ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.25 by root, Wed Oct 31 21:34:45 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
132#endif
29 133
30#include <math.h> 134#include <math.h>
31#include <stdlib.h> 135#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 136#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 137#include <stddef.h>
36 138
37#include <stdio.h> 139#include <stdio.h>
38 140
39#include <assert.h> 141#include <assert.h>
40#include <errno.h> 142#include <errno.h>
41#include <sys/types.h> 143#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 144#include <time.h>
45 145
46#ifndef HAVE_MONOTONIC 146#include <signal.h>
47# ifdef CLOCK_MONOTONIC 147
48# define HAVE_MONOTONIC 1 148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
49# endif 163# endif
50#endif 164#endif
51 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
52#ifndef HAVE_SELECT 180#ifndef EV_USE_SELECT
53# define HAVE_SELECT 1 181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
54#endif 189# endif
190#endif
55 191
56#ifndef HAVE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
57# define HAVE_EPOLL 0 196# define EV_USE_EPOLL 0
58#endif 197# endif
198#endif
59 199
60#ifndef HAVE_REALTIME 200#ifndef EV_USE_KQUEUE
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
62#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 294
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
67 298
68#include "ev.h" 299#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline))
302#else
303# define expect(expr,value) (expr)
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
308#endif
69 309
310#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
70typedef struct ev_watcher *W; 326typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
73 329
74static ev_tstamp now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
342
343/*****************************************************************************/
344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451#endif
452
453#if EV_MULTIPLICITY
454
455 struct ev_loop
456 {
457 ev_tstamp ev_rt_now;
458 #define ev_rt_now ((loop)->ev_rt_now)
459 #define VAR(name,decl) decl;
460 #include "ev_vars.h"
461 #undef VAR
462 };
463 #include "ev_wrap.h"
464
465 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr;
467
468#else
469
75ev_tstamp ev_now; 470 ev_tstamp ev_rt_now;
76int ev_method; 471 #define VAR(name,decl) static decl;
472 #include "ev_vars.h"
473 #undef VAR
77 474
78static int have_monotonic; /* runtime */ 475 static int ev_default_loop_ptr;
79 476
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 477#endif
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 478
84/*****************************************************************************/ 479/*****************************************************************************/
85 480
86ev_tstamp 481ev_tstamp
87ev_time (void) 482ev_time (void)
88{ 483{
89#if HAVE_REALTIME 484#if EV_USE_REALTIME
90 struct timespec ts; 485 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 486 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 487 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 488#else
94 struct timeval tv; 489 struct timeval tv;
95 gettimeofday (&tv, 0); 490 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 491 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 492#endif
98} 493}
99 494
100static ev_tstamp 495ev_tstamp inline_size
101get_clock (void) 496get_clock (void)
102{ 497{
103#if HAVE_MONOTONIC 498#if EV_USE_MONOTONIC
104 if (have_monotonic) 499 if (expect_true (have_monotonic))
105 { 500 {
106 struct timespec ts; 501 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 502 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 503 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 504 }
110#endif 505#endif
111 506
112 return ev_time (); 507 return ev_time ();
113} 508}
114 509
115#define array_needsize(base,cur,cnt,init) \ 510#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 511ev_tstamp
117 { \ 512ev_now (EV_P)
118 int newcnt = cur; \ 513{
119 do \ 514 return ev_rt_now;
120 { \ 515}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 516#endif
122 } \ 517
123 while ((cnt) > newcnt); \ 518void
124 \ 519ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 520{
126 init (base + cur, newcnt - cur); \ 521 if (delay > 0.)
127 cur = newcnt; \
128 } 522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
129 542
130/*****************************************************************************/ 543/*****************************************************************************/
131 544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547int inline_size
548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
574
575#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \
577 { \
578 int ocur_ = (cur); \
579 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \
582 }
583
584#if 0
585#define array_slim(type,stem) \
586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
587 { \
588 stem ## max = array_roundsize (stem ## cnt >> 1); \
589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 }
592#endif
593
594#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
596
597/*****************************************************************************/
598
599void noinline
600ev_feed_event (EV_P_ void *w, int revents)
601{
602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
604
605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents;
613 }
614}
615
616void inline_speed
617queue_events (EV_P_ W *events, int eventcnt, int type)
618{
619 int i;
620
621 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type);
623}
624
625/*****************************************************************************/
626
627void inline_size
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents)
642{
643 ANFD *anfd = anfds + fd;
644 ev_io *w;
645
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
647 {
648 int ev = w->events & revents;
649
650 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev);
652 }
653}
654
655void
656ev_feed_fd_event (EV_P_ int fd, int revents)
657{
658 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents);
660}
661
662void inline_size
663fd_reify (EV_P)
664{
665 int i;
666
667 for (i = 0; i < fdchangecnt; ++i)
668 {
669 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd;
671 ev_io *w;
672
673 unsigned char events = 0;
674
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
676 events |= (unsigned char)w->events;
677
678#if EV_SELECT_IS_WINSOCKET
679 if (events)
680 {
681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
688 }
689#endif
690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
701 }
702
703 fdchangecnt = 0;
704}
705
706void inline_size
707fd_change (EV_P_ int fd, int flags)
708{
709 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags;
711
712 if (expect_true (!reify))
713 {
714 ++fdchangecnt;
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd;
717 }
718}
719
720void inline_speed
721fd_kill (EV_P_ int fd)
722{
723 ev_io *w;
724
725 while ((w = (ev_io *)anfds [fd].head))
726 {
727 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 }
730}
731
732int inline_size
733fd_valid (int fd)
734{
735#ifdef _WIN32
736 return _get_osfhandle (fd) != -1;
737#else
738 return fcntl (fd, F_GETFD) != -1;
739#endif
740}
741
742/* called on EBADF to verify fds */
743static void noinline
744fd_ebadf (EV_P)
745{
746 int fd;
747
748 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF)
751 fd_kill (EV_A_ fd);
752}
753
754/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline
756fd_enomem (EV_P)
757{
758 int fd;
759
760 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events)
762 {
763 fd_kill (EV_A_ fd);
764 return;
765 }
766}
767
768/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline
770fd_rearm_all (EV_P)
771{
772 int fd;
773
774 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events)
776 {
777 anfds [fd].events = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
779 }
780}
781
782/*****************************************************************************/
783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
914 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k;
916
917 k = c;
918 }
919
920 heap [k] = he;
921 ev_active (ANHE_w (he)) = k;
922}
923#endif
924
925void inline_size
926adjustheap (ANHE *heap, int N, int k)
927{
928 upheap (heap, k);
929 downheap (heap, N, k);
930}
931
932/*****************************************************************************/
933
132typedef struct 934typedef struct
133{ 935{
134 struct ev_io *head; 936 WL head;
135 unsigned char wev, rev; /* want, received event set */ 937 EV_ATOMIC_T gotsig;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void
145anfds_init (ANFD *base, int count)
146{
147 while (count--)
148 {
149 base->head = 0;
150 base->wev = base->rev = EV_NONE;
151 ++base;
152 }
153}
154
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 }
174}
175
176static void
177fd_event (int fd, int events)
178{
179 ANFD *anfd = anfds + fd;
180 struct ev_io *w;
181
182 for (w = anfd->head; w; w = w->next)
183 {
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 }
189}
190
191static void
192queue_events (W *events, int eventcnt, int type)
193{
194 int i;
195
196 for (i = 0; i < eventcnt; ++i)
197 event (events [i], type);
198}
199
200/* called on EBADF to verify fds */
201static void
202fd_recheck (void)
203{
204 int fd;
205
206 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214}
215
216/*****************************************************************************/
217
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG; 938} ANSIG;
272 939
273static ANSIG *signals; 940static ANSIG *signals;
274static int signalmax; 941static int signalmax;
275 942
276static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
277static sig_atomic_t gotsig;
278static struct ev_io sigev;
279 944
280static void 945void inline_size
281signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
282{ 947{
283 while (count--) 948 while (count--)
284 { 949 {
285 base->head = 0; 950 base->head = 0;
286 base->gotsig = 0; 951 base->gotsig = 0;
952
287 ++base; 953 ++base;
288 } 954 }
289} 955}
290 956
957/*****************************************************************************/
958
959void inline_speed
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970
971static void noinline
972evpipe_init (EV_P)
973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
989 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
994 ev_io_start (EV_A_ &pipeev);
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
291static void 1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
1062}
1063
1064/*****************************************************************************/
1065
1066static void
292sighandler (int signum) 1067ev_sighandler (int signum)
293{ 1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
294 signals [signum - 1].gotsig = 1; 1077 signals [signum - 1].gotsig = 1;
295 1078 evpipe_write (EV_A_ &gotsig);
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301} 1079}
302 1080
303static void 1081void noinline
304sigcb (struct ev_io *iow, int revents) 1082ev_feed_signal_event (EV_P_ int signum)
305{ 1083{
306 struct ev_signal *w; 1084 WL w;
307 int sig;
308 1085
309 gotsig = 0; 1086#if EV_MULTIPLICITY
310 read (sigpipe [0], &revents, 1); 1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
311 1089
312 for (sig = signalmax; sig--; ) 1090 --signum;
313 if (signals [sig].gotsig) 1091
314 { 1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
315 signals [sig].gotsig = 0; 1095 signals [signum].gotsig = 0;
316 1096
317 for (w = signals [sig].head; w; w = w->next) 1097 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334} 1099}
335 1100
336/*****************************************************************************/ 1101/*****************************************************************************/
337 1102
338static struct ev_idle **idles; 1103static WL childs [EV_PID_HASHSIZE];
339static int idlemax, idlecnt;
340 1104
341static struct ev_prepare **prepares; 1105#ifndef _WIN32
342static int preparemax, preparecnt;
343 1106
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 1107static ev_signal childev;
1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
1113void inline_speed
1114child_reap (EV_P_ int chain, int pid, int status)
1115{
1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
1123 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1125 w->rpid = pid;
1126 w->rstatus = status;
1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1128 }
1129 }
1130}
351 1131
352#ifndef WCONTINUED 1132#ifndef WCONTINUED
353# define WCONTINUED 0 1133# define WCONTINUED 0
354#endif 1134#endif
355 1135
356static void 1136static void
357childcb (struct ev_signal *sw, int revents) 1137childcb (EV_P_ ev_signal *sw, int revents)
358{ 1138{
359 struct ev_child *w;
360 int pid, status; 1139 int pid, status;
361 1140
1141 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1142 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1143 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 1144 || errno != EINVAL
365 { 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
366 w->status = status; 1146 return;
367 event ((W)w, EV_CHILD); 1147
368 } 1148 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151
1152 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
369} 1155}
1156
1157#endif
370 1158
371/*****************************************************************************/ 1159/*****************************************************************************/
372 1160
1161#if EV_USE_PORT
1162# include "ev_port.c"
1163#endif
1164#if EV_USE_KQUEUE
1165# include "ev_kqueue.c"
1166#endif
373#if HAVE_EPOLL 1167#if EV_USE_EPOLL
374# include "ev_epoll.c" 1168# include "ev_epoll.c"
375#endif 1169#endif
1170#if EV_USE_POLL
1171# include "ev_poll.c"
1172#endif
376#if HAVE_SELECT 1173#if EV_USE_SELECT
377# include "ev_select.c" 1174# include "ev_select.c"
378#endif 1175#endif
379 1176
380int 1177int
381ev_version_major (void) 1178ev_version_major (void)
387ev_version_minor (void) 1184ev_version_minor (void)
388{ 1185{
389 return EV_VERSION_MINOR; 1186 return EV_VERSION_MINOR;
390} 1187}
391 1188
392int ev_init (int flags) 1189/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size
1191enable_secure (void)
393{ 1192{
394 if (!ev_method) 1193#ifdef _WIN32
1194 return 0;
1195#else
1196 return getuid () != geteuid ()
1197 || getgid () != getegid ();
1198#endif
1199}
1200
1201unsigned int
1202ev_supported_backends (void)
1203{
1204 unsigned int flags = 0;
1205
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211
1212 return flags;
1213}
1214
1215unsigned int
1216ev_recommended_backends (void)
1217{
1218 unsigned int flags = ev_supported_backends ();
1219
1220#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE;
1224#endif
1225#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation
1227 flags &= ~EVBACKEND_POLL;
1228#endif
1229
1230 return flags;
1231}
1232
1233unsigned int
1234ev_embeddable_backends (void)
1235{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
1243}
1244
1245unsigned int
1246ev_backend (EV_P)
1247{
1248 return backend;
1249}
1250
1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
1267}
1268
1269static void noinline
1270loop_init (EV_P_ unsigned int flags)
1271{
1272 if (!backend)
395 { 1273 {
396#if HAVE_MONOTONIC 1274#if EV_USE_MONOTONIC
397 { 1275 {
398 struct timespec ts; 1276 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 1278 have_monotonic = 1;
401 } 1279 }
402#endif 1280#endif
403 1281
404 ev_now = ev_time (); 1282 ev_rt_now = ev_time ();
405 now = get_clock (); 1283 mn_now = get_clock ();
1284 now_floor = mn_now;
406 diff = ev_now - now; 1285 rtmn_diff = ev_rt_now - mn_now;
407 1286
408 if (pipe (sigpipe)) 1287 io_blocktime = 0.;
409 return 0; 1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
410 1295
411 ev_method = EVMETHOD_NONE; 1296 /* pid check not overridable via env */
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306
1307 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends ();
1309
1310#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif
1313#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1315#endif
412#if HAVE_EPOLL 1316#if EV_USE_EPOLL
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
414#endif 1318#endif
1319#if EV_USE_POLL
1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1321#endif
415#if HAVE_SELECT 1322#if EV_USE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
417#endif 1324#endif
418 1325
419 if (ev_method) 1326 ev_init (&pipeev, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI);
1328 }
1329}
1330
1331static void noinline
1332loop_destroy (EV_P)
1333{
1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
420 { 1347 {
421 evw_init (&sigev, sigcb); 1348 close (evpipe [0]);
422 siginit (); 1349 close (evpipe [1]);
423
424 evsignal_init (&childev, childcb, SIGCHLD);
425 evsignal_start (&childev);
426 } 1350 }
427 } 1351 }
428 1352
429 return ev_method; 1353#if EV_USE_INOTIFY
1354 if (fs_fd >= 0)
1355 close (fs_fd);
1356#endif
1357
1358 if (backend_fd >= 0)
1359 close (backend_fd);
1360
1361#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif
1364#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1366#endif
1367#if EV_USE_EPOLL
1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1369#endif
1370#if EV_USE_POLL
1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1372#endif
1373#if EV_USE_SELECT
1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1375#endif
1376
1377 for (i = NUMPRI; i--; )
1378 {
1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
1386
1387 /* have to use the microsoft-never-gets-it-right macro */
1388 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY);
1392#endif
1393#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY);
1395#endif
1396 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
1401
1402 backend = 0;
1403}
1404
1405#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P);
1407#endif
1408
1409void inline_size
1410loop_fork (EV_P)
1411{
1412#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif
1415#if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1417#endif
1418#if EV_USE_EPOLL
1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1420#endif
1421#if EV_USE_INOTIFY
1422 infy_fork (EV_A);
1423#endif
1424
1425 if (ev_is_active (&pipeev))
1426 {
1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454}
1455
1456#if EV_MULTIPLICITY
1457struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else
1490int
1491ev_default_loop (unsigned int flags)
1492#endif
1493{
1494 if (!ev_default_loop_ptr)
1495 {
1496#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1498#else
1499 ev_default_loop_ptr = 1;
1500#endif
1501
1502 loop_init (EV_A_ flags);
1503
1504 if (ev_backend (EV_A))
1505 {
1506#ifndef _WIN32
1507 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif
1512 }
1513 else
1514 ev_default_loop_ptr = 0;
1515 }
1516
1517 return ev_default_loop_ptr;
1518}
1519
1520void
1521ev_default_destroy (void)
1522{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
430} 1544}
431 1545
432/*****************************************************************************/ 1546/*****************************************************************************/
433 1547
434void 1548void
435ev_prefork (void) 1549ev_invoke (EV_P_ void *w, int revents)
436{ 1550{
437 /* nop */ 1551 EV_CB_INVOKE ((W)w, revents);
438} 1552}
439 1553
440void 1554void inline_speed
441ev_postfork_parent (void) 1555call_pending (EV_P)
442{ 1556{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void
464fd_reify (void)
465{
466 int i; 1557 int pri;
467 1558
468 for (i = 0; i < fdchangecnt; ++i) 1559 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri])
469 { 1561 {
470 int fd = fdchanges [i]; 1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473 1563
474 int wev = 0; 1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
475 1567
476 for (w = anfd->head; w; w = w->next) 1568 p->w->pending = 0;
477 wev |= w->events; 1569 EV_CB_INVOKE (p->w, p->events);
1570 }
1571 }
1572}
478 1573
479 if (anfd->wev != wev) 1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
480 { 1583 {
481 method_modify (fd, anfd->wev, wev); 1584 if (pendingcnt [pri])
482 anfd->wev = wev; 1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
483 } 1592 }
484 } 1593 }
485
486 fdchangecnt = 0;
487} 1594}
1595#endif
488 1596
489static void 1597void inline_size
490call_pending (void) 1598timers_reify (EV_P)
491{ 1599{
492 while (pendingcnt) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
493 {
494 ANPENDING *p = pendings + --pendingcnt;
495
496 if (p->w)
497 {
498 p->w->pending = 0;
499 p->w->cb (p->w, p->events);
500 }
501 } 1601 {
502} 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
503 1603
504static void 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512 1605
513 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
514 if (w->repeat) 1607 if (w->repeat)
515 { 1608 {
516 w->at = now + w->repeat; 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
517 assert (("timer timeout in the past, negative repeat?", w->at > now)); 1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
518 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
519 } 1617 }
520 else 1618 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 1620
525static void 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623}
1624
1625#if EV_PERIODIC_ENABLE
1626void inline_size
526periodics_reify (void) 1627periodics_reify (EV_P)
527{ 1628{
528 while (periodiccnt && periodics [0]->at <= ev_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
529 { 1630 {
530 struct ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
531 1634
532 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
533 if (w->interval) 1636 if (w->reschedule_cb)
534 { 1637 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
537 downheap ((WT *)periodics, periodiccnt, 0); 1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
538 } 1650 }
539 else 1651 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 1653
542 event ((W)w, EV_TIMEOUT); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
543 } 1655 }
544} 1656}
545 1657
546static void 1658static void noinline
547periodics_reschedule (ev_tstamp diff) 1659periodics_reschedule (EV_P)
548{ 1660{
549 int i; 1661 int i;
550 1662
551 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
553 { 1665 {
554 struct ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
555 1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
556 if (w->interval) 1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1679}
1680#endif
1681
1682void inline_speed
1683time_update (EV_P_ ev_tstamp max_block)
1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1692 mn_now = get_clock ();
1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
557 { 1697 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1698 ev_rt_now = rtmn_diff + mn_now;
1699 return;
1700 }
559 1701
560 if (fabs (diff) >= 1e-4) 1702 now_floor = mn_now;
1703 ev_rt_now = ev_time ();
1704
1705 /* loop a few times, before making important decisions.
1706 * on the choice of "4": one iteration isn't enough,
1707 * in case we get preempted during the calls to
1708 * ev_time and get_clock. a second call is almost guaranteed
1709 * to succeed in that case, though. and looping a few more times
1710 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here.
1712 */
1713 for (i = 4; --i; )
1714 {
1715 rtmn_diff = ev_rt_now - mn_now;
1716
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1718 return; /* all is well */
1719
1720 ev_rt_now = ev_time ();
1721 mn_now = get_clock ();
1722 now_floor = mn_now;
1723 }
1724
1725# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A);
1727# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 }
1731 else
1732#endif
1733 {
1734 ev_rt_now = ev_time ();
1735
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 {
1738#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A);
1740#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
561 { 1743 {
562 evperiodic_stop (w); 1744 ANHE *he = timers + i + HEAP0;
563 evperiodic_start (w); 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
564 1746 ANHE_at_set (*he);
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 1747 }
567 } 1748 }
568 }
569}
570 1749
571static void 1750 mn_now = ev_rt_now;
572time_update (void)
573{
574 int i;
575
576 ev_now = ev_time ();
577
578 if (have_monotonic)
579 { 1751 }
580 ev_tstamp odiff = diff; 1752}
581 1753
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1754void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags)
1770{
1771 loop_done = EVUNLOOP_CANCEL;
1772
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774
1775 do
1776 {
1777#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784#endif
1785
1786#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork))
1789 if (forkcnt)
1790 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A);
1793 }
1794#endif
1795
1796 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt))
583 { 1798 {
584 now = get_clock (); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
585 diff = ev_now - now; 1800 call_pending (EV_A);
586
587 if (fabs (odiff - diff) < MIN_TIMEJUMP)
588 return; /* all is well */
589
590 ev_now = ev_time ();
591 } 1801 }
592 1802
593 periodics_reschedule (diff - odiff); 1803 if (expect_false (!activecnt))
594 /* no timer adjustment, as the monotonic clock doesn't jump */ 1804 break;
595 }
596 else
597 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
599 {
600 periodics_reschedule (ev_now - now);
601 1805
602 /* adjust timers. this is easy, as the offset is the same for all */ 1806 /* we might have forked, so reify kernel state if necessary */
603 for (i = 0; i < timercnt; ++i) 1807 if (expect_false (postfork))
604 timers [i]->at += diff; 1808 loop_fork (EV_A);
605 }
606
607 now = ev_now;
608 }
609}
610
611int ev_loop_done;
612
613void ev_loop (int flags)
614{
615 double block;
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
617
618 do
619 {
620 /* queue check watchers (and execute them) */
621 if (preparecnt)
622 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
624 call_pending ();
625 }
626 1809
627 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
628 fd_reify (); 1811 fd_reify (EV_A);
629 1812
630 /* calculate blocking time */ 1813 /* calculate blocking time */
1814 {
1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
631 1817
632 /* we only need this for !monotonic clockor timers, but as we basically 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 { 1819 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
640 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
641 1824
642 if (timercnt) 1825 if (timercnt)
643 { 1826 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
645 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
646 } 1829 }
647 1830
1831#if EV_PERIODIC_ENABLE
648 if (periodiccnt) 1832 if (periodiccnt)
649 { 1833 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
651 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
652 } 1836 }
1837#endif
653 1838
654 if (block < 0.) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
655 } 1852 }
656 1853
657 method_poll (block); 1854 ++loop_count;
1855 backend_poll (EV_A_ waittime);
658 1856
659 /* update ev_now, do magic */ 1857 /* update ev_rt_now, do magic */
660 time_update (); 1858 time_update (EV_A_ waittime + sleeptime);
1859 }
661 1860
662 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1863#if EV_PERIODIC_ENABLE
664 periodics_reify (); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1865#endif
665 1866
1867#if EV_IDLE_ENABLE
666 /* queue idle watchers unless io or timers are pending */ 1868 /* queue idle watchers unless other events are pending */
667 if (!pendingcnt) 1869 idle_reify (EV_A);
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 1870#endif
669 1871
670 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
671 if (checkcnt) 1873 if (expect_false (checkcnt))
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 1875
674 call_pending (); 1876 call_pending (EV_A);
675 } 1877 }
676 while (!ev_loop_done); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
677 1883
678 if (ev_loop_done != 2) 1884 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL;
1886}
1887
1888void
1889ev_unloop (EV_P_ int how)
1890{
679 ev_loop_done = 0; 1891 loop_done = how;
680} 1892}
681 1893
682/*****************************************************************************/ 1894/*****************************************************************************/
683 1895
684static void 1896void inline_size
685wlist_add (WL *head, WL elem) 1897wlist_add (WL *head, WL elem)
686{ 1898{
687 elem->next = *head; 1899 elem->next = *head;
688 *head = elem; 1900 *head = elem;
689} 1901}
690 1902
691static void 1903void inline_size
692wlist_del (WL *head, WL elem) 1904wlist_del (WL *head, WL elem)
693{ 1905{
694 while (*head) 1906 while (*head)
695 { 1907 {
696 if (*head == elem) 1908 if (*head == elem)
701 1913
702 head = &(*head)->next; 1914 head = &(*head)->next;
703 } 1915 }
704} 1916}
705 1917
706static void 1918void inline_speed
707ev_clear (W w) 1919clear_pending (EV_P_ W w)
708{ 1920{
709 if (w->pending) 1921 if (w->pending)
710 { 1922 {
711 pendings [w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1924 w->pending = 0;
713 } 1925 }
714} 1926}
715 1927
716static void 1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1954void inline_speed
717ev_start (W w, int active) 1955ev_start (EV_P_ W w, int active)
718{ 1956{
1957 pri_adjust (EV_A_ w);
719 w->active = active; 1958 w->active = active;
1959 ev_ref (EV_A);
720} 1960}
721 1961
722static void 1962void inline_size
723ev_stop (W w) 1963ev_stop (EV_P_ W w)
724{ 1964{
1965 ev_unref (EV_A);
725 w->active = 0; 1966 w->active = 0;
726} 1967}
727 1968
728/*****************************************************************************/ 1969/*****************************************************************************/
729 1970
730void 1971void noinline
731evio_start (struct ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
732{ 1973{
1974 int fd = w->fd;
1975
733 if (ev_is_active (w)) 1976 if (expect_false (ev_is_active (w)))
734 return; 1977 return;
735 1978
736 int fd = w->fd; 1979 assert (("ev_io_start called with negative fd", fd >= 0));
737 1980
738 ev_start ((W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
741 1984
742 ++fdchangecnt; 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1986 w->events &= ~EV_IOFDSET;
744 fdchanges [fdchangecnt - 1] = fd;
745
746 if (w->fd == 9)
747 printf ("start %p:%x\n", w, w->events);//D
748} 1987}
749 1988
750void 1989void noinline
751evio_stop (struct ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
752{ 1991{
753 if (w->fd == 9) 1992 clear_pending (EV_A_ (W)w);
754 printf ("stop %p:%x\n", w, w->events);//D
755 ev_clear ((W)w);
756 if (!ev_is_active (w)) 1993 if (expect_false (!ev_is_active (w)))
757 return; 1994 return;
758 1995
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997
759 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
760 ev_stop ((W)w); 1999 ev_stop (EV_A_ (W)w);
761 2000
762 ++fdchangecnt; 2001 fd_change (EV_A_ w->fd, 1);
763 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
764 fdchanges [fdchangecnt - 1] = w->fd;
765} 2002}
766 2003
767void 2004void noinline
768evtimer_start (struct ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
769{ 2006{
770 if (ev_is_active (w)) 2007 if (expect_false (ev_is_active (w)))
771 return; 2008 return;
772 2009
773 w->at += now; 2010 ev_at (w) += mn_now;
774 2011
775 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
776 2013
777 ev_start ((W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
778 array_needsize (timers, timermax, timercnt, ); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
779 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
780 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
781} 2018 upheap (timers, ev_active (w));
782 2019
783void 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021}
2022
2023void noinline
784evtimer_stop (struct ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
785{ 2025{
786 ev_clear ((W)w); 2026 clear_pending (EV_A_ (W)w);
787 if (!ev_is_active (w)) 2027 if (expect_false (!ev_is_active (w)))
788 return; 2028 return;
789 2029
790 if (w->active < timercnt--) 2030 {
2031 int active = ev_active (w);
2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
2035 if (expect_true (active < timercnt + HEAP0 - 1))
791 { 2036 {
792 timers [w->active - 1] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
793 downheap ((WT *)timers, timercnt, w->active - 1); 2038 adjustheap (timers, timercnt, active);
794 } 2039 }
795 2040
796 w->at = w->repeat; 2041 --timercnt;
2042 }
797 2043
2044 ev_at (w) -= mn_now;
2045
798 ev_stop ((W)w); 2046 ev_stop (EV_A_ (W)w);
799} 2047}
800 2048
801void 2049void noinline
802evtimer_again (struct ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
803{ 2051{
804 if (ev_is_active (w)) 2052 if (ev_is_active (w))
805 { 2053 {
806 if (w->repeat) 2054 if (w->repeat)
807 { 2055 {
808 w->at = now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
809 downheap ((WT *)timers, timercnt, w->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
810 } 2059 }
811 else 2060 else
812 evtimer_stop (w); 2061 ev_timer_stop (EV_A_ w);
813 } 2062 }
814 else if (w->repeat) 2063 else if (w->repeat)
2064 {
2065 ev_at (w) = w->repeat;
815 evtimer_start (w); 2066 ev_timer_start (EV_A_ w);
2067 }
816} 2068}
817 2069
818void 2070#if EV_PERIODIC_ENABLE
2071void noinline
819evperiodic_start (struct ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
820{ 2073{
821 if (ev_is_active (w)) 2074 if (expect_false (ev_is_active (w)))
822 return; 2075 return;
823 2076
824 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2077 if (w->reschedule_cb)
825 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval)
2080 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
826 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
827 if (w->interval)
828 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 }
2085 else
2086 ev_at (w) = w->offset;
829 2087
830 ev_start ((W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
831 array_needsize (periodics, periodicmax, periodiccnt, ); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
832 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
833 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
834}
835 2092
836void 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094}
2095
2096void noinline
837evperiodic_stop (struct ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
838{ 2098{
839 ev_clear ((W)w); 2099 clear_pending (EV_A_ (W)w);
840 if (!ev_is_active (w)) 2100 if (expect_false (!ev_is_active (w)))
841 return; 2101 return;
842 2102
843 if (w->active < periodiccnt--) 2103 {
2104 int active = ev_active (w);
2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
844 { 2109 {
845 periodics [w->active - 1] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
846 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2111 adjustheap (periodics, periodiccnt, active);
847 } 2112 }
848 2113
2114 --periodiccnt;
2115 }
2116
849 ev_stop ((W)w); 2117 ev_stop (EV_A_ (W)w);
850} 2118}
851 2119
852void 2120void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w)
2122{
2123 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w);
2126}
2127#endif
2128
2129#ifndef SA_RESTART
2130# define SA_RESTART 0
2131#endif
2132
2133void noinline
853evsignal_start (struct ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
854{ 2135{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
855 if (ev_is_active (w)) 2139 if (expect_false (ev_is_active (w)))
856 return; 2140 return;
857 2141
858 ev_start ((W)w, 1); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
859 array_needsize (signals, signalmax, w->signum, signals_init); 2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
2160 ev_start (EV_A_ (W)w, 1);
860 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
861 2162
862 if (!w->next) 2163 if (!((WL)w)->next)
863 { 2164 {
2165#if _WIN32
2166 signal (w->signum, ev_sighandler);
2167#else
864 struct sigaction sa; 2168 struct sigaction sa;
865 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
866 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
867 sa.sa_flags = 0; 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
868 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
2173#endif
869 } 2174 }
870} 2175}
871 2176
872void 2177void noinline
873evsignal_stop (struct ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
874{ 2179{
875 ev_clear ((W)w); 2180 clear_pending (EV_A_ (W)w);
876 if (!ev_is_active (w)) 2181 if (expect_false (!ev_is_active (w)))
877 return; 2182 return;
878 2183
879 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
880 ev_stop ((W)w); 2185 ev_stop (EV_A_ (W)w);
881 2186
882 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
883 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
884} 2189}
885 2190
886void evidle_start (struct ev_idle *w) 2191void
2192ev_child_start (EV_P_ ev_child *w)
887{ 2193{
2194#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif
888 if (ev_is_active (w)) 2197 if (expect_false (ev_is_active (w)))
889 return; 2198 return;
890 2199
891 ev_start ((W)w, ++idlecnt); 2200 ev_start (EV_A_ (W)w, 1);
892 array_needsize (idles, idlemax, idlecnt, ); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
893 idles [idlecnt - 1] = w;
894} 2202}
895 2203
896void evidle_stop (struct ev_idle *w) 2204void
2205ev_child_stop (EV_P_ ev_child *w)
897{ 2206{
898 ev_clear ((W)w); 2207 clear_pending (EV_A_ (W)w);
899 if (ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
900 return; 2209 return;
901 2210
902 idles [w->active - 1] = idles [--idlecnt]; 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
903 ev_stop ((W)w); 2212 ev_stop (EV_A_ (W)w);
904} 2213}
905 2214
906void evprepare_start (struct ev_prepare *w) 2215#if EV_STAT_ENABLE
2216
2217# ifdef _WIN32
2218# undef lstat
2219# define lstat(a,b) _stati64 (a,b)
2220# endif
2221
2222#define DEF_STAT_INTERVAL 5.0074891
2223#define MIN_STAT_INTERVAL 0.1074891
2224
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226
2227#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229
2230static void noinline
2231infy_add (EV_P_ ev_stat *w)
907{ 2232{
908 if (ev_is_active (w)) 2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234
2235 if (w->wd < 0)
2236 {
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238
2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 {
2244 char path [4096];
2245 strcpy (path, w->path);
2246
2247 do
2248 {
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251
2252 char *pend = strrchr (path, '/');
2253
2254 if (!pend)
2255 break; /* whoops, no '/', complain to your admin */
2256
2257 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 }
2262 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265
2266 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2268}
2269
2270static void noinline
2271infy_del (EV_P_ ev_stat *w)
2272{
2273 int slot;
2274 int wd = w->wd;
2275
2276 if (wd < 0)
909 return; 2277 return;
910 2278
2279 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w);
2282
2283 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd);
2285}
2286
2287static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{
2290 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev);
2294 else
2295 {
2296 WL w_;
2297
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2299 {
2300 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */
2302
2303 if (w->wd == wd || wd == -1)
2304 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 {
2307 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */
2309 }
2310
2311 stat_timer_cb (EV_A_ &w->timer, 0);
2312 }
2313 }
2314 }
2315}
2316
2317static void
2318infy_cb (EV_P_ ev_io *w, int revents)
2319{
2320 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf));
2324
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327}
2328
2329void inline_size
2330infy_init (EV_P)
2331{
2332 if (fs_fd != -2)
2333 return;
2334
2335 fs_fd = inotify_init ();
2336
2337 if (fs_fd >= 0)
2338 {
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w);
2342 }
2343}
2344
2345void inline_size
2346infy_fork (EV_P)
2347{
2348 int slot;
2349
2350 if (fs_fd < 0)
2351 return;
2352
2353 close (fs_fd);
2354 fs_fd = inotify_init ();
2355
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 {
2358 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0;
2360
2361 while (w_)
2362 {
2363 ev_stat *w = (ev_stat *)w_;
2364 w_ = w_->next; /* lets us add this watcher */
2365
2366 w->wd = -1;
2367
2368 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else
2371 ev_timer_start (EV_A_ &w->timer);
2372 }
2373
2374 }
2375}
2376
2377#endif
2378
2379void
2380ev_stat_stat (EV_P_ ev_stat *w)
2381{
2382 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1;
2386}
2387
2388static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392
2393 /* we copy this here each the time so that */
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w);
2397
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
2411 ) {
2412 #if EV_USE_INOTIFY
2413 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */
2416 #endif
2417
2418 ev_feed_event (EV_A_ w, EV_STAT);
2419 }
2420}
2421
2422void
2423ev_stat_start (EV_P_ ev_stat *w)
2424{
2425 if (expect_false (ev_is_active (w)))
2426 return;
2427
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w);
2433
2434 if (w->interval < MIN_STAT_INTERVAL)
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2438 ev_set_priority (&w->timer, ev_priority (w));
2439
2440#if EV_USE_INOTIFY
2441 infy_init (EV_A);
2442
2443 if (fs_fd >= 0)
2444 infy_add (EV_A_ w);
2445 else
2446#endif
2447 ev_timer_start (EV_A_ &w->timer);
2448
2449 ev_start (EV_A_ (W)w, 1);
2450}
2451
2452void
2453ev_stat_stop (EV_P_ ev_stat *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w);
2461#endif
2462 ev_timer_stop (EV_A_ &w->timer);
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466#endif
2467
2468#if EV_IDLE_ENABLE
2469void
2470ev_idle_start (EV_P_ ev_idle *w)
2471{
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2481 ev_start (EV_A_ (W)w, active);
2482
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2486}
2487
2488void
2489ev_idle_stop (EV_P_ ev_idle *w)
2490{
2491 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w)))
2493 return;
2494
2495 {
2496 int active = ev_active (w);
2497
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2503 }
2504}
2505#endif
2506
2507void
2508ev_prepare_start (EV_P_ ev_prepare *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
911 ev_start ((W)w, ++preparecnt); 2513 ev_start (EV_A_ (W)w, ++preparecnt);
912 array_needsize (prepares, preparemax, preparecnt, ); 2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
913 prepares [preparecnt - 1] = w; 2515 prepares [preparecnt - 1] = w;
914} 2516}
915 2517
2518void
916void evprepare_stop (struct ev_prepare *w) 2519ev_prepare_stop (EV_P_ ev_prepare *w)
917{ 2520{
918 ev_clear ((W)w); 2521 clear_pending (EV_A_ (W)w);
919 if (ev_is_active (w)) 2522 if (expect_false (!ev_is_active (w)))
920 return; 2523 return;
921 2524
2525 {
2526 int active = ev_active (w);
2527
922 prepares [w->active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active;
2530 }
2531
923 ev_stop ((W)w); 2532 ev_stop (EV_A_ (W)w);
924} 2533}
925 2534
2535void
926void evcheck_start (struct ev_check *w) 2536ev_check_start (EV_P_ ev_check *w)
927{ 2537{
928 if (ev_is_active (w)) 2538 if (expect_false (ev_is_active (w)))
929 return; 2539 return;
930 2540
931 ev_start ((W)w, ++checkcnt); 2541 ev_start (EV_A_ (W)w, ++checkcnt);
932 array_needsize (checks, checkmax, checkcnt, ); 2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
933 checks [checkcnt - 1] = w; 2543 checks [checkcnt - 1] = w;
934} 2544}
935 2545
2546void
936void evcheck_stop (struct ev_check *w) 2547ev_check_stop (EV_P_ ev_check *w)
937{ 2548{
938 ev_clear ((W)w); 2549 clear_pending (EV_A_ (W)w);
939 if (ev_is_active (w)) 2550 if (expect_false (!ev_is_active (w)))
940 return; 2551 return;
941 2552
2553 {
2554 int active = ev_active (w);
2555
942 checks [w->active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active;
2558 }
2559
943 ev_stop ((W)w); 2560 ev_stop (EV_A_ (W)w);
944} 2561}
945 2562
946void evchild_start (struct ev_child *w) 2563#if EV_EMBED_ENABLE
2564void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w)
947{ 2566{
2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2568}
2569
2570static void
2571embed_io_cb (EV_P_ ev_io *io, int revents)
2572{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574
948 if (ev_is_active (w)) 2575 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2604
2605void
2606ev_embed_start (EV_P_ ev_embed *w)
2607{
2608 if (expect_false (ev_is_active (w)))
949 return; 2609 return;
950 2610
2611 {
2612 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 }
2616
2617 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
951 ev_start ((W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
952 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
953} 2627}
954 2628
955void evchild_stop (struct ev_child *w) 2629void
2630ev_embed_stop (EV_P_ ev_embed *w)
956{ 2631{
957 ev_clear ((W)w); 2632 clear_pending (EV_A_ (W)w);
958 if (ev_is_active (w)) 2633 if (expect_false (!ev_is_active (w)))
959 return; 2634 return;
960 2635
961 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2638
962 ev_stop ((W)w); 2639 ev_stop (EV_A_ (W)w);
963} 2640}
2641#endif
2642
2643#if EV_FORK_ENABLE
2644void
2645ev_fork_start (EV_P_ ev_fork *w)
2646{
2647 if (expect_false (ev_is_active (w)))
2648 return;
2649
2650 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w;
2653}
2654
2655void
2656ev_fork_stop (EV_P_ ev_fork *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 {
2663 int active = ev_active (w);
2664
2665 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active;
2667 }
2668
2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2709}
2710#endif
964 2711
965/*****************************************************************************/ 2712/*****************************************************************************/
966 2713
967struct ev_once 2714struct ev_once
968{ 2715{
969 struct ev_io io; 2716 ev_io io;
970 struct ev_timer to; 2717 ev_timer to;
971 void (*cb)(int revents, void *arg); 2718 void (*cb)(int revents, void *arg);
972 void *arg; 2719 void *arg;
973}; 2720};
974 2721
975static void 2722static void
976once_cb (struct ev_once *once, int revents) 2723once_cb (EV_P_ struct ev_once *once, int revents)
977{ 2724{
978 void (*cb)(int revents, void *arg) = once->cb; 2725 void (*cb)(int revents, void *arg) = once->cb;
979 void *arg = once->arg; 2726 void *arg = once->arg;
980 2727
981 evio_stop (&once->io); 2728 ev_io_stop (EV_A_ &once->io);
982 evtimer_stop (&once->to); 2729 ev_timer_stop (EV_A_ &once->to);
983 free (once); 2730 ev_free (once);
984 2731
985 cb (revents, arg); 2732 cb (revents, arg);
986} 2733}
987 2734
988static void 2735static void
989once_cb_io (struct ev_io *w, int revents) 2736once_cb_io (EV_P_ ev_io *w, int revents)
990{ 2737{
991 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
992} 2739}
993 2740
994static void 2741static void
995once_cb_to (struct ev_timer *w, int revents) 2742once_cb_to (EV_P_ ev_timer *w, int revents)
996{ 2743{
997 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
998} 2745}
999 2746
1000void 2747void
1001ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1002{ 2749{
1003 struct ev_once *once = malloc (sizeof (struct ev_once)); 2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1004 2751
1005 if (!once) 2752 if (expect_false (!once))
1006 cb (EV_ERROR, arg); 2753 {
1007 else 2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2755 return;
1008 { 2756 }
2757
1009 once->cb = cb; 2758 once->cb = cb;
1010 once->arg = arg; 2759 once->arg = arg;
1011 2760
1012 evw_init (&once->io, once_cb_io); 2761 ev_init (&once->io, once_cb_io);
1013
1014 if (fd >= 0) 2762 if (fd >= 0)
1015 { 2763 {
1016 evio_set (&once->io, fd, events); 2764 ev_io_set (&once->io, fd, events);
1017 evio_start (&once->io); 2765 ev_io_start (EV_A_ &once->io);
1018 } 2766 }
1019 2767
1020 evw_init (&once->to, once_cb_to); 2768 ev_init (&once->to, once_cb_to);
1021
1022 if (timeout >= 0.) 2769 if (timeout >= 0.)
1023 { 2770 {
1024 evtimer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
1025 evtimer_start (&once->to); 2772 ev_timer_start (EV_A_ &once->to);
1026 }
1027 }
1028}
1029
1030/*****************************************************************************/
1031
1032#if 0
1033
1034struct ev_io wio;
1035
1036static void
1037sin_cb (struct ev_io *w, int revents)
1038{
1039 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1040}
1041
1042static void
1043ocb (struct ev_timer *w, int revents)
1044{
1045 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1046 evtimer_stop (w);
1047 evtimer_start (w);
1048}
1049
1050static void
1051scb (struct ev_signal *w, int revents)
1052{
1053 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1054 evio_stop (&wio);
1055 evio_start (&wio);
1056}
1057
1058static void
1059gcb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "generic %x\n", revents);
1062
1063}
1064
1065int main (void)
1066{
1067 ev_init (0);
1068
1069 evio_init (&wio, sin_cb, 0, EV_READ);
1070 evio_start (&wio);
1071
1072 struct ev_timer t[10000];
1073
1074#if 0
1075 int i;
1076 for (i = 0; i < 10000; ++i)
1077 { 2773 }
1078 struct ev_timer *w = t + i;
1079 evw_init (w, ocb, i);
1080 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1081 evtimer_start (w);
1082 if (drand48 () < 0.5)
1083 evtimer_stop (w);
1084 }
1085#endif
1086
1087 struct ev_timer t1;
1088 evtimer_init (&t1, ocb, 5, 10);
1089 evtimer_start (&t1);
1090
1091 struct ev_signal sig;
1092 evsignal_init (&sig, scb, SIGQUIT);
1093 evsignal_start (&sig);
1094
1095 struct ev_check cw;
1096 evcheck_init (&cw, gcb);
1097 evcheck_start (&cw);
1098
1099 struct ev_idle iw;
1100 evidle_init (&iw, gcb);
1101 evidle_start (&iw);
1102
1103 ev_loop (0);
1104
1105 return 0;
1106} 2774}
1107 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
1108#endif 2778#endif
1109 2779
2780#ifdef __cplusplus
2781}
2782#endif
1110 2783
1111
1112

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines