 809 struct timeval tv;
558 810
559 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
561 813 /* by older ones */
814 EV_TV_SET (tv, delay);
562 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
563#endif 816#endif
564 } 817 }
565} 818}
566 819
567/*****************************************************************************/ 820/*****************************************************************************/
568 821
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570 823
571int inline_size 824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
572array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
573{ 828{
574 int ncur = cur + 1; 829 int ncur = cur + 1;
575 830
576 do 831 do
593array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
594{ 849{
595 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
596 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
597} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
598 856
599#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
600 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
601 { \ 859 { \
602 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
614 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
615 } 873 }
616#endif 874#endif
617 875
618#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
619 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
620 878
621/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
622 886
623void noinline 887void noinline
624ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
625{ 889{
626 W w_ = (W)w; 890 W w_ = (W)w;
635 pendings [pri][w_->pending - 1].w = w_; 899 pendings [pri][w_->pending - 1].w = w_;
636 pendings [pri][w_->pending - 1].events = revents; 900 pendings [pri][w_->pending - 1].events = revents;
637 } 901 }
638} 902}
639 903
640void inline_speed 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
641queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
642{ 921{
643 int i; 922 int i;
644 923
645 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
646 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
647} 926}
648 927
649/*****************************************************************************/ 928/*****************************************************************************/
650 929
651void inline_size 930inline_speed void
652anfds_init (ANFD *base, int count)
653{
654 while (count--)
655 {
656 base->head = 0;
657 base->events = EV_NONE;
658 base->reify = 0;
659
660 ++base;
661 }
662}
663
664void inline_speed
665fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
666{ 932{
667 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
668 ev_io *w; 934 ev_io *w;
669 935
670 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
674 if (ev) 940 if (ev)
675 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
676 } 942 }
677} 943}
678 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
679void 956void
680ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
681{ 958{
682 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
683 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
684} 961}
685 962
686void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
687fd_reify (EV_P) 966fd_reify (EV_P)
688{ 967{
689 int i; 968 int i;
690 969
691 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
692 { 971 {
693 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
694 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
695 ev_io *w; 974 ev_io *w;
696 975
697 unsigned char events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
698 978
699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
700 events |= (unsigned char)w->events;
701 980
702#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
703 if (events) 982 if (o_reify & EV__IOFDSET)
704 { 983 {
705 unsigned long argp; 984 unsigned long arg;
706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
709 anfd->handle = _get_osfhandle (fd);
710 #endif
711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
712 } 988 }
713#endif 989#endif
714 990
991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
715 { 992 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
719 anfd->reify = 0;
720 anfd->events = events; 993 anfd->events = 0;
721 994
722 if (o_events != events || o_reify & EV_IOFDSET) 995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
724 }
725 } 1004 }
726 1005
727 fdchangecnt = 0; 1006 fdchangecnt = 0;
728} 1007}
729 1008
730void inline_size 1009/* something about the given fd changed */
1010inline_size void
731fd_change (EV_P_ int fd, int flags) 1011fd_change (EV_P_ int fd, int flags)
732{ 1012{
733 unsigned char reify = anfds [fd].reify; 1013 unsigned char reify = anfds [fd].reify;
734 anfds [fd].reify |= flags; 1014 anfds [fd].reify |= flags;
735 1015
739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
740 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
741 } 1021 }
742} 1022}
743 1023
744void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
745fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
746{ 1027{
747 ev_io *w; 1028 ev_io *w;
748 1029
749 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
751 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
752 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
753 } 1034 }
754} 1035}
755 1036
756int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
757fd_valid (int fd) 1039fd_valid (int fd)
758{ 1040{
759#ifdef _WIN32 1041#ifdef _WIN32
760 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
761#else 1043#else
762 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
763#endif 1045#endif
764} 1046}
765 1047
769{ 1051{
770 int fd; 1052 int fd;
771 1053
772 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
773 if (anfds [fd].events) 1055 if (anfds [fd].events)
774 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
775 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
776} 1058}
777 1059
778/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
779static void noinline 1061static void noinline
783 1065
784 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
785 if (anfds [fd].events) 1067 if (anfds [fd].events)
786 { 1068 {
787 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
788 return; 1070 break;
789 } 1071 }
790} 1072}
791 1073
792/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
793static void noinline 1075static void noinline
797 1079
798 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
799 if (anfds [fd].events) 1081 if (anfds [fd].events)
800 { 1082 {
801 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
1084 anfds [fd].emask = 0;
802 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
803 } 1086 }
804} 1087}
805 1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
806/*****************************************************************************/ 1103/*****************************************************************************/
807 1104
808/* 1105/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not 1106 * the heap functions want a real array index. array index 0 is guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree. 1108 * the branching factor of the d-tree.
812 */ 1109 */
813 1110
814/* 1111/*
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k)) 1122#define UPHEAP_DONE(p,k) ((p) == (k))
826 1123
827/* away from the root */ 1124/* away from the root */
828void inline_speed 1125inline_speed void
829downheap (ANHE *heap, int N, int k) 1126downheap (ANHE *heap, int N, int k)
830{ 1127{
831 ANHE he = heap [k]; 1128 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0; 1129 ANHE *E = heap + N + HEAP0;
833 1130
873#define HEAP0 1 1170#define HEAP0 1
874#define HPARENT(k) ((k) >> 1) 1171#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p)) 1172#define UPHEAP_DONE(p,k) (!(p))
876 1173
877/* away from the root */ 1174/* away from the root */
878void inline_speed 1175inline_speed void
879downheap (ANHE *heap, int N, int k) 1176downheap (ANHE *heap, int N, int k)
880{ 1177{
881 ANHE he = heap [k]; 1178 ANHE he = heap [k];
882 1179
883 for (;;) 1180 for (;;)
884 { 1181 {
885 int c = k << 1; 1182 int c = k << 1;
886 1183
887 if (c > N + HEAP0 - 1) 1184 if (c >= N + HEAP0)
888 break; 1185 break;
889 1186
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0; 1188 ? 1 : 0;
892 1189
903 ev_active (ANHE_w (he)) = k; 1200 ev_active (ANHE_w (he)) = k;
904} 1201}
905#endif 1202#endif
906 1203
907/* towards the root */ 1204/* towards the root */
908void inline_speed 1205inline_speed void
909upheap (ANHE *heap, int k) 1206upheap (ANHE *heap, int k)
910{ 1207{
911 ANHE he = heap [k]; 1208 ANHE he = heap [k];
912 1209
913 for (;;) 1210 for (;;)
924 1221
925 heap [k] = he; 1222 heap [k] = he;
926 ev_active (ANHE_w (he)) = k; 1223 ev_active (ANHE_w (he)) = k;
927} 1224}
928 1225
929void inline_size 1226/* move an element suitably so it is in a correct place */
1227inline_size void
930adjustheap (ANHE *heap, int N, int k) 1228adjustheap (ANHE *heap, int N, int k)
931{ 1229{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
933 upheap (heap, k); 1231 upheap (heap, k);
934 else 1232 else
935 downheap (heap, N, k); 1233 downheap (heap, N, k);
936} 1234}
937 1235
938/* rebuild the heap: this function is used only once and executed rarely */ 1236/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size 1237inline_size void
940reheap (ANHE *heap, int N) 1238reheap (ANHE *heap, int N)
941{ 1239{
942 int i; 1240 int i;
1241
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i) 1244 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0); 1245 upheap (heap, i + HEAP0);
947} 1246}
948 1247
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
963
964/*****************************************************************************/ 1248/*****************************************************************************/
965 1249
1250/* associate signal watchers to a signal signal */
966typedef struct 1251typedef struct
967{ 1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
968 WL head; 1257 WL head;
969 EV_ATOMIC_T gotsig;
970} ANSIG; 1258} ANSIG;
971 1259
972static ANSIG *signals; 1260static ANSIG signals [EV_NSIG - 1];
973static int signalmax;
974
975static EV_ATOMIC_T gotsig;
976
977void inline_size
978signals_init (ANSIG *base, int count)
979{
980 while (count--)
981 {
982 base->head = 0;
983 base->gotsig = 0;
984
985 ++base;
986 }
987}
988 1261
989/*****************************************************************************/ 1262/*****************************************************************************/
990 1263
991void inline_speed 1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
992fd_intern (int fd)
993{
994#ifdef _WIN32
995 int arg = 1;
996 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
997#else
998 fcntl (fd, F_SETFD, FD_CLOEXEC);
999 fcntl (fd, F_SETFL, O_NONBLOCK);
1000#endif
1001}
1002 1265
1003static void noinline 1266static void noinline
1004evpipe_init (EV_P) 1267evpipe_init (EV_P)
1005{ 1268{
1006 if (!ev_is_active (&pipeev)) 1269 if (!ev_is_active (&pipe_w))
1007 { 1270 {
1008#if EV_USE_EVENTFD 1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1009 if ((evfd = eventfd (0, 0)) >= 0) 1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1010 { 1277 {
1011 evpipe [0] = -1; 1278 evpipe [0] = -1;
1012 fd_intern (evfd); 1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1013 ev_io_set (&pipeev, evfd, EV_READ); 1280 ev_io_set (&pipe_w, evfd, EV_READ);
1014 } 1281 }
1015 else 1282 else
1016#endif 1283# endif
1017 { 1284 {
1018 while (pipe (evpipe)) 1285 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe"); 1286 ev_syserr ("(libev) error creating signal/async pipe");
1020 1287
1021 fd_intern (evpipe [0]); 1288 fd_intern (evpipe [0]);
1022 fd_intern (evpipe [1]); 1289 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ); 1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1024 } 1291 }
1025 1292
1026 ev_io_start (EV_A_ &pipeev); 1293 ev_io_start (EV_A_ &pipe_w);
1027 ev_unref (EV_A); /* watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 } 1295 }
1029} 1296}
1030 1297
1031void inline_size 1298inline_size void
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{ 1300{
1034 if (!*flag) 1301 if (!*flag)
1035 { 1302 {
1036 int old_errno = errno; /* save errno because write might clobber it */ 1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1037 1305
1038 *flag = 1; 1306 *flag = 1;
1039 1307
1040#if EV_USE_EVENTFD 1308#if EV_USE_EVENTFD
1041 if (evfd >= 0) 1309 if (evfd >= 0)
1043 uint64_t counter = 1; 1311 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t)); 1312 write (evfd, &counter, sizeof (uint64_t));
1045 } 1313 }
1046 else 1314 else
1047#endif 1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1048 write (evpipe [1], &old_errno, 1); 1321 write (evpipe [1], &dummy, 1);
1049 1322
1050 errno = old_errno; 1323 errno = old_errno;
1051 } 1324 }
1052} 1325}
1053 1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1054static void 1329static void
1055pipecb (EV_P_ ev_io *iow, int revents) 1330pipecb (EV_P_ ev_io *iow, int revents)
1056{ 1331{
1332 int i;
1333
1057#if EV_USE_EVENTFD 1334#if EV_USE_EVENTFD
1058 if (evfd >= 0) 1335 if (evfd >= 0)
1059 { 1336 {
1060 uint64_t counter; 1337 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t)); 1338 read (evfd, &counter, sizeof (uint64_t));
1062 } 1339 }
1063 else 1340 else
1064#endif 1341#endif
1065 { 1342 {
1066 char dummy; 1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1067 read (evpipe [0], &dummy, 1); 1345 read (evpipe [0], &dummy, 1);
1068 } 1346 }
1069 1347
1070 if (gotsig && ev_is_default_loop (EV_A)) 1348 if (sig_pending)
1071 { 1349 {
1072 int signum; 1350 sig_pending = 0;
1073 gotsig = 0;
1074 1351
1075 for (signum = signalmax; signum--; ) 1352 for (i = EV_NSIG - 1; i--; )
1076 if (signals [signum].gotsig) 1353 if (expect_false (signals [i].pending))
1077 ev_feed_signal_event (EV_A_ signum + 1); 1354 ev_feed_signal_event (EV_A_ i + 1);
1078 } 1355 }
1079 1356
1080#if EV_ASYNC_ENABLE 1357#if EV_ASYNC_ENABLE
1081 if (gotasync) 1358 if (async_pending)
1082 { 1359 {
1083 int i; 1360 async_pending = 0;
1084 gotasync = 0;
1085 1361
1086 for (i = asynccnt; i--; ) 1362 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent) 1363 if (asyncs [i]->sent)
1088 { 1364 {
1089 asyncs [i]->sent = 0; 1365 asyncs [i]->sent = 0;
1093#endif 1369#endif
1094} 1370}
1095 1371
1096/*****************************************************************************/ 1372/*****************************************************************************/
1097 1373
1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1098static void 1388static void
1099ev_sighandler (int signum) 1389ev_sighandler (int signum)
1100{ 1390{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32 1391#ifdef _WIN32
1106 signal (signum, ev_sighandler); 1392 signal (signum, ev_sighandler);
1107#endif 1393#endif
1108 1394
1109 signals [signum - 1].gotsig = 1; 1395 ev_feed_signal (signum);
1110 evpipe_write (EV_A_ &gotsig);
1111} 1396}
1112 1397
1113void noinline 1398void noinline
1114ev_feed_signal_event (EV_P_ int signum) 1399ev_feed_signal_event (EV_P_ int signum)
1115{ 1400{
1116 WL w; 1401 WL w;
1117 1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1118#if EV_MULTIPLICITY 1408#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1409 /* it is permissible to try to feed a signal to the wrong loop */
1120#endif 1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1121 1411
1122 --signum; 1412 if (expect_false (signals [signum].loop != EV_A))
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return; 1413 return;
1414#endif
1126 1415
1127 signals [signum].gotsig = 0; 1416 signals [signum].pending = 0;
1128 1417
1129 for (w = signals [signum].head; w; w = w->next) 1418 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1131} 1420}
1132 1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1133/*****************************************************************************/ 1444/*****************************************************************************/
1134 1445
1446#if EV_CHILD_ENABLE
1135static WL childs [EV_PID_HASHSIZE]; 1447static WL childs [EV_PID_HASHSIZE];
1136
1137#ifndef _WIN32
1138 1448
1139static ev_signal childev; 1449static ev_signal childev;
1140 1450
1141#ifndef WIFCONTINUED 1451#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0 1452# define WIFCONTINUED(status) 0
1143#endif 1453#endif
1144 1454
1145void inline_speed 1455/* handle a single child status event */
1456inline_speed void
1146child_reap (EV_P_ int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
1147{ 1458{
1148 ev_child *w; 1459 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1150 1461
1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 { 1463 {
1153 if ((w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1))) 1465 && (!traced || (w->flags & 1)))
1155 { 1466 {
1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1163 1474
1164#ifndef WCONTINUED 1475#ifndef WCONTINUED
1165# define WCONTINUED 0 1476# define WCONTINUED 0
1166#endif 1477#endif
1167 1478
1479/* called on sigchld etc., calls waitpid */
1168static void 1480static void
1169childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
1170{ 1482{
1171 int pid, status; 1483 int pid, status;
1172 1484
1180 /* make sure we are called again until all children have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
1181 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1183 1495
1184 child_reap (EV_A_ pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
1185 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1187} 1499}
1188 1500
1189#endif 1501#endif
1190 1502
1191/*****************************************************************************/ 1503/*****************************************************************************/
1192 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
1193#if EV_USE_PORT 1508#if EV_USE_PORT
1194# include "ev_port.c" 1509# include "ev_port.c"
1195#endif 1510#endif
1196#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
1197# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
1253 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
1254 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
1255 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
1256#endif 1571#endif
1257#ifdef __APPLE__ 1572#ifdef __APPLE__
1258 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
1259 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1260#endif 1579#endif
1261 1580
1262 return flags; 1581 return flags;
1263} 1582}
1264 1583
1266ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
1267{ 1586{
1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1269 1588
1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */ 1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1272 flags &= ~EVBACKEND_EPOLL; 1591 flags &= ~EVBACKEND_EPOLL;
1273 1592
1274 return flags; 1593 return flags;
1275} 1594}
1276 1595
1277unsigned int 1596unsigned int
1278ev_backend (EV_P) 1597ev_backend (EV_P)
1279{ 1598{
1280 return backend; 1599 return backend;
1281} 1600}
1282 1601
1602#if EV_FEATURE_API
1283unsigned int 1603unsigned int
1284ev_loop_count (EV_P) 1604ev_iteration (EV_P)
1285{ 1605{
1286 return loop_count; 1606 return loop_count;
1287} 1607}
1288 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1289void 1615void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{ 1617{
1292 io_blocktime = interval; 1618 io_blocktime = interval;
1293} 1619}
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{ 1623{
1298 timeout_blocktime = interval; 1624 timeout_blocktime = interval;
1299} 1625}
1300 1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
1301static void noinline 1652static void noinline
1302loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
1303{ 1654{
1304 if (!backend) 1655 if (!backend)
1305 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
1306#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
1307 { 1671 {
1308 struct timespec ts; 1672 struct timespec ts;
1673
1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1310 have_monotonic = 1; 1675 have_monotonic = 1;
1311 } 1676 }
1312#endif 1677#endif
1678
1679 /* pid check not overridable via env */
1680#ifndef _WIN32
1681 if (flags & EVFLAG_FORKCHECK)
1682 curpid = getpid ();
1683#endif
1684
1685 if (!(flags & EVFLAG_NOENV)
1686 && !enable_secure ()
1687 && getenv ("LIBEV_FLAGS"))
1688 flags = atoi (getenv ("LIBEV_FLAGS"));
1313 1689
1314 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1315 mn_now = get_clock (); 1691 mn_now = get_clock ();
1316 now_floor = mn_now; 1692 now_floor = mn_now;
1317 rtmn_diff = ev_rt_now - mn_now; 1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1318 1697
1319 io_blocktime = 0.; 1698 io_blocktime = 0.;
1320 timeout_blocktime = 0.; 1699 timeout_blocktime = 0.;
1321 backend = 0; 1700 backend = 0;
1322 backend_fd = -1; 1701 backend_fd = -1;
1323 gotasync = 0; 1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1324#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1325 fs_fd = -2; 1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1326#endif 1708#endif
1327 1709#if EV_USE_SIGNALFD
1328 /* pid check not overridable via env */ 1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1329#ifndef _WIN32
1330 if (flags & EVFLAG_FORKCHECK)
1331 curpid = getpid ();
1332#endif 1711#endif
1333 1712
1334 if (!(flags & EVFLAG_NOENV) 1713 if (!(flags & EVBACKEND_MASK))
1335 && !enable_secure ()
1336 && getenv ("LIBEV_FLAGS"))
1337 flags = atoi (getenv ("LIBEV_FLAGS"));
1338
1339 if (!(flags & 0x0000ffffU))
1340 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
1341 1715
1716#if EV_USE_IOCP
1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1718#endif
1342#if EV_USE_PORT 1719#if EV_USE_PORT
1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1344#endif 1721#endif
1345#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
1346 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1353#endif 1730#endif
1354#if EV_USE_SELECT 1731#if EV_USE_SELECT
1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1356#endif 1733#endif
1357 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1358 ev_init (&pipeev, pipecb); 1738 ev_init (&pipe_w, pipecb);
1359 ev_set_priority (&pipeev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
1360 } 1741 }
1361} 1742}
1362 1743
1363static void noinline 1744/* free up a loop structure */
1745void
1364loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
1365{ 1747{
1366 int i; 1748 int i;
1367 1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1368 if (ev_is_active (&pipeev)) 1773 if (ev_is_active (&pipe_w))
1369 { 1774 {
1370 ev_ref (EV_A); /* signal watcher */ 1775 /*ev_ref (EV_A);*/
1371 ev_io_stop (EV_A_ &pipeev); 1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1372 1777
1373#if EV_USE_EVENTFD 1778#if EV_USE_EVENTFD
1374 if (evfd >= 0) 1779 if (evfd >= 0)
1375 close (evfd); 1780 close (evfd);
1376#endif 1781#endif
1377 1782
1378 if (evpipe [0] >= 0) 1783 if (evpipe [0] >= 0)
1379 { 1784 {
1380 close (evpipe [0]); 1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1381 close (evpipe [1]); 1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1382 } 1787 }
1383 } 1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1384 1794
1385#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1386 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
1387 close (fs_fd); 1797 close (fs_fd);
1388#endif 1798#endif
1389 1799
1390 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
1391 close (backend_fd); 1801 close (backend_fd);
1392 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1393#if EV_USE_PORT 1806#if EV_USE_PORT
1394 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1395#endif 1808#endif
1396#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
1397 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1412#if EV_IDLE_ENABLE 1825#if EV_IDLE_ENABLE
1413 array_free (idle, [i]); 1826 array_free (idle, [i]);
1414#endif 1827#endif
1415 } 1828 }
1416 1829
1417 ev_free (anfds); anfdmax = 0; 1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1418 1831
1419 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1420 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
1421 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
1422#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1423 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
1424#endif 1838#endif
1425#if EV_FORK_ENABLE 1839#if EV_FORK_ENABLE
1426 array_free (fork, EMPTY); 1840 array_free (fork, EMPTY);
1427#endif 1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1428 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
1429 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE 1847#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY); 1848 array_free (async, EMPTY);
1432#endif 1849#endif
1433 1850
1434 backend = 0; 1851 backend = 0;
1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1435} 1861}
1436 1862
1437#if EV_USE_INOTIFY 1863#if EV_USE_INOTIFY
1438void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1439#endif 1865#endif
1440 1866
1441void inline_size 1867inline_size void
1442loop_fork (EV_P) 1868loop_fork (EV_P)
1443{ 1869{
1444#if EV_USE_PORT 1870#if EV_USE_PORT
1445 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1446#endif 1872#endif
1452#endif 1878#endif
1453#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1454 infy_fork (EV_A); 1880 infy_fork (EV_A);
1455#endif 1881#endif
1456 1882
1457 if (ev_is_active (&pipeev)) 1883 if (ev_is_active (&pipe_w))
1458 { 1884 {
1459 /* this "locks" the handlers against writing to the pipe */ 1885 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */ 1886 /* while we modify the fd vars */
1461 gotsig = 1; 1887 sig_pending = 1;
1462#if EV_ASYNC_ENABLE 1888#if EV_ASYNC_ENABLE
1463 gotasync = 1; 1889 async_pending = 1;
1464#endif 1890#endif
1465 1891
1466 ev_ref (EV_A); 1892 ev_ref (EV_A);
1467 ev_io_stop (EV_A_ &pipeev); 1893 ev_io_stop (EV_A_ &pipe_w);
1468 1894
1469#if EV_USE_EVENTFD 1895#if EV_USE_EVENTFD
1470 if (evfd >= 0) 1896 if (evfd >= 0)
1471 close (evfd); 1897 close (evfd);
1472#endif 1898#endif
1473 1899
1474 if (evpipe [0] >= 0) 1900 if (evpipe [0] >= 0)
1475 { 1901 {
1476 close (evpipe [0]); 1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1477 close (evpipe [1]); 1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1478 } 1904 }
1479 1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1480 evpipe_init (EV_A); 1907 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */ 1908 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ); 1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1483 } 1911 }
1484 1912
1485 postfork = 0; 1913 postfork = 0;
1486} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1487 2046
1488#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1489struct ev_loop * 2048struct ev_loop *
1490ev_loop_new (unsigned int flags)
1491{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493
1494 memset (loop, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags);
1497
1498 if (ev_backend (EV_A))
1499 return loop;
1500
1501 return 0;
1502}
1503
1504void
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1549
1550#endif
1551
1552#if EV_MULTIPLICITY
1553struct ev_loop *
1554ev_default_loop_init (unsigned int flags)
1555#else 2049#else
1556int 2050int
2051#endif
1557ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1558#endif
1559{ 2053{
1560 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1561 { 2055 {
1562#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1564#else 2058#else
1565 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1566#endif 2060#endif
1567 2061
1568 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1569 2063
1570 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1571 { 2065 {
1572#ifndef _WIN32 2066#if EV_CHILD_ENABLE
1573 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1574 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1575 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1576 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1577#endif 2071#endif
1582 2076
1583 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1584} 2078}
1585 2079
1586void 2080void
1587ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1588{ 2082{
1589#if EV_MULTIPLICITY
1590 struct ev_loop *loop = ev_default_loop_ptr;
1591#endif
1592
1593#ifndef _WIN32
1594 ev_ref (EV_A); /* child watcher */
1595 ev_signal_stop (EV_A_ &childev);
1596#endif
1597
1598 loop_destroy (EV_A);
1599}
1600
1601void
1602ev_default_fork (void)
1603{
1604#if EV_MULTIPLICITY
1605 struct ev_loop *loop = ev_default_loop_ptr;
1606#endif
1607
1608 if (backend)
1609 postfork = 1; /* must be in line with ev_loop_fork */ 2083 postfork = 1; /* must be in line with ev_default_fork */
1610} 2084}
1611 2085
1612/*****************************************************************************/ 2086/*****************************************************************************/
1613 2087
1614void 2088void
1615ev_invoke (EV_P_ void *w, int revents) 2089ev_invoke (EV_P_ void *w, int revents)
1616{ 2090{
1617 EV_CB_INVOKE ((W)w, revents); 2091 EV_CB_INVOKE ((W)w, revents);
1618} 2092}
1619 2093
1620void inline_speed 2094unsigned int
1621call_pending (EV_P) 2095ev_pending_count (EV_P)
1622{ 2096{
1623 int pri; 2097 int pri;
2098 unsigned int count = 0;
1624 2099
1625 EV_FREQUENT_CHECK; 2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
2108{
2109 int pri;
1626 2110
1627 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1628 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1629 { 2113 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1631 2115
1632 if (expect_true (p->w))
1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1636 p->w->pending = 0; 2116 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 2117 EV_CB_INVOKE (p->w, p->events);
1638 } 2118 EV_FREQUENT_CHECK;
1639 } 2119 }
1640
1641 EV_FREQUENT_CHECK;
1642} 2120}
1643 2121
1644#if EV_IDLE_ENABLE 2122#if EV_IDLE_ENABLE
1645void inline_size 2123/* make idle watchers pending. this handles the "call-idle */
2124/* only when higher priorities are idle" logic */
2125inline_size void
1646idle_reify (EV_P) 2126idle_reify (EV_P)
1647{ 2127{
1648 if (expect_false (idleall)) 2128 if (expect_false (idleall))
1649 { 2129 {
1650 int pri; 2130 int pri;
1662 } 2142 }
1663 } 2143 }
1664} 2144}
1665#endif 2145#endif
1666 2146
1667void inline_size 2147/* make timers pending */
2148inline_size void
1668timers_reify (EV_P) 2149timers_reify (EV_P)
1669{ 2150{
1670 EV_FREQUENT_CHECK; 2151 EV_FREQUENT_CHECK;
1671 2152
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2153 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 { 2154 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2155 do
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 { 2156 {
2157 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2158
2159 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2160
2161 /* first reschedule or stop timer */
2162 if (w->repeat)
2163 {
1681 ev_at (w) += w->repeat; 2164 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now) 2165 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now; 2166 ev_at (w) = mn_now;
1684 2167
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2168 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686 2169
1687 ANHE_at_cache (timers [HEAP0]); 2170 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0); 2171 downheap (timers, timercnt, HEAP0);
2172 }
2173 else
2174 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2175
2176 EV_FREQUENT_CHECK;
2177 feed_reverse (EV_A_ (W)w);
1689 } 2178 }
1690 else 2179 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692 2180
1693 EV_FREQUENT_CHECK; 2181 feed_reverse_done (EV_A_ EV_TIMER);
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 } 2182 }
1696} 2183}
1697 2184
1698#if EV_PERIODIC_ENABLE 2185#if EV_PERIODIC_ENABLE
1699void inline_size 2186/* make periodics pending */
2187inline_size void
1700periodics_reify (EV_P) 2188periodics_reify (EV_P)
1701{ 2189{
1702 EV_FREQUENT_CHECK; 2190 EV_FREQUENT_CHECK;
2191
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 2193 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2194 int feed_count = 0;
1706 2195
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2196 do
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 2197 {
2198 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2199
2200 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2201
2202 /* first reschedule or stop timer */
2203 if (w->reschedule_cb)
2204 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2205 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 2206
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2207 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 2208
1716 ANHE_at_cache (periodics [HEAP0]); 2209 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 2210 downheap (periodics, periodiccnt, HEAP0);
2211 }
2212 else if (w->interval)
2213 {
2214 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2215 /* if next trigger time is not sufficiently in the future, put it there */
2216 /* this might happen because of floating point inexactness */
2217 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2218 {
2219 ev_at (w) += w->interval;
2220
2221 /* if interval is unreasonably low we might still have a time in the past */
2222 /* so correct this. this will make the periodic very inexact, but the user */
2223 /* has effectively asked to get triggered more often than possible */
2224 if (ev_at (w) < ev_rt_now)
2225 ev_at (w) = ev_rt_now;
2226 }
2227
2228 ANHE_at_cache (periodics [HEAP0]);
2229 downheap (periodics, periodiccnt, HEAP0);
2230 }
2231 else
2232 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2233
1718 EV_FREQUENT_CHECK; 2234 EV_FREQUENT_CHECK;
2235 feed_reverse (EV_A_ (W)w);
1719 } 2236 }
1720 else if (w->interval) 2237 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728 2238
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2239 feed_reverse_done (EV_A_ EV_PERIODIC);
1744 } 2240 }
1745} 2241}
1746 2242
2243/* simply recalculate all periodics */
2244/* TODO: maybe ensure that at least one event happens when jumping forward? */
1747static void noinline 2245static void noinline
1748periodics_reschedule (EV_P) 2246periodics_reschedule (EV_P)
1749{ 2247{
1750 int i; 2248 int i;
1751 2249
1764 2262
1765 reheap (periodics, periodiccnt); 2263 reheap (periodics, periodiccnt);
1766} 2264}
1767#endif 2265#endif
1768 2266
1769void inline_speed 2267/* adjust all timers by a given offset */
2268static void noinline
2269timers_reschedule (EV_P_ ev_tstamp adjust)
2270{
2271 int i;
2272
2273 for (i = 0; i < timercnt; ++i)
2274 {
2275 ANHE *he = timers + i + HEAP0;
2276 ANHE_w (*he)->at += adjust;
2277 ANHE_at_cache (*he);
2278 }
2279}
2280
2281/* fetch new monotonic and realtime times from the kernel */
2282/* also detect if there was a timejump, and act accordingly */
2283inline_speed void
1770time_update (EV_P_ ev_tstamp max_block) 2284time_update (EV_P_ ev_tstamp max_block)
1771{ 2285{
1772 int i;
1773
1774#if EV_USE_MONOTONIC 2286#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic)) 2287 if (expect_true (have_monotonic))
1776 { 2288 {
2289 int i;
1777 ev_tstamp odiff = rtmn_diff; 2290 ev_tstamp odiff = rtmn_diff;
1778 2291
1779 mn_now = get_clock (); 2292 mn_now = get_clock ();
1780 2293
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2294 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1807 ev_rt_now = ev_time (); 2320 ev_rt_now = ev_time ();
1808 mn_now = get_clock (); 2321 mn_now = get_clock ();
1809 now_floor = mn_now; 2322 now_floor = mn_now;
1810 } 2323 }
1811 2324
2325 /* no timer adjustment, as the monotonic clock doesn't jump */
2326 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1812# if EV_PERIODIC_ENABLE 2327# if EV_PERIODIC_ENABLE
1813 periodics_reschedule (EV_A); 2328 periodics_reschedule (EV_A);
1814# endif 2329# endif
1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1817 } 2330 }
1818 else 2331 else
1819#endif 2332#endif
1820 { 2333 {
1821 ev_rt_now = ev_time (); 2334 ev_rt_now = ev_time ();
1822 2335
1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2336 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1824 { 2337 {
2338 /* adjust timers. this is easy, as the offset is the same for all of them */
2339 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1825#if EV_PERIODIC_ENABLE 2340#if EV_PERIODIC_ENABLE
1826 periodics_reschedule (EV_A); 2341 periodics_reschedule (EV_A);
1827#endif 2342#endif
1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1835 } 2343 }
1836 2344
1837 mn_now = ev_rt_now; 2345 mn_now = ev_rt_now;
1838 } 2346 }
1839} 2347}
1840 2348
1841void 2349void
1842ev_ref (EV_P)
1843{
1844 ++activecnt;
1845}
1846
1847void
1848ev_unref (EV_P)
1849{
1850 --activecnt;
1851}
1852
1853static int loop_done;
1854
1855void
1856ev_loop (EV_P_ int flags) 2350ev_run (EV_P_ int flags)
1857{ 2351{
2352#if EV_FEATURE_API
2353 ++loop_depth;
2354#endif
2355
2356 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2357
1858 loop_done = EVUNLOOP_CANCEL; 2358 loop_done = EVBREAK_CANCEL;
1859 2359
1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2360 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1861 2361
1862 do 2362 do
1863 { 2363 {
2364#if EV_VERIFY >= 2
2365 ev_verify (EV_A);
2366#endif
2367
1864#ifndef _WIN32 2368#ifndef _WIN32
1865 if (expect_false (curpid)) /* penalise the forking check even more */ 2369 if (expect_false (curpid)) /* penalise the forking check even more */
1866 if (expect_false (getpid () != curpid)) 2370 if (expect_false (getpid () != curpid))
1867 { 2371 {
1868 curpid = getpid (); 2372 curpid = getpid ();
1874 /* we might have forked, so queue fork handlers */ 2378 /* we might have forked, so queue fork handlers */
1875 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1876 if (forkcnt) 2380 if (forkcnt)
1877 { 2381 {
1878 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2382 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1879 call_pending (EV_A); 2383 EV_INVOKE_PENDING;
1880 } 2384 }
1881#endif 2385#endif
1882 2386
2387#if EV_PREPARE_ENABLE
1883 /* queue prepare watchers (and execute them) */ 2388 /* queue prepare watchers (and execute them) */
1884 if (expect_false (preparecnt)) 2389 if (expect_false (preparecnt))
1885 { 2390 {
1886 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2391 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1887 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1888 } 2393 }
2394#endif
1889 2395
1890 if (expect_false (!activecnt)) 2396 if (expect_false (loop_done))
1891 break; 2397 break;
1892 2398
1893 /* we might have forked, so reify kernel state if necessary */ 2399 /* we might have forked, so reify kernel state if necessary */
1894 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1895 loop_fork (EV_A); 2401 loop_fork (EV_A);
1900 /* calculate blocking time */ 2406 /* calculate blocking time */
1901 { 2407 {
1902 ev_tstamp waittime = 0.; 2408 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.; 2409 ev_tstamp sleeptime = 0.;
1904 2410
2411 /* remember old timestamp for io_blocktime calculation */
2412 ev_tstamp prev_mn_now = mn_now;
2413
2414 /* update time to cancel out callback processing overhead */
2415 time_update (EV_A_ 1e100);
2416
1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2417 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1906 { 2418 {
1907 /* update time to cancel out callback processing overhead */
1908 time_update (EV_A_ 1e100);
1909
1910 waittime = MAX_BLOCKTIME; 2419 waittime = MAX_BLOCKTIME;
1911 2420
1912 if (timercnt) 2421 if (timercnt)
1913 { 2422 {
1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2423 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2430 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1922 if (waittime > to) waittime = to; 2431 if (waittime > to) waittime = to;
1923 } 2432 }
1924#endif 2433#endif
1925 2434
2435 /* don't let timeouts decrease the waittime below timeout_blocktime */
1926 if (expect_false (waittime < timeout_blocktime)) 2436 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime; 2437 waittime = timeout_blocktime;
1928 2438
1929 sleeptime = waittime - backend_fudge; 2439 /* extra check because io_blocktime is commonly 0 */
1930
1931 if (expect_true (sleeptime > io_blocktime)) 2440 if (expect_false (io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 { 2441 {
2442 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2443
2444 if (sleeptime > waittime - backend_fudge)
2445 sleeptime = waittime - backend_fudge;
2446
2447 if (expect_true (sleeptime > 0.))
2448 {
1936 ev_sleep (sleeptime); 2449 ev_sleep (sleeptime);
1937 waittime -= sleeptime; 2450 waittime -= sleeptime;
2451 }
1938 } 2452 }
1939 } 2453 }
1940 2454
2455#if EV_FEATURE_API
1941 ++loop_count; 2456 ++loop_count;
2457#endif
2458 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1942 backend_poll (EV_A_ waittime); 2459 backend_poll (EV_A_ waittime);
2460 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1943 2461
1944 /* update ev_rt_now, do magic */ 2462 /* update ev_rt_now, do magic */
1945 time_update (EV_A_ waittime + sleeptime); 2463 time_update (EV_A_ waittime + sleeptime);
1946 } 2464 }
1947 2465
1954#if EV_IDLE_ENABLE 2472#if EV_IDLE_ENABLE
1955 /* queue idle watchers unless other events are pending */ 2473 /* queue idle watchers unless other events are pending */
1956 idle_reify (EV_A); 2474 idle_reify (EV_A);
1957#endif 2475#endif
1958 2476
2477#if EV_CHECK_ENABLE
1959 /* queue check watchers, to be executed first */ 2478 /* queue check watchers, to be executed first */
1960 if (expect_false (checkcnt)) 2479 if (expect_false (checkcnt))
1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2480 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2481#endif
1962 2482
1963 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1964 } 2484 }
1965 while (expect_true ( 2485 while (expect_true (
1966 activecnt 2486 activecnt
1967 && !loop_done 2487 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2488 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1969 )); 2489 ));
1970 2490
1971 if (loop_done == EVUNLOOP_ONE) 2491 if (loop_done == EVBREAK_ONE)
1972 loop_done = EVUNLOOP_CANCEL; 2492 loop_done = EVBREAK_CANCEL;
1973}
1974 2493
2494#if EV_FEATURE_API
2495 --loop_depth;
2496#endif
2497}
2498
1975void 2499void
1976ev_unloop (EV_P_ int how) 2500ev_break (EV_P_ int how)
1977{ 2501{
1978 loop_done = how; 2502 loop_done = how;
1979} 2503}
1980 2504
2505void
2506ev_ref (EV_P)
2507{
2508 ++activecnt;
2509}
2510
2511void
2512ev_unref (EV_P)
2513{
2514 --activecnt;
2515}
2516
2517void
2518ev_now_update (EV_P)
2519{
2520 time_update (EV_A_ 1e100);
2521}
2522
2523void
2524ev_suspend (EV_P)
2525{
2526 ev_now_update (EV_A);
2527}
2528
2529void
2530ev_resume (EV_P)
2531{
2532 ev_tstamp mn_prev = mn_now;
2533
2534 ev_now_update (EV_A);
2535 timers_reschedule (EV_A_ mn_now - mn_prev);
2536#if EV_PERIODIC_ENABLE
2537 /* TODO: really do this? */
2538 periodics_reschedule (EV_A);
2539#endif
2540}
2541
1981/*****************************************************************************/ 2542/*****************************************************************************/
2543/* singly-linked list management, used when the expected list length is short */
1982 2544
1983void inline_size 2545inline_size void
1984wlist_add (WL *head, WL elem) 2546wlist_add (WL *head, WL elem)
1985{ 2547{
1986 elem->next = *head; 2548 elem->next = *head;
1987 *head = elem; 2549 *head = elem;
1988} 2550}
1989 2551
1990void inline_size 2552inline_size void
1991wlist_del (WL *head, WL elem) 2553wlist_del (WL *head, WL elem)
1992{ 2554{
1993 while (*head) 2555 while (*head)
1994 { 2556 {
1995 if (*head == elem) 2557 if (expect_true (*head == elem))
1996 { 2558 {
1997 *head = elem->next; 2559 *head = elem->next;
1998 return; 2560 break;
1999 } 2561 }
2000 2562
2001 head = &(*head)->next; 2563 head = &(*head)->next;
2002 } 2564 }
2003} 2565}
2004 2566
2005void inline_speed 2567/* internal, faster, version of ev_clear_pending */
2568inline_speed void
2006clear_pending (EV_P_ W w) 2569clear_pending (EV_P_ W w)
2007{ 2570{
2008 if (w->pending) 2571 if (w->pending)
2009 { 2572 {
2010 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2573 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2011 w->pending = 0; 2574 w->pending = 0;
2012 } 2575 }
2013} 2576}
2014 2577
2015int 2578int
2019 int pending = w_->pending; 2582 int pending = w_->pending;
2020 2583
2021 if (expect_true (pending)) 2584 if (expect_true (pending))
2022 { 2585 {
2023 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2586 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2587 p->w = (W)&pending_w;
2024 w_->pending = 0; 2588 w_->pending = 0;
2025 p->w = 0;
2026 return p->events; 2589 return p->events;
2027 } 2590 }
2028 else 2591 else
2029 return 0; 2592 return 0;
2030} 2593}
2031 2594
2032void inline_size 2595inline_size void
2033pri_adjust (EV_P_ W w) 2596pri_adjust (EV_P_ W w)
2034{ 2597{
2035 int pri = w->priority; 2598 int pri = ev_priority (w);
2036 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2599 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2037 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2600 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2038 w->priority = pri; 2601 ev_set_priority (w, pri);
2039} 2602}
2040 2603
2041void inline_speed 2604inline_speed void
2042ev_start (EV_P_ W w, int active) 2605ev_start (EV_P_ W w, int active)
2043{ 2606{
2044 pri_adjust (EV_A_ w); 2607 pri_adjust (EV_A_ w);
2045 w->active = active; 2608 w->active = active;
2046 ev_ref (EV_A); 2609 ev_ref (EV_A);
2047} 2610}
2048 2611
2049void inline_size 2612inline_size void
2050ev_stop (EV_P_ W w) 2613ev_stop (EV_P_ W w)
2051{ 2614{
2052 ev_unref (EV_A); 2615 ev_unref (EV_A);
2053 w->active = 0; 2616 w->active = 0;
2054} 2617}
2061 int fd = w->fd; 2624 int fd = w->fd;
2062 2625
2063 if (expect_false (ev_is_active (w))) 2626 if (expect_false (ev_is_active (w)))
2064 return; 2627 return;
2065 2628
2066 assert (("ev_io_start called with negative fd", fd >= 0)); 2629 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2630 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2067 2631
2068 EV_FREQUENT_CHECK; 2632 EV_FREQUENT_CHECK;
2069 2633
2070 ev_start (EV_A_ (W)w, 1); 2634 ev_start (EV_A_ (W)w, 1);
2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2635 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2072 wlist_add (&anfds[fd].head, (WL)w); 2636 wlist_add (&anfds[fd].head, (WL)w);
2073 2637
2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2638 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2075 w->events &= ~EV_IOFDSET; 2639 w->events &= ~EV__IOFDSET;
2076 2640
2077 EV_FREQUENT_CHECK; 2641 EV_FREQUENT_CHECK;
2078} 2642}
2079 2643
2080void noinline 2644void noinline
2082{ 2646{
2083 clear_pending (EV_A_ (W)w); 2647 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2648 if (expect_false (!ev_is_active (w)))
2085 return; 2649 return;
2086 2650
2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2651 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2088 2652
2089 EV_FREQUENT_CHECK; 2653 EV_FREQUENT_CHECK;
2090 2654
2091 wlist_del (&anfds[w->fd].head, (WL)w); 2655 wlist_del (&anfds[w->fd].head, (WL)w);
2092 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2093 2657
2094 fd_change (EV_A_ w->fd, 1); 2658 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2095 2659
2096 EV_FREQUENT_CHECK; 2660 EV_FREQUENT_CHECK;
2097} 2661}
2098 2662
2099void noinline 2663void noinline
2102 if (expect_false (ev_is_active (w))) 2666 if (expect_false (ev_is_active (w)))
2103 return; 2667 return;
2104 2668
2105 ev_at (w) += mn_now; 2669 ev_at (w) += mn_now;
2106 2670
2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2671 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2108 2672
2109 EV_FREQUENT_CHECK; 2673 EV_FREQUENT_CHECK;
2110 2674
2111 ++timercnt; 2675 ++timercnt;
2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2676 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2115 ANHE_at_cache (timers [ev_active (w)]); 2679 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w)); 2680 upheap (timers, ev_active (w));
2117 2681
2118 EV_FREQUENT_CHECK; 2682 EV_FREQUENT_CHECK;
2119 2683
2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2684 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2121} 2685}
2122 2686
2123void noinline 2687void noinline
2124ev_timer_stop (EV_P_ ev_timer *w) 2688ev_timer_stop (EV_P_ ev_timer *w)
2125{ 2689{
2130 EV_FREQUENT_CHECK; 2694 EV_FREQUENT_CHECK;
2131 2695
2132 { 2696 {
2133 int active = ev_active (w); 2697 int active = ev_active (w);
2134 2698
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2699 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136 2700
2137 --timercnt; 2701 --timercnt;
2138 2702
2139 if (expect_true (active < timercnt + HEAP0)) 2703 if (expect_true (active < timercnt + HEAP0))
2140 { 2704 {
2141 timers [active] = timers [timercnt + HEAP0]; 2705 timers [active] = timers [timercnt + HEAP0];
2142 adjustheap (timers, timercnt, active); 2706 adjustheap (timers, timercnt, active);
2143 } 2707 }
2144 } 2708 }
2145 2709
2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now; 2710 ev_at (w) -= mn_now;
2149 2711
2150 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
2151} 2715}
2152 2716
2153void noinline 2717void noinline
2154ev_timer_again (EV_P_ ev_timer *w) 2718ev_timer_again (EV_P_ ev_timer *w)
2155{ 2719{
2173 } 2737 }
2174 2738
2175 EV_FREQUENT_CHECK; 2739 EV_FREQUENT_CHECK;
2176} 2740}
2177 2741
2742ev_tstamp
2743ev_timer_remaining (EV_P_ ev_timer *w)
2744{
2745 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2746}
2747
2178#if EV_PERIODIC_ENABLE 2748#if EV_PERIODIC_ENABLE
2179void noinline 2749void noinline
2180ev_periodic_start (EV_P_ ev_periodic *w) 2750ev_periodic_start (EV_P_ ev_periodic *w)
2181{ 2751{
2182 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
2184 2754
2185 if (w->reschedule_cb) 2755 if (w->reschedule_cb)
2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2756 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2187 else if (w->interval) 2757 else if (w->interval)
2188 { 2758 {
2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2759 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2190 /* this formula differs from the one in periodic_reify because we do not always round up */ 2760 /* this formula differs from the one in periodic_reify because we do not always round up */
2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2761 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2192 } 2762 }
2193 else 2763 else
2194 ev_at (w) = w->offset; 2764 ev_at (w) = w->offset;
2202 ANHE_at_cache (periodics [ev_active (w)]); 2772 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w)); 2773 upheap (periodics, ev_active (w));
2204 2774
2205 EV_FREQUENT_CHECK; 2775 EV_FREQUENT_CHECK;
2206 2776
2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2777 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2208} 2778}
2209 2779
2210void noinline 2780void noinline
2211ev_periodic_stop (EV_P_ ev_periodic *w) 2781ev_periodic_stop (EV_P_ ev_periodic *w)
2212{ 2782{
2217 EV_FREQUENT_CHECK; 2787 EV_FREQUENT_CHECK;
2218 2788
2219 { 2789 {
2220 int active = ev_active (w); 2790 int active = ev_active (w);
2221 2791
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2792 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223 2793
2224 --periodiccnt; 2794 --periodiccnt;
2225 2795
2226 if (expect_true (active < periodiccnt + HEAP0)) 2796 if (expect_true (active < periodiccnt + HEAP0))
2227 { 2797 {
2228 periodics [active] = periodics [periodiccnt + HEAP0]; 2798 periodics [active] = periodics [periodiccnt + HEAP0];
2229 adjustheap (periodics, periodiccnt, active); 2799 adjustheap (periodics, periodiccnt, active);
2230 } 2800 }
2231 } 2801 }
2232 2802
2233 EV_FREQUENT_CHECK;
2234
2235 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2236} 2806}
2237 2807
2238void noinline 2808void noinline
2239ev_periodic_again (EV_P_ ev_periodic *w) 2809ev_periodic_again (EV_P_ ev_periodic *w)
2240{ 2810{
2246 2816
2247#ifndef SA_RESTART 2817#ifndef SA_RESTART
2248# define SA_RESTART 0 2818# define SA_RESTART 0
2249#endif 2819#endif
2250 2820
2821#if EV_SIGNAL_ENABLE
2822
2251void noinline 2823void noinline
2252ev_signal_start (EV_P_ ev_signal *w) 2824ev_signal_start (EV_P_ ev_signal *w)
2253{ 2825{
2254#if EV_MULTIPLICITY
2255 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2256#endif
2257 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
2258 return; 2827 return;
2259 2828
2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2829 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2261 2830
2262 evpipe_init (EV_A); 2831#if EV_MULTIPLICITY
2832 assert (("libev: a signal must not be attached to two different loops",
2833 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2263 2834
2264 EV_FREQUENT_CHECK; 2835 signals [w->signum - 1].loop = EV_A;
2836#endif
2265 2837
2838 EV_FREQUENT_CHECK;
2839
2840#if EV_USE_SIGNALFD
2841 if (sigfd == -2)
2266 { 2842 {
2267#ifndef _WIN32 2843 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2268 sigset_t full, prev; 2844 if (sigfd < 0 && errno == EINVAL)
2269 sigfillset (&full); 2845 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272 2846
2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2847 if (sigfd >= 0)
2848 {
2849 fd_intern (sigfd); /* doing it twice will not hurt */
2274 2850
2275#ifndef _WIN32 2851 sigemptyset (&sigfd_set);
2276 sigprocmask (SIG_SETMASK, &prev, 0); 2852
2277#endif 2853 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2854 ev_set_priority (&sigfd_w, EV_MAXPRI);
2855 ev_io_start (EV_A_ &sigfd_w);
2856 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2857 }
2278 } 2858 }
2859
2860 if (sigfd >= 0)
2861 {
2862 /* TODO: check .head */
2863 sigaddset (&sigfd_set, w->signum);
2864 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2865
2866 signalfd (sigfd, &sigfd_set, 0);
2867 }
2868#endif
2279 2869
2280 ev_start (EV_A_ (W)w, 1); 2870 ev_start (EV_A_ (W)w, 1);
2281 wlist_add (&signals [w->signum - 1].head, (WL)w); 2871 wlist_add (&signals [w->signum - 1].head, (WL)w);
2282 2872
2283 if (!((WL)w)->next) 2873 if (!((WL)w)->next)
2874# if EV_USE_SIGNALFD
2875 if (sigfd < 0) /*TODO*/
2876# endif
2284 { 2877 {
2285#if _WIN32 2878# ifdef _WIN32
2879 evpipe_init (EV_A);
2880
2286 signal (w->signum, ev_sighandler); 2881 signal (w->signum, ev_sighandler);
2287#else 2882# else
2288 struct sigaction sa; 2883 struct sigaction sa;
2884
2885 evpipe_init (EV_A);
2886
2289 sa.sa_handler = ev_sighandler; 2887 sa.sa_handler = ev_sighandler;
2290 sigfillset (&sa.sa_mask); 2888 sigfillset (&sa.sa_mask);
2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2889 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2292 sigaction (w->signum, &sa, 0); 2890 sigaction (w->signum, &sa, 0);
2891
2892 if (origflags & EVFLAG_NOSIGMASK)
2893 {
2894 sigemptyset (&sa.sa_mask);
2895 sigaddset (&sa.sa_mask, w->signum);
2896 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2897 }
2293#endif 2898#endif
2294 } 2899 }
2295 2900
2296 EV_FREQUENT_CHECK; 2901 EV_FREQUENT_CHECK;
2297} 2902}
2298 2903
2299void noinline 2904void noinline
2307 2912
2308 wlist_del (&signals [w->signum - 1].head, (WL)w); 2913 wlist_del (&signals [w->signum - 1].head, (WL)w);
2309 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2310 2915
2311 if (!signals [w->signum - 1].head) 2916 if (!signals [w->signum - 1].head)
2917 {
2918#if EV_MULTIPLICITY
2919 signals [w->signum - 1].loop = 0; /* unattach from signal */
2920#endif
2921#if EV_USE_SIGNALFD
2922 if (sigfd >= 0)
2923 {
2924 sigset_t ss;
2925
2926 sigemptyset (&ss);
2927 sigaddset (&ss, w->signum);
2928 sigdelset (&sigfd_set, w->signum);
2929
2930 signalfd (sigfd, &sigfd_set, 0);
2931 sigprocmask (SIG_UNBLOCK, &ss, 0);
2932 }
2933 else
2934#endif
2312 signal (w->signum, SIG_DFL); 2935 signal (w->signum, SIG_DFL);
2936 }
2313 2937
2314 EV_FREQUENT_CHECK; 2938 EV_FREQUENT_CHECK;
2315} 2939}
2940
2941#endif
2942
2943#if EV_CHILD_ENABLE
2316 2944
2317void 2945void
2318ev_child_start (EV_P_ ev_child *w) 2946ev_child_start (EV_P_ ev_child *w)
2319{ 2947{
2320#if EV_MULTIPLICITY 2948#if EV_MULTIPLICITY
2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2949 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2322#endif 2950#endif
2323 if (expect_false (ev_is_active (w))) 2951 if (expect_false (ev_is_active (w)))
2324 return; 2952 return;
2325 2953
2326 EV_FREQUENT_CHECK; 2954 EV_FREQUENT_CHECK;
2327 2955
2328 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2957 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2330 2958
2331 EV_FREQUENT_CHECK; 2959 EV_FREQUENT_CHECK;
2332} 2960}
2333 2961
2334void 2962void
2338 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2339 return; 2967 return;
2340 2968
2341 EV_FREQUENT_CHECK; 2969 EV_FREQUENT_CHECK;
2342 2970
2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2971 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2344 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2345 2973
2346 EV_FREQUENT_CHECK; 2974 EV_FREQUENT_CHECK;
2347} 2975}
2976
2977#endif
2348 2978
2349#if EV_STAT_ENABLE 2979#if EV_STAT_ENABLE
2350 2980
2351# ifdef _WIN32 2981# ifdef _WIN32
2352# undef lstat 2982# undef lstat
2353# define lstat(a,b) _stati64 (a,b) 2983# define lstat(a,b) _stati64 (a,b)
2354# endif 2984# endif
2355 2985
2356#define DEF_STAT_INTERVAL 5.0074891 2986#define DEF_STAT_INTERVAL 5.0074891
2987#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2357#define MIN_STAT_INTERVAL 0.1074891 2988#define MIN_STAT_INTERVAL 0.1074891
2358 2989
2359static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2990static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2360 2991
2361#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
2362# define EV_INOTIFY_BUFSIZE 8192 2993
2994/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2995# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2363 2996
2364static void noinline 2997static void noinline
2365infy_add (EV_P_ ev_stat *w) 2998infy_add (EV_P_ ev_stat *w)
2366{ 2999{
2367 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2368 3001
2369 if (w->wd < 0) 3002 if (w->wd >= 0)
3003 {
3004 struct statfs sfs;
3005
3006 /* now local changes will be tracked by inotify, but remote changes won't */
3007 /* unless the filesystem is known to be local, we therefore still poll */
3008 /* also do poll on <2.6.25, but with normal frequency */
3009
3010 if (!fs_2625)
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012 else if (!statfs (w->path, &sfs)
3013 && (sfs.f_type == 0x1373 /* devfs */
3014 || sfs.f_type == 0xEF53 /* ext2/3 */
3015 || sfs.f_type == 0x3153464a /* jfs */
3016 || sfs.f_type == 0x52654973 /* reiser3 */
3017 || sfs.f_type == 0x01021994 /* tempfs */
3018 || sfs.f_type == 0x58465342 /* xfs */))
3019 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3020 else
3021 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2370 { 3022 }
2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3023 else
3024 {
3025 /* can't use inotify, continue to stat */
3026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2372 3027
2373 /* monitor some parent directory for speedup hints */ 3028 /* if path is not there, monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3029 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2375 /* but an efficiency issue only */ 3030 /* but an efficiency issue only */
2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3031 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2377 { 3032 {
2378 char path [4096]; 3033 char path [4096];
2379 strcpy (path, w->path); 3034 strcpy (path, w->path);
2383 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3038 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2384 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3039 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2385 3040
2386 char *pend = strrchr (path, '/'); 3041 char *pend = strrchr (path, '/');
2387 3042
2388 if (!pend) 3043 if (!pend || pend == path)
2389 break; /* whoops, no '/', complain to your admin */ 3044 break;
2390 3045
2391 *pend = 0; 3046 *pend = 0;
2392 w->wd = inotify_add_watch (fs_fd, path, mask); 3047 w->wd = inotify_add_watch (fs_fd, path, mask);
2393 } 3048 }
2394 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3049 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2395 } 3050 }
2396 } 3051 }
2397 else
2398 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2399 3052
2400 if (w->wd >= 0) 3053 if (w->wd >= 0)
2401 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3054 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3055
3056 /* now re-arm timer, if required */
3057 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3058 ev_timer_again (EV_A_ &w->timer);
3059 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2402} 3060}
2403 3061
2404static void noinline 3062static void noinline
2405infy_del (EV_P_ ev_stat *w) 3063infy_del (EV_P_ ev_stat *w)
2406{ 3064{
2409 3067
2410 if (wd < 0) 3068 if (wd < 0)
2411 return; 3069 return;
2412 3070
2413 w->wd = -2; 3071 w->wd = -2;
2414 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3072 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2415 wlist_del (&fs_hash [slot].head, (WL)w); 3073 wlist_del (&fs_hash [slot].head, (WL)w);
2416 3074
2417 /* remove this watcher, if others are watching it, they will rearm */ 3075 /* remove this watcher, if others are watching it, they will rearm */
2418 inotify_rm_watch (fs_fd, wd); 3076 inotify_rm_watch (fs_fd, wd);
2419} 3077}
2420 3078
2421static void noinline 3079static void noinline
2422infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3080infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2423{ 3081{
2424 if (slot < 0) 3082 if (slot < 0)
2425 /* overflow, need to check for all hahs slots */ 3083 /* overflow, need to check for all hash slots */
2426 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3084 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2427 infy_wd (EV_A_ slot, wd, ev); 3085 infy_wd (EV_A_ slot, wd, ev);
2428 else 3086 else
2429 { 3087 {
2430 WL w_; 3088 WL w_;
2431 3089
2432 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3090 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2433 { 3091 {
2434 ev_stat *w = (ev_stat *)w_; 3092 ev_stat *w = (ev_stat *)w_;
2435 w_ = w_->next; /* lets us remove this watcher and all before it */ 3093 w_ = w_->next; /* lets us remove this watcher and all before it */
2436 3094
2437 if (w->wd == wd || wd == -1) 3095 if (w->wd == wd || wd == -1)
2438 { 3096 {
2439 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3097 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2440 { 3098 {
3099 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2441 w->wd = -1; 3100 w->wd = -1;
2442 infy_add (EV_A_ w); /* re-add, no matter what */ 3101 infy_add (EV_A_ w); /* re-add, no matter what */
2443 } 3102 }
2444 3103
2445 stat_timer_cb (EV_A_ &w->timer, 0); 3104 stat_timer_cb (EV_A_ &w->timer, 0);
2450 3109
2451static void 3110static void
2452infy_cb (EV_P_ ev_io *w, int revents) 3111infy_cb (EV_P_ ev_io *w, int revents)
2453{ 3112{
2454 char buf [EV_INOTIFY_BUFSIZE]; 3113 char buf [EV_INOTIFY_BUFSIZE];
2455 struct inotify_event *ev = (struct inotify_event *)buf;
2456 int ofs; 3114 int ofs;
2457 int len = read (fs_fd, buf, sizeof (buf)); 3115 int len = read (fs_fd, buf, sizeof (buf));
2458 3116
2459 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3117 for (ofs = 0; ofs < len; )
3118 {
3119 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2460 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3120 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3121 ofs += sizeof (struct inotify_event) + ev->len;
3122 }
2461} 3123}
2462 3124
2463void inline_size 3125inline_size void
3126ev_check_2625 (EV_P)
3127{
3128 /* kernels < 2.6.25 are borked
3129 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3130 */
3131 if (ev_linux_version () < 0x020619)
3132 return;
3133
3134 fs_2625 = 1;
3135}
3136
3137inline_size int
3138infy_newfd (void)
3139{
3140#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3141 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3142 if (fd >= 0)
3143 return fd;
3144#endif
3145 return inotify_init ();
3146}
3147
3148inline_size void
2464infy_init (EV_P) 3149infy_init (EV_P)
2465{ 3150{
2466 if (fs_fd != -2) 3151 if (fs_fd != -2)
2467 return; 3152 return;
2468 3153
3154 fs_fd = -1;
3155
3156 ev_check_2625 (EV_A);
3157
2469 fs_fd = inotify_init (); 3158 fs_fd = infy_newfd ();
2470 3159
2471 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
2472 { 3161 {
3162 fd_intern (fs_fd);
2473 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3163 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2474 ev_set_priority (&fs_w, EV_MAXPRI); 3164 ev_set_priority (&fs_w, EV_MAXPRI);
2475 ev_io_start (EV_A_ &fs_w); 3165 ev_io_start (EV_A_ &fs_w);
3166 ev_unref (EV_A);
2476 } 3167 }
2477} 3168}
2478 3169
2479void inline_size 3170inline_size void
2480infy_fork (EV_P) 3171infy_fork (EV_P)
2481{ 3172{
2482 int slot; 3173 int slot;
2483 3174
2484 if (fs_fd < 0) 3175 if (fs_fd < 0)
2485 return; 3176 return;
2486 3177
3178 ev_ref (EV_A);
3179 ev_io_stop (EV_A_ &fs_w);
2487 close (fs_fd); 3180 close (fs_fd);
2488 fs_fd = inotify_init (); 3181 fs_fd = infy_newfd ();
2489 3182
3183 if (fs_fd >= 0)
3184 {
3185 fd_intern (fs_fd);
3186 ev_io_set (&fs_w, fs_fd, EV_READ);
3187 ev_io_start (EV_A_ &fs_w);
3188 ev_unref (EV_A);
3189 }
3190
2490 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3191 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2491 { 3192 {
2492 WL w_ = fs_hash [slot].head; 3193 WL w_ = fs_hash [slot].head;
2493 fs_hash [slot].head = 0; 3194 fs_hash [slot].head = 0;
2494 3195
2495 while (w_) 3196 while (w_)
2500 w->wd = -1; 3201 w->wd = -1;
2501 3202
2502 if (fs_fd >= 0) 3203 if (fs_fd >= 0)
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 3204 infy_add (EV_A_ w); /* re-add, no matter what */
2504 else 3205 else
3206 {
3207 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3208 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2505 ev_timer_start (EV_A_ &w->timer); 3209 ev_timer_again (EV_A_ &w->timer);
3210 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3211 }
2506 } 3212 }
2507
2508 } 3213 }
2509} 3214}
2510 3215
3216#endif
3217
3218#ifdef _WIN32
3219# define EV_LSTAT(p,b) _stati64 (p, b)
3220#else
3221# define EV_LSTAT(p,b) lstat (p, b)
2511#endif 3222#endif
2512 3223
2513void 3224void
2514ev_stat_stat (EV_P_ ev_stat *w) 3225ev_stat_stat (EV_P_ ev_stat *w)
2515{ 3226{
2522static void noinline 3233static void noinline
2523stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3234stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2524{ 3235{
2525 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3236 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2526 3237
2527 /* we copy this here each the time so that */ 3238 ev_statdata prev = w->attr;
2528 /* prev has the old value when the callback gets invoked */
2529 w->prev = w->attr;
2530 ev_stat_stat (EV_A_ w); 3239 ev_stat_stat (EV_A_ w);
2531 3240
2532 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2533 if ( 3242 if (
2534 w->prev.st_dev != w->attr.st_dev 3243 prev.st_dev != w->attr.st_dev
2535 || w->prev.st_ino != w->attr.st_ino 3244 || prev.st_ino != w->attr.st_ino
2536 || w->prev.st_mode != w->attr.st_mode 3245 || prev.st_mode != w->attr.st_mode
2537 || w->prev.st_nlink != w->attr.st_nlink 3246 || prev.st_nlink != w->attr.st_nlink
2538 || w->prev.st_uid != w->attr.st_uid 3247 || prev.st_uid != w->attr.st_uid
2539 || w->prev.st_gid != w->attr.st_gid 3248 || prev.st_gid != w->attr.st_gid
2540 || w->prev.st_rdev != w->attr.st_rdev 3249 || prev.st_rdev != w->attr.st_rdev
2541 || w->prev.st_size != w->attr.st_size 3250 || prev.st_size != w->attr.st_size
2542 || w->prev.st_atime != w->attr.st_atime 3251 || prev.st_atime != w->attr.st_atime
2543 || w->prev.st_mtime != w->attr.st_mtime 3252 || prev.st_mtime != w->attr.st_mtime
2544 || w->prev.st_ctime != w->attr.st_ctime 3253 || prev.st_ctime != w->attr.st_ctime
2545 ) { 3254 ) {
3255 /* we only update w->prev on actual differences */
3256 /* in case we test more often than invoke the callback, */
3257 /* to ensure that prev is always different to attr */
3258 w->prev = prev;
3259
2546 #if EV_USE_INOTIFY 3260 #if EV_USE_INOTIFY
3261 if (fs_fd >= 0)
3262 {
2547 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2548 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2549 ev_stat_stat (EV_A_ w); /* avoid race... */ 3265 ev_stat_stat (EV_A_ w); /* avoid race... */
3266 }
2550 #endif 3267 #endif
2551 3268
2552 ev_feed_event (EV_A_ w, EV_STAT); 3269 ev_feed_event (EV_A_ w, EV_STAT);
2553 } 3270 }
2554} 3271}
2557ev_stat_start (EV_P_ ev_stat *w) 3274ev_stat_start (EV_P_ ev_stat *w)
2558{ 3275{
2559 if (expect_false (ev_is_active (w))) 3276 if (expect_false (ev_is_active (w)))
2560 return; 3277 return;
2561 3278
2562 /* since we use memcmp, we need to clear any padding data etc. */
2563 memset (&w->prev, 0, sizeof (ev_statdata));
2564 memset (&w->attr, 0, sizeof (ev_statdata));
2565
2566 ev_stat_stat (EV_A_ w); 3279 ev_stat_stat (EV_A_ w);
2567 3280
3281 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2568 if (w->interval < MIN_STAT_INTERVAL) 3282 w->interval = MIN_STAT_INTERVAL;
2569 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2570 3283
2571 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3284 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2572 ev_set_priority (&w->timer, ev_priority (w)); 3285 ev_set_priority (&w->timer, ev_priority (w));
2573 3286
2574#if EV_USE_INOTIFY 3287#if EV_USE_INOTIFY
2575 infy_init (EV_A); 3288 infy_init (EV_A);
2576 3289
2577 if (fs_fd >= 0) 3290 if (fs_fd >= 0)
2578 infy_add (EV_A_ w); 3291 infy_add (EV_A_ w);
2579 else 3292 else
2580#endif 3293#endif
3294 {
2581 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 ev_unref (EV_A);
3297 }
2582 3298
2583 ev_start (EV_A_ (W)w, 1); 3299 ev_start (EV_A_ (W)w, 1);
2584 3300
2585 EV_FREQUENT_CHECK; 3301 EV_FREQUENT_CHECK;
2586} 3302}
2595 EV_FREQUENT_CHECK; 3311 EV_FREQUENT_CHECK;
2596 3312
2597#if EV_USE_INOTIFY 3313#if EV_USE_INOTIFY
2598 infy_del (EV_A_ w); 3314 infy_del (EV_A_ w);
2599#endif 3315#endif
3316
3317 if (ev_is_active (&w->timer))
3318 {
3319 ev_ref (EV_A);
2600 ev_timer_stop (EV_A_ &w->timer); 3320 ev_timer_stop (EV_A_ &w->timer);
3321 }
2601 3322
2602 ev_stop (EV_A_ (W)w); 3323 ev_stop (EV_A_ (W)w);
2603 3324
2604 EV_FREQUENT_CHECK; 3325 EV_FREQUENT_CHECK;
2605} 3326}
2650 3371
2651 EV_FREQUENT_CHECK; 3372 EV_FREQUENT_CHECK;
2652} 3373}
2653#endif 3374#endif
2654 3375
3376#if EV_PREPARE_ENABLE
2655void 3377void
2656ev_prepare_start (EV_P_ ev_prepare *w) 3378ev_prepare_start (EV_P_ ev_prepare *w)
2657{ 3379{
2658 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2659 return; 3381 return;
2685 3407
2686 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
2687 3409
2688 EV_FREQUENT_CHECK; 3410 EV_FREQUENT_CHECK;
2689} 3411}
3412#endif
2690 3413
3414#if EV_CHECK_ENABLE
2691void 3415void
2692ev_check_start (EV_P_ ev_check *w) 3416ev_check_start (EV_P_ ev_check *w)
2693{ 3417{
2694 if (expect_false (ev_is_active (w))) 3418 if (expect_false (ev_is_active (w)))
2695 return; 3419 return;
2721 3445
2722 ev_stop (EV_A_ (W)w); 3446 ev_stop (EV_A_ (W)w);
2723 3447
2724 EV_FREQUENT_CHECK; 3448 EV_FREQUENT_CHECK;
2725} 3449}
3450#endif
2726 3451
2727#if EV_EMBED_ENABLE 3452#if EV_EMBED_ENABLE
2728void noinline 3453void noinline
2729ev_embed_sweep (EV_P_ ev_embed *w) 3454ev_embed_sweep (EV_P_ ev_embed *w)
2730{ 3455{
2731 ev_loop (w->other, EVLOOP_NONBLOCK); 3456 ev_run (w->other, EVRUN_NOWAIT);
2732} 3457}
2733 3458
2734static void 3459static void
2735embed_io_cb (EV_P_ ev_io *io, int revents) 3460embed_io_cb (EV_P_ ev_io *io, int revents)
2736{ 3461{
2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3462 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2738 3463
2739 if (ev_cb (w)) 3464 if (ev_cb (w))
2740 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3465 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2741 else 3466 else
2742 ev_loop (w->other, EVLOOP_NONBLOCK); 3467 ev_run (w->other, EVRUN_NOWAIT);
2743} 3468}
2744 3469
2745static void 3470static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3471embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{ 3472{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3473 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749 3474
2750 { 3475 {
2751 struct ev_loop *loop = w->other; 3476 EV_P = w->other;
2752 3477
2753 while (fdchangecnt) 3478 while (fdchangecnt)
2754 { 3479 {
2755 fd_reify (EV_A); 3480 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3481 ev_run (EV_A_ EVRUN_NOWAIT);
2757 } 3482 }
2758 } 3483 }
3484}
3485
3486static void
3487embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3488{
3489 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3490
3491 ev_embed_stop (EV_A_ w);
3492
3493 {
3494 EV_P = w->other;
3495
3496 ev_loop_fork (EV_A);
3497 ev_run (EV_A_ EVRUN_NOWAIT);
3498 }
3499
3500 ev_embed_start (EV_A_ w);
2759} 3501}
2760 3502
2761#if 0 3503#if 0
2762static void 3504static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3505embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2771{ 3513{
2772 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2773 return; 3515 return;
2774 3516
2775 { 3517 {
2776 struct ev_loop *loop = w->other; 3518 EV_P = w->other;
2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3519 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3520 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2779 } 3521 }
2780 3522
2781 EV_FREQUENT_CHECK; 3523 EV_FREQUENT_CHECK;
2782 3524
2785 3527
2786 ev_prepare_init (&w->prepare, embed_prepare_cb); 3528 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI); 3529 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare); 3530 ev_prepare_start (EV_A_ &w->prepare);
2789 3531
3532 ev_fork_init (&w->fork, embed_fork_cb);
3533 ev_fork_start (EV_A_ &w->fork);
3534
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3535 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791 3536
2792 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
2793 3538
2794 EV_FREQUENT_CHECK; 3539 EV_FREQUENT_CHECK;
2801 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
2802 return; 3547 return;
2803 3548
2804 EV_FREQUENT_CHECK; 3549 EV_FREQUENT_CHECK;
2805 3550
2806 ev_io_stop (EV_A_ &w->io); 3551 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare); 3552 ev_prepare_stop (EV_A_ &w->prepare);
3553 ev_fork_stop (EV_A_ &w->fork);
2808 3554
2809 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
2810 3556
2811 EV_FREQUENT_CHECK; 3557 EV_FREQUENT_CHECK;
2812} 3558}
2848 3594
2849 EV_FREQUENT_CHECK; 3595 EV_FREQUENT_CHECK;
2850} 3596}
2851#endif 3597#endif
2852 3598
2853#if EV_ASYNC_ENABLE 3599#if EV_CLEANUP_ENABLE
2854void 3600void
2855ev_async_start (EV_P_ ev_async *w) 3601ev_cleanup_start (EV_P_ ev_cleanup *w)
2856{ 3602{
2857 if (expect_false (ev_is_active (w))) 3603 if (expect_false (ev_is_active (w)))
2858 return; 3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 ev_start (EV_A_ (W)w, ++cleanupcnt);
3609 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3610 cleanups [cleanupcnt - 1] = w;
3611
3612 /* cleanup watchers should never keep a refcount on the loop */
3613 ev_unref (EV_A);
3614 EV_FREQUENT_CHECK;
3615}
3616
3617void
3618ev_cleanup_stop (EV_P_ ev_cleanup *w)
3619{
3620 clear_pending (EV_A_ (W)w);
3621 if (expect_false (!ev_is_active (w)))
3622 return;
3623
3624 EV_FREQUENT_CHECK;
3625 ev_ref (EV_A);
3626
3627 {
3628 int active = ev_active (w);
3629
3630 cleanups [active - 1] = cleanups [--cleanupcnt];
3631 ev_active (cleanups [active - 1]) = active;
3632 }
3633
3634 ev_stop (EV_A_ (W)w);
3635
3636 EV_FREQUENT_CHECK;
3637}
3638#endif
3639
3640#if EV_ASYNC_ENABLE
3641void
3642ev_async_start (EV_P_ ev_async *w)
3643{
3644 if (expect_false (ev_is_active (w)))
3645 return;
3646
3647 w->sent = 0;
2859 3648
2860 evpipe_init (EV_A); 3649 evpipe_init (EV_A);
2861 3650
2862 EV_FREQUENT_CHECK; 3651 EV_FREQUENT_CHECK;
2863 3652
2891 3680
2892void 3681void
2893ev_async_send (EV_P_ ev_async *w) 3682ev_async_send (EV_P_ ev_async *w)
2894{ 3683{
2895 w->sent = 1; 3684 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync); 3685 evpipe_write (EV_A_ &async_pending);
2897} 3686}
2898#endif 3687#endif
2899 3688
2900/*****************************************************************************/ 3689/*****************************************************************************/
2901 3690
2911once_cb (EV_P_ struct ev_once *once, int revents) 3700once_cb (EV_P_ struct ev_once *once, int revents)
2912{ 3701{
2913 void (*cb)(int revents, void *arg) = once->cb; 3702 void (*cb)(int revents, void *arg) = once->cb;
2914 void *arg = once->arg; 3703 void *arg = once->arg;
2915 3704
2916 ev_io_stop (EV_A_ &once->io); 3705 ev_io_stop (EV_A_ &once->io);
2917 ev_timer_stop (EV_A_ &once->to); 3706 ev_timer_stop (EV_A_ &once->to);
2918 ev_free (once); 3707 ev_free (once);
2919 3708
2920 cb (revents, arg); 3709 cb (revents, arg);
2921} 3710}
2922 3711
2923static void 3712static void
2924once_cb_io (EV_P_ ev_io *w, int revents) 3713once_cb_io (EV_P_ ev_io *w, int revents)
2925{ 3714{
2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3715 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3716
3717 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2927} 3718}
2928 3719
2929static void 3720static void
2930once_cb_to (EV_P_ ev_timer *w, int revents) 3721once_cb_to (EV_P_ ev_timer *w, int revents)
2931{ 3722{
2932 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2933} 3726}
2934 3727
2935void 3728void
2936ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3729ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2937{ 3730{
2938 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3731 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2939 3732
2940 if (expect_false (!once)) 3733 if (expect_false (!once))
2941 { 3734 {
2942 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3735 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2943 return; 3736 return;
2944 } 3737 }
2945 3738
2946 once->cb = cb; 3739 once->cb = cb;
2947 once->arg = arg; 3740 once->arg = arg;
2959 ev_timer_set (&once->to, timeout, 0.); 3752 ev_timer_set (&once->to, timeout, 0.);
2960 ev_timer_start (EV_A_ &once->to); 3753 ev_timer_start (EV_A_ &once->to);
2961 } 3754 }
2962} 3755}
2963 3756
3757/*****************************************************************************/
3758
3759#if EV_WALK_ENABLE
3760void
3761ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3762{
3763 int i, j;
3764 ev_watcher_list *wl, *wn;
3765
3766 if (types & (EV_IO | EV_EMBED))
3767 for (i = 0; i < anfdmax; ++i)
3768 for (wl = anfds [i].head; wl; )
3769 {
3770 wn = wl->next;
3771
3772#if EV_EMBED_ENABLE
3773 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3774 {
3775 if (types & EV_EMBED)
3776 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3777 }
3778 else
3779#endif
3780#if EV_USE_INOTIFY
3781 if (ev_cb ((ev_io *)wl) == infy_cb)
3782 ;
3783 else
3784#endif
3785 if ((ev_io *)wl != &pipe_w)
3786 if (types & EV_IO)
3787 cb (EV_A_ EV_IO, wl);
3788
3789 wl = wn;
3790 }
3791
3792 if (types & (EV_TIMER | EV_STAT))
3793 for (i = timercnt + HEAP0; i-- > HEAP0; )
3794#if EV_STAT_ENABLE
3795 /*TODO: timer is not always active*/
3796 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3797 {
3798 if (types & EV_STAT)
3799 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3800 }
3801 else
3802#endif
3803 if (types & EV_TIMER)
3804 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3805
3806#if EV_PERIODIC_ENABLE
3807 if (types & EV_PERIODIC)
3808 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3809 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3810#endif
3811
3812#if EV_IDLE_ENABLE
3813 if (types & EV_IDLE)
3814 for (j = NUMPRI; i--; )
3815 for (i = idlecnt [j]; i--; )
3816 cb (EV_A_ EV_IDLE, idles [j][i]);
3817#endif
3818
3819#if EV_FORK_ENABLE
3820 if (types & EV_FORK)
3821 for (i = forkcnt; i--; )
3822 if (ev_cb (forks [i]) != embed_fork_cb)
3823 cb (EV_A_ EV_FORK, forks [i]);
3824#endif
3825
3826#if EV_ASYNC_ENABLE
3827 if (types & EV_ASYNC)
3828 for (i = asynccnt; i--; )
3829 cb (EV_A_ EV_ASYNC, asyncs [i]);
3830#endif
3831
3832#if EV_PREPARE_ENABLE
3833 if (types & EV_PREPARE)
3834 for (i = preparecnt; i--; )
3835# if EV_EMBED_ENABLE
3836 if (ev_cb (prepares [i]) != embed_prepare_cb)
3837# endif
3838 cb (EV_A_ EV_PREPARE, prepares [i]);
3839#endif
3840
3841#if EV_CHECK_ENABLE
3842 if (types & EV_CHECK)
3843 for (i = checkcnt; i--; )
3844 cb (EV_A_ EV_CHECK, checks [i]);
3845#endif
3846
3847#if EV_SIGNAL_ENABLE
3848 if (types & EV_SIGNAL)
3849 for (i = 0; i < EV_NSIG - 1; ++i)
3850 for (wl = signals [i].head; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_SIGNAL, wl);
3854 wl = wn;
3855 }
3856#endif
3857
3858#if EV_CHILD_ENABLE
3859 if (types & EV_CHILD)
3860 for (i = (EV_PID_HASHSIZE); i--; )
3861 for (wl = childs [i]; wl; )
3862 {
3863 wn = wl->next;
3864 cb (EV_A_ EV_CHILD, wl);
3865 wl = wn;
3866 }
3867#endif
3868/* EV_STAT 0x00001000 /* stat data changed */
3869/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3870}
3871#endif
3872
2964#if EV_MULTIPLICITY 3873#if EV_MULTIPLICITY
2965 #include "ev_wrap.h" 3874 #include "ev_wrap.h"
2966#endif 3875#endif
2967 3876
2968#ifdef __cplusplus 3877EV_CPP(})
2969}
2970#endif
2971 3878

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines