ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.25 by root, Wed Oct 31 21:34:45 2007 UTC vs.
Revision 1.490 by root, Thu Jun 20 22:44:59 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met:
8 * 9 *
9 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
10 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
11 * 12 *
12 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
13 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
14 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
15 * with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
28 */ 38 */
29 39
30#include <math.h> 40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
31#include <stdlib.h> 177#include <stdlib.h>
32#include <unistd.h> 178#include <string.h>
33#include <fcntl.h> 179#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 180#include <stddef.h>
36 181
37#include <stdio.h> 182#include <stdio.h>
38 183
39#include <assert.h> 184#include <assert.h>
40#include <errno.h> 185#include <errno.h>
41#include <sys/types.h> 186#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 187#include <time.h>
188#include <limits.h>
45 189
46#ifndef HAVE_MONOTONIC 190#include <signal.h>
47# ifdef CLOCK_MONOTONIC 191
48# define HAVE_MONOTONIC 1 192#ifdef EV_H
193# include EV_H
194#else
195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
207#endif
208
209#ifndef _WIN32
210# include <sys/time.h>
211# include <sys/wait.h>
212# include <unistd.h>
213#else
214# include <io.h>
215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
217# include <windows.h>
218# ifndef EV_SELECT_IS_WINSOCKET
219# define EV_SELECT_IS_WINSOCKET 1
49# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
50#endif 260# endif
261#endif
51 262
52#ifndef HAVE_SELECT 263#if !(_POSIX_TIMERS > 0)
53# define HAVE_SELECT 1 264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
54#endif 266# endif
55 267# ifndef EV_USE_REALTIME
56#ifndef HAVE_EPOLL 268# define EV_USE_REALTIME 0
57# define HAVE_EPOLL 0
58#endif 269# endif
270#endif
59 271
60#ifndef HAVE_REALTIME 272#ifndef EV_USE_MONOTONIC
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
276# define EV_USE_MONOTONIC 0
62#endif 277# endif
278#endif
279
280#ifndef EV_USE_REALTIME
281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
290#endif
291
292#ifndef EV_USE_SELECT
293# define EV_USE_SELECT EV_FEATURE_BACKENDS
294#endif
295
296#ifndef EV_USE_POLL
297# ifdef _WIN32
298# define EV_USE_POLL 0
299# else
300# define EV_USE_POLL EV_FEATURE_BACKENDS
301# endif
302#endif
303
304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
308# define EV_USE_EPOLL 0
309# endif
310#endif
311
312#ifndef EV_USE_KQUEUE
313# define EV_USE_KQUEUE 0
314#endif
315
316#ifndef EV_USE_PORT
317# define EV_USE_PORT 0
318#endif
319
320#ifndef EV_USE_LINUXAIO
321# define EV_USE_LINUXAIO 0
322#endif
323
324#ifndef EV_USE_INOTIFY
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
326# define EV_USE_INOTIFY EV_FEATURE_OS
327# else
328# define EV_USE_INOTIFY 0
329# endif
330#endif
331
332#ifndef EV_PID_HASHSIZE
333# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_INOTIFY_HASHSIZE
337# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
338#endif
339
340#ifndef EV_USE_EVENTFD
341# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
342# define EV_USE_EVENTFD EV_FEATURE_OS
343# else
344# define EV_USE_EVENTFD 0
345# endif
346#endif
347
348#ifndef EV_USE_SIGNALFD
349# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
350# define EV_USE_SIGNALFD EV_FEATURE_OS
351# else
352# define EV_USE_SIGNALFD 0
353# endif
354#endif
355
356#if 0 /* debugging */
357# define EV_VERIFY 3
358# define EV_USE_4HEAP 1
359# define EV_HEAP_CACHE_AT 1
360#endif
361
362#ifndef EV_VERIFY
363# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
364#endif
365
366#ifndef EV_USE_4HEAP
367# define EV_USE_4HEAP EV_FEATURE_DATA
368#endif
369
370#ifndef EV_HEAP_CACHE_AT
371# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
372#endif
373
374#ifdef __ANDROID__
375/* supposedly, android doesn't typedef fd_mask */
376# undef EV_USE_SELECT
377# define EV_USE_SELECT 0
378/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
379# undef EV_USE_CLOCK_SYSCALL
380# define EV_USE_CLOCK_SYSCALL 0
381#endif
382
383/* aix's poll.h seems to cause lots of trouble */
384#ifdef _AIX
385/* AIX has a completely broken poll.h header */
386# undef EV_USE_POLL
387# define EV_USE_POLL 0
388#endif
389
390#if EV_USE_LINUXAIO
391# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
392#endif
393
394/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
395/* which makes programs even slower. might work on other unices, too. */
396#if EV_USE_CLOCK_SYSCALL
397# include <sys/syscall.h>
398# ifdef SYS_clock_gettime
399# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
400# undef EV_USE_MONOTONIC
401# define EV_USE_MONOTONIC 1
402# else
403# undef EV_USE_CLOCK_SYSCALL
404# define EV_USE_CLOCK_SYSCALL 0
405# endif
406#endif
407
408/* this block fixes any misconfiguration where we know we run into trouble otherwise */
409
410#ifndef CLOCK_MONOTONIC
411# undef EV_USE_MONOTONIC
412# define EV_USE_MONOTONIC 0
413#endif
414
415#ifndef CLOCK_REALTIME
416# undef EV_USE_REALTIME
417# define EV_USE_REALTIME 0
418#endif
419
420#if !EV_STAT_ENABLE
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423#endif
424
425#if !EV_USE_NANOSLEEP
426/* hp-ux has it in sys/time.h, which we unconditionally include above */
427# if !defined _WIN32 && !defined __hpux
428# include <sys/select.h>
429# endif
430#endif
431
432#if EV_USE_INOTIFY
433# include <sys/statfs.h>
434# include <sys/inotify.h>
435/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
436# ifndef IN_DONT_FOLLOW
437# undef EV_USE_INOTIFY
438# define EV_USE_INOTIFY 0
439# endif
440#endif
441
442#if EV_USE_EVENTFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef EFD_NONBLOCK
446# define EFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef EFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define EFD_CLOEXEC O_CLOEXEC
451# else
452# define EFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
456#endif
457
458#if EV_USE_SIGNALFD
459/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
460# include <stdint.h>
461# ifndef SFD_NONBLOCK
462# define SFD_NONBLOCK O_NONBLOCK
463# endif
464# ifndef SFD_CLOEXEC
465# ifdef O_CLOEXEC
466# define SFD_CLOEXEC O_CLOEXEC
467# else
468# define SFD_CLOEXEC 02000000
469# endif
470# endif
471EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
472
473struct signalfd_siginfo
474{
475 uint32_t ssi_signo;
476 char pad[128 - sizeof (uint32_t)];
477};
478#endif
479
480/**/
481
482#if EV_VERIFY >= 3
483# define EV_FREQUENT_CHECK ev_verify (EV_A)
484#else
485# define EV_FREQUENT_CHECK do { } while (0)
486#endif
487
488/*
489 * This is used to work around floating point rounding problems.
490 * This value is good at least till the year 4000.
491 */
492#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
493/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
63 494
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 495#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 496#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */
67 497
68#include "ev.h" 498#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
499#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
69 500
70typedef struct ev_watcher *W; 501/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
71typedef struct ev_watcher_list *WL; 502/* ECB.H BEGIN */
72typedef struct ev_watcher_time *WT; 503/*
504 * libecb - http://software.schmorp.de/pkg/libecb
505 *
506 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
507 * Copyright (©) 2011 Emanuele Giaquinta
508 * All rights reserved.
509 *
510 * Redistribution and use in source and binary forms, with or without modifica-
511 * tion, are permitted provided that the following conditions are met:
512 *
513 * 1. Redistributions of source code must retain the above copyright notice,
514 * this list of conditions and the following disclaimer.
515 *
516 * 2. Redistributions in binary form must reproduce the above copyright
517 * notice, this list of conditions and the following disclaimer in the
518 * documentation and/or other materials provided with the distribution.
519 *
520 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
521 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
522 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
523 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
524 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
525 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
526 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
527 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
528 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
529 * OF THE POSSIBILITY OF SUCH DAMAGE.
530 *
531 * Alternatively, the contents of this file may be used under the terms of
532 * the GNU General Public License ("GPL") version 2 or any later version,
533 * in which case the provisions of the GPL are applicable instead of
534 * the above. If you wish to allow the use of your version of this file
535 * only under the terms of the GPL and not to allow others to use your
536 * version of this file under the BSD license, indicate your decision
537 * by deleting the provisions above and replace them with the notice
538 * and other provisions required by the GPL. If you do not delete the
539 * provisions above, a recipient may use your version of this file under
540 * either the BSD or the GPL.
541 */
73 542
74static ev_tstamp now, diff; /* monotonic clock */ 543#ifndef ECB_H
75ev_tstamp ev_now; 544#define ECB_H
76int ev_method;
77 545
78static int have_monotonic; /* runtime */ 546/* 16 bits major, 16 bits minor */
547#define ECB_VERSION 0x00010005
79 548
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 549#ifdef _WIN32
81static void (*method_modify)(int fd, int oev, int nev); 550 typedef signed char int8_t;
82static void (*method_poll)(ev_tstamp timeout); 551 typedef unsigned char uint8_t;
552 typedef signed short int16_t;
553 typedef unsigned short uint16_t;
554 typedef signed int int32_t;
555 typedef unsigned int uint32_t;
556 #if __GNUC__
557 typedef signed long long int64_t;
558 typedef unsigned long long uint64_t;
559 #else /* _MSC_VER || __BORLANDC__ */
560 typedef signed __int64 int64_t;
561 typedef unsigned __int64 uint64_t;
562 #endif
563 #ifdef _WIN64
564 #define ECB_PTRSIZE 8
565 typedef uint64_t uintptr_t;
566 typedef int64_t intptr_t;
567 #else
568 #define ECB_PTRSIZE 4
569 typedef uint32_t uintptr_t;
570 typedef int32_t intptr_t;
571 #endif
572#else
573 #include <inttypes.h>
574 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
575 #define ECB_PTRSIZE 8
576 #else
577 #define ECB_PTRSIZE 4
578 #endif
579#endif
580
581#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
582#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
583
584/* work around x32 idiocy by defining proper macros */
585#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
586 #if _ILP32
587 #define ECB_AMD64_X32 1
588 #else
589 #define ECB_AMD64 1
590 #endif
591#endif
592
593/* many compilers define _GNUC_ to some versions but then only implement
594 * what their idiot authors think are the "more important" extensions,
595 * causing enormous grief in return for some better fake benchmark numbers.
596 * or so.
597 * we try to detect these and simply assume they are not gcc - if they have
598 * an issue with that they should have done it right in the first place.
599 */
600#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
601 #define ECB_GCC_VERSION(major,minor) 0
602#else
603 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
604#endif
605
606#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
607
608#if __clang__ && defined __has_builtin
609 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
610#else
611 #define ECB_CLANG_BUILTIN(x) 0
612#endif
613
614#if __clang__ && defined __has_extension
615 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
616#else
617 #define ECB_CLANG_EXTENSION(x) 0
618#endif
619
620#define ECB_CPP (__cplusplus+0)
621#define ECB_CPP11 (__cplusplus >= 201103L)
622#define ECB_CPP14 (__cplusplus >= 201402L)
623#define ECB_CPP17 (__cplusplus >= 201703L)
624
625#if ECB_CPP
626 #define ECB_C 0
627 #define ECB_STDC_VERSION 0
628#else
629 #define ECB_C 1
630 #define ECB_STDC_VERSION __STDC_VERSION__
631#endif
632
633#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
634#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
635#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
636
637#if ECB_CPP
638 #define ECB_EXTERN_C extern "C"
639 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
640 #define ECB_EXTERN_C_END }
641#else
642 #define ECB_EXTERN_C extern
643 #define ECB_EXTERN_C_BEG
644 #define ECB_EXTERN_C_END
645#endif
83 646
84/*****************************************************************************/ 647/*****************************************************************************/
85 648
649/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
650/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
651
652#if ECB_NO_THREADS
653 #define ECB_NO_SMP 1
654#endif
655
656#if ECB_NO_SMP
657 #define ECB_MEMORY_FENCE do { } while (0)
658#endif
659
660/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
661#if __xlC__ && ECB_CPP
662 #include <builtins.h>
663#endif
664
665#if 1400 <= _MSC_VER
666 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #if __i386 || __i386__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
673 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
674 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
675 #elif ECB_GCC_AMD64
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
677 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
679 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
681 #elif defined __ARM_ARCH_2__ \
682 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
683 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
684 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
685 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
686 || defined __ARM_ARCH_5TEJ__
687 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
688 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
689 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
690 || defined __ARM_ARCH_6T2__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
692 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
693 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
695 #elif __aarch64__
696 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
697 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
699 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
701 #elif defined __s390__ || defined __s390x__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
703 #elif defined __mips__
704 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
705 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
707 #elif defined __alpha__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
709 #elif defined __hppa__
710 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
711 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
712 #elif defined __ia64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
714 #elif defined __m68k__
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
716 #elif defined __m88k__
717 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
718 #elif defined __sh__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
720 #endif
721 #endif
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(4,7)
726 /* see comment below (stdatomic.h) about the C11 memory model. */
727 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
728 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
729 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
730
731 #elif ECB_CLANG_EXTENSION(c_atomic)
732 /* see comment below (stdatomic.h) about the C11 memory model. */
733 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
734 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
735 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
736
737 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
738 #define ECB_MEMORY_FENCE __sync_synchronize ()
739 #elif _MSC_VER >= 1500 /* VC++ 2008 */
740 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
741 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
742 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
743 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
744 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
745 #elif _MSC_VER >= 1400 /* VC++ 2005 */
746 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
747 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
749 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
750 #elif defined _WIN32
751 #include <WinNT.h>
752 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
753 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
754 #include <mbarrier.h>
755 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
756 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
757 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
758 #elif __xlC__
759 #define ECB_MEMORY_FENCE __sync ()
760 #endif
761#endif
762
763#ifndef ECB_MEMORY_FENCE
764 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
765 /* we assume that these memory fences work on all variables/all memory accesses, */
766 /* not just C11 atomics and atomic accesses */
767 #include <stdatomic.h>
768 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
769 /* any fence other than seq_cst, which isn't very efficient for us. */
770 /* Why that is, we don't know - either the C11 memory model is quite useless */
771 /* for most usages, or gcc and clang have a bug */
772 /* I *currently* lean towards the latter, and inefficiently implement */
773 /* all three of ecb's fences as a seq_cst fence */
774 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
775 /* for all __atomic_thread_fence's except seq_cst */
776 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if !ECB_AVOID_PTHREADS
782 /*
783 * if you get undefined symbol references to pthread_mutex_lock,
784 * or failure to find pthread.h, then you should implement
785 * the ECB_MEMORY_FENCE operations for your cpu/compiler
786 * OR provide pthread.h and link against the posix thread library
787 * of your system.
788 */
789 #include <pthread.h>
790 #define ECB_NEEDS_PTHREADS 1
791 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
792
793 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
794 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
795 #endif
796#endif
797
798#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
799 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
800#endif
801
802#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
803 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
804#endif
805
806/*****************************************************************************/
807
808#if ECB_CPP
809 #define ecb_inline static inline
810#elif ECB_GCC_VERSION(2,5)
811 #define ecb_inline static __inline__
812#elif ECB_C99
813 #define ecb_inline static inline
814#else
815 #define ecb_inline static
816#endif
817
818#if ECB_GCC_VERSION(3,3)
819 #define ecb_restrict __restrict__
820#elif ECB_C99
821 #define ecb_restrict restrict
822#else
823 #define ecb_restrict
824#endif
825
826typedef int ecb_bool;
827
828#define ECB_CONCAT_(a, b) a ## b
829#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
830#define ECB_STRINGIFY_(a) # a
831#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
832#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
833
834#define ecb_function_ ecb_inline
835
836#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
837 #define ecb_attribute(attrlist) __attribute__ (attrlist)
838#else
839 #define ecb_attribute(attrlist)
840#endif
841
842#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
843 #define ecb_is_constant(expr) __builtin_constant_p (expr)
844#else
845 /* possible C11 impl for integral types
846 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
847 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
848
849 #define ecb_is_constant(expr) 0
850#endif
851
852#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
853 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
854#else
855 #define ecb_expect(expr,value) (expr)
856#endif
857
858#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
859 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
860#else
861 #define ecb_prefetch(addr,rw,locality)
862#endif
863
864/* no emulation for ecb_decltype */
865#if ECB_CPP11
866 // older implementations might have problems with decltype(x)::type, work around it
867 template<class T> struct ecb_decltype_t { typedef T type; };
868 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
869#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
870 #define ecb_decltype(x) __typeof__ (x)
871#endif
872
873#if _MSC_VER >= 1300
874 #define ecb_deprecated __declspec (deprecated)
875#else
876 #define ecb_deprecated ecb_attribute ((__deprecated__))
877#endif
878
879#if _MSC_VER >= 1500
880 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
881#elif ECB_GCC_VERSION(4,5)
882 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
883#else
884 #define ecb_deprecated_message(msg) ecb_deprecated
885#endif
886
887#if _MSC_VER >= 1400
888 #define ecb_noinline __declspec (noinline)
889#else
890 #define ecb_noinline ecb_attribute ((__noinline__))
891#endif
892
893#define ecb_unused ecb_attribute ((__unused__))
894#define ecb_const ecb_attribute ((__const__))
895#define ecb_pure ecb_attribute ((__pure__))
896
897#if ECB_C11 || __IBMC_NORETURN
898 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
899 #define ecb_noreturn _Noreturn
900#elif ECB_CPP11
901 #define ecb_noreturn [[noreturn]]
902#elif _MSC_VER >= 1200
903 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
904 #define ecb_noreturn __declspec (noreturn)
905#else
906 #define ecb_noreturn ecb_attribute ((__noreturn__))
907#endif
908
909#if ECB_GCC_VERSION(4,3)
910 #define ecb_artificial ecb_attribute ((__artificial__))
911 #define ecb_hot ecb_attribute ((__hot__))
912 #define ecb_cold ecb_attribute ((__cold__))
913#else
914 #define ecb_artificial
915 #define ecb_hot
916 #define ecb_cold
917#endif
918
919/* put around conditional expressions if you are very sure that the */
920/* expression is mostly true or mostly false. note that these return */
921/* booleans, not the expression. */
922#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
923#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
924/* for compatibility to the rest of the world */
925#define ecb_likely(expr) ecb_expect_true (expr)
926#define ecb_unlikely(expr) ecb_expect_false (expr)
927
928/* count trailing zero bits and count # of one bits */
929#if ECB_GCC_VERSION(3,4) \
930 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
931 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
932 && ECB_CLANG_BUILTIN(__builtin_popcount))
933 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
934 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
935 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
936 #define ecb_ctz32(x) __builtin_ctz (x)
937 #define ecb_ctz64(x) __builtin_ctzll (x)
938 #define ecb_popcount32(x) __builtin_popcount (x)
939 /* no popcountll */
940#else
941 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz32 (uint32_t x)
944 {
945#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
946 unsigned long r;
947 _BitScanForward (&r, x);
948 return (int)r;
949#else
950 int r = 0;
951
952 x &= ~x + 1; /* this isolates the lowest bit */
953
954#if ECB_branchless_on_i386
955 r += !!(x & 0xaaaaaaaa) << 0;
956 r += !!(x & 0xcccccccc) << 1;
957 r += !!(x & 0xf0f0f0f0) << 2;
958 r += !!(x & 0xff00ff00) << 3;
959 r += !!(x & 0xffff0000) << 4;
960#else
961 if (x & 0xaaaaaaaa) r += 1;
962 if (x & 0xcccccccc) r += 2;
963 if (x & 0xf0f0f0f0) r += 4;
964 if (x & 0xff00ff00) r += 8;
965 if (x & 0xffff0000) r += 16;
966#endif
967
968 return r;
969#endif
970 }
971
972 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
973 ecb_function_ ecb_const int
974 ecb_ctz64 (uint64_t x)
975 {
976#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
977 unsigned long r;
978 _BitScanForward64 (&r, x);
979 return (int)r;
980#else
981 int shift = x & 0xffffffff ? 0 : 32;
982 return ecb_ctz32 (x >> shift) + shift;
983#endif
984 }
985
986 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
987 ecb_function_ ecb_const int
988 ecb_popcount32 (uint32_t x)
989 {
990 x -= (x >> 1) & 0x55555555;
991 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
992 x = ((x >> 4) + x) & 0x0f0f0f0f;
993 x *= 0x01010101;
994
995 return x >> 24;
996 }
997
998 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
999 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1000 {
1001#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1002 unsigned long r;
1003 _BitScanReverse (&r, x);
1004 return (int)r;
1005#else
1006 int r = 0;
1007
1008 if (x >> 16) { x >>= 16; r += 16; }
1009 if (x >> 8) { x >>= 8; r += 8; }
1010 if (x >> 4) { x >>= 4; r += 4; }
1011 if (x >> 2) { x >>= 2; r += 2; }
1012 if (x >> 1) { r += 1; }
1013
1014 return r;
1015#endif
1016 }
1017
1018 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1019 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1020 {
1021#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1022 unsigned long r;
1023 _BitScanReverse64 (&r, x);
1024 return (int)r;
1025#else
1026 int r = 0;
1027
1028 if (x >> 32) { x >>= 32; r += 32; }
1029
1030 return r + ecb_ld32 (x);
1031#endif
1032 }
1033#endif
1034
1035ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1036ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1037ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1038ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1039
1040ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1041ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1042{
1043 return ( (x * 0x0802U & 0x22110U)
1044 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1045}
1046
1047ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1048ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1049{
1050 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1051 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1052 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1053 x = ( x >> 8 ) | ( x << 8);
1054
1055 return x;
1056}
1057
1058ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1059ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1060{
1061 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1062 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1063 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1064 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1065 x = ( x >> 16 ) | ( x << 16);
1066
1067 return x;
1068}
1069
1070/* popcount64 is only available on 64 bit cpus as gcc builtin */
1071/* so for this version we are lazy */
1072ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1073ecb_function_ ecb_const int
1074ecb_popcount64 (uint64_t x)
1075{
1076 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1077}
1078
1079ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1080ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1081ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1082ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1083ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1084ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1085ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1086ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1087
1088ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1089ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1090ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1091ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1092ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1093ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1094ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1095ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1096
1097#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1098 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1099 #define ecb_bswap16(x) __builtin_bswap16 (x)
1100 #else
1101 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1102 #endif
1103 #define ecb_bswap32(x) __builtin_bswap32 (x)
1104 #define ecb_bswap64(x) __builtin_bswap64 (x)
1105#elif _MSC_VER
1106 #include <stdlib.h>
1107 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1108 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1109 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1110#else
1111 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1112 ecb_function_ ecb_const uint16_t
1113 ecb_bswap16 (uint16_t x)
1114 {
1115 return ecb_rotl16 (x, 8);
1116 }
1117
1118 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1119 ecb_function_ ecb_const uint32_t
1120 ecb_bswap32 (uint32_t x)
1121 {
1122 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1123 }
1124
1125 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1126 ecb_function_ ecb_const uint64_t
1127 ecb_bswap64 (uint64_t x)
1128 {
1129 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1130 }
1131#endif
1132
1133#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1134 #define ecb_unreachable() __builtin_unreachable ()
1135#else
1136 /* this seems to work fine, but gcc always emits a warning for it :/ */
1137 ecb_inline ecb_noreturn void ecb_unreachable (void);
1138 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1139#endif
1140
1141/* try to tell the compiler that some condition is definitely true */
1142#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1143
1144ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1145ecb_inline ecb_const uint32_t
1146ecb_byteorder_helper (void)
1147{
1148 /* the union code still generates code under pressure in gcc, */
1149 /* but less than using pointers, and always seems to */
1150 /* successfully return a constant. */
1151 /* the reason why we have this horrible preprocessor mess */
1152 /* is to avoid it in all cases, at least on common architectures */
1153 /* or when using a recent enough gcc version (>= 4.6) */
1154#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1155 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1156 #define ECB_LITTLE_ENDIAN 1
1157 return 0x44332211;
1158#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1159 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1160 #define ECB_BIG_ENDIAN 1
1161 return 0x11223344;
1162#else
1163 union
1164 {
1165 uint8_t c[4];
1166 uint32_t u;
1167 } u = { 0x11, 0x22, 0x33, 0x44 };
1168 return u.u;
1169#endif
1170}
1171
1172ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1173ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1174ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1175ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1176
1177#if ECB_GCC_VERSION(3,0) || ECB_C99
1178 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1179#else
1180 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1181#endif
1182
1183#if ECB_CPP
1184 template<typename T>
1185 static inline T ecb_div_rd (T val, T div)
1186 {
1187 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1188 }
1189 template<typename T>
1190 static inline T ecb_div_ru (T val, T div)
1191 {
1192 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1193 }
1194#else
1195 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1196 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1197#endif
1198
1199#if ecb_cplusplus_does_not_suck
1200 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1201 template<typename T, int N>
1202 static inline int ecb_array_length (const T (&arr)[N])
1203 {
1204 return N;
1205 }
1206#else
1207 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1208#endif
1209
1210ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1211ecb_function_ ecb_const uint32_t
1212ecb_binary16_to_binary32 (uint32_t x)
1213{
1214 unsigned int s = (x & 0x8000) << (31 - 15);
1215 int e = (x >> 10) & 0x001f;
1216 unsigned int m = x & 0x03ff;
1217
1218 if (ecb_expect_false (e == 31))
1219 /* infinity or NaN */
1220 e = 255 - (127 - 15);
1221 else if (ecb_expect_false (!e))
1222 {
1223 if (ecb_expect_true (!m))
1224 /* zero, handled by code below by forcing e to 0 */
1225 e = 0 - (127 - 15);
1226 else
1227 {
1228 /* subnormal, renormalise */
1229 unsigned int s = 10 - ecb_ld32 (m);
1230
1231 m = (m << s) & 0x3ff; /* mask implicit bit */
1232 e -= s - 1;
1233 }
1234 }
1235
1236 /* e and m now are normalised, or zero, (or inf or nan) */
1237 e += 127 - 15;
1238
1239 return s | (e << 23) | (m << (23 - 10));
1240}
1241
1242ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1243ecb_function_ ecb_const uint16_t
1244ecb_binary32_to_binary16 (uint32_t x)
1245{
1246 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1247 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1248 unsigned int m = x & 0x007fffff;
1249
1250 x &= 0x7fffffff;
1251
1252 /* if it's within range of binary16 normals, use fast path */
1253 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1254 {
1255 /* mantissa round-to-even */
1256 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1257
1258 /* handle overflow */
1259 if (ecb_expect_false (m >= 0x00800000))
1260 {
1261 m >>= 1;
1262 e += 1;
1263 }
1264
1265 return s | (e << 10) | (m >> (23 - 10));
1266 }
1267
1268 /* handle large numbers and infinity */
1269 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1270 return s | 0x7c00;
1271
1272 /* handle zero, subnormals and small numbers */
1273 if (ecb_expect_true (x < 0x38800000))
1274 {
1275 /* zero */
1276 if (ecb_expect_true (!x))
1277 return s;
1278
1279 /* handle subnormals */
1280
1281 /* too small, will be zero */
1282 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1283 return s;
1284
1285 m |= 0x00800000; /* make implicit bit explicit */
1286
1287 /* very tricky - we need to round to the nearest e (+10) bit value */
1288 {
1289 unsigned int bits = 14 - e;
1290 unsigned int half = (1 << (bits - 1)) - 1;
1291 unsigned int even = (m >> bits) & 1;
1292
1293 /* if this overflows, we will end up with a normalised number */
1294 m = (m + half + even) >> bits;
1295 }
1296
1297 return s | m;
1298 }
1299
1300 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1301 m >>= 13;
1302
1303 return s | 0x7c00 | m | !m;
1304}
1305
1306/*******************************************************************************/
1307/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1308
1309/* basically, everything uses "ieee pure-endian" floating point numbers */
1310/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1311#if 0 \
1312 || __i386 || __i386__ \
1313 || ECB_GCC_AMD64 \
1314 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1315 || defined __s390__ || defined __s390x__ \
1316 || defined __mips__ \
1317 || defined __alpha__ \
1318 || defined __hppa__ \
1319 || defined __ia64__ \
1320 || defined __m68k__ \
1321 || defined __m88k__ \
1322 || defined __sh__ \
1323 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1324 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1325 || defined __aarch64__
1326 #define ECB_STDFP 1
1327 #include <string.h> /* for memcpy */
1328#else
1329 #define ECB_STDFP 0
1330#endif
1331
1332#ifndef ECB_NO_LIBM
1333
1334 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1335
1336 /* only the oldest of old doesn't have this one. solaris. */
1337 #ifdef INFINITY
1338 #define ECB_INFINITY INFINITY
1339 #else
1340 #define ECB_INFINITY HUGE_VAL
1341 #endif
1342
1343 #ifdef NAN
1344 #define ECB_NAN NAN
1345 #else
1346 #define ECB_NAN ECB_INFINITY
1347 #endif
1348
1349 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1350 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1351 #define ecb_frexpf(x,e) frexpf ((x), (e))
1352 #else
1353 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1354 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1355 #endif
1356
1357 /* convert a float to ieee single/binary32 */
1358 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1359 ecb_function_ ecb_const uint32_t
1360 ecb_float_to_binary32 (float x)
1361 {
1362 uint32_t r;
1363
1364 #if ECB_STDFP
1365 memcpy (&r, &x, 4);
1366 #else
1367 /* slow emulation, works for anything but -0 */
1368 uint32_t m;
1369 int e;
1370
1371 if (x == 0e0f ) return 0x00000000U;
1372 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1373 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1374 if (x != x ) return 0x7fbfffffU;
1375
1376 m = ecb_frexpf (x, &e) * 0x1000000U;
1377
1378 r = m & 0x80000000U;
1379
1380 if (r)
1381 m = -m;
1382
1383 if (e <= -126)
1384 {
1385 m &= 0xffffffU;
1386 m >>= (-125 - e);
1387 e = -126;
1388 }
1389
1390 r |= (e + 126) << 23;
1391 r |= m & 0x7fffffU;
1392 #endif
1393
1394 return r;
1395 }
1396
1397 /* converts an ieee single/binary32 to a float */
1398 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1399 ecb_function_ ecb_const float
1400 ecb_binary32_to_float (uint32_t x)
1401 {
1402 float r;
1403
1404 #if ECB_STDFP
1405 memcpy (&r, &x, 4);
1406 #else
1407 /* emulation, only works for normals and subnormals and +0 */
1408 int neg = x >> 31;
1409 int e = (x >> 23) & 0xffU;
1410
1411 x &= 0x7fffffU;
1412
1413 if (e)
1414 x |= 0x800000U;
1415 else
1416 e = 1;
1417
1418 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1419 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1420
1421 r = neg ? -r : r;
1422 #endif
1423
1424 return r;
1425 }
1426
1427 /* convert a double to ieee double/binary64 */
1428 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1429 ecb_function_ ecb_const uint64_t
1430 ecb_double_to_binary64 (double x)
1431 {
1432 uint64_t r;
1433
1434 #if ECB_STDFP
1435 memcpy (&r, &x, 8);
1436 #else
1437 /* slow emulation, works for anything but -0 */
1438 uint64_t m;
1439 int e;
1440
1441 if (x == 0e0 ) return 0x0000000000000000U;
1442 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1443 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1444 if (x != x ) return 0X7ff7ffffffffffffU;
1445
1446 m = frexp (x, &e) * 0x20000000000000U;
1447
1448 r = m & 0x8000000000000000;;
1449
1450 if (r)
1451 m = -m;
1452
1453 if (e <= -1022)
1454 {
1455 m &= 0x1fffffffffffffU;
1456 m >>= (-1021 - e);
1457 e = -1022;
1458 }
1459
1460 r |= ((uint64_t)(e + 1022)) << 52;
1461 r |= m & 0xfffffffffffffU;
1462 #endif
1463
1464 return r;
1465 }
1466
1467 /* converts an ieee double/binary64 to a double */
1468 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1469 ecb_function_ ecb_const double
1470 ecb_binary64_to_double (uint64_t x)
1471 {
1472 double r;
1473
1474 #if ECB_STDFP
1475 memcpy (&r, &x, 8);
1476 #else
1477 /* emulation, only works for normals and subnormals and +0 */
1478 int neg = x >> 63;
1479 int e = (x >> 52) & 0x7ffU;
1480
1481 x &= 0xfffffffffffffU;
1482
1483 if (e)
1484 x |= 0x10000000000000U;
1485 else
1486 e = 1;
1487
1488 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1489 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1490
1491 r = neg ? -r : r;
1492 #endif
1493
1494 return r;
1495 }
1496
1497 /* convert a float to ieee half/binary16 */
1498 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1499 ecb_function_ ecb_const uint16_t
1500 ecb_float_to_binary16 (float x)
1501 {
1502 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1503 }
1504
1505 /* convert an ieee half/binary16 to float */
1506 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1507 ecb_function_ ecb_const float
1508 ecb_binary16_to_float (uint16_t x)
1509 {
1510 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1511 }
1512
1513#endif
1514
1515#endif
1516
1517/* ECB.H END */
1518
1519#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1520/* if your architecture doesn't need memory fences, e.g. because it is
1521 * single-cpu/core, or if you use libev in a project that doesn't use libev
1522 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1523 * libev, in which cases the memory fences become nops.
1524 * alternatively, you can remove this #error and link against libpthread,
1525 * which will then provide the memory fences.
1526 */
1527# error "memory fences not defined for your architecture, please report"
1528#endif
1529
1530#ifndef ECB_MEMORY_FENCE
1531# define ECB_MEMORY_FENCE do { } while (0)
1532# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1533# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1534#endif
1535
1536#define expect_false(cond) ecb_expect_false (cond)
1537#define expect_true(cond) ecb_expect_true (cond)
1538#define noinline ecb_noinline
1539
1540#define inline_size ecb_inline
1541
1542#if EV_FEATURE_CODE
1543# define inline_speed ecb_inline
1544#else
1545# define inline_speed noinline static
1546#endif
1547
1548#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1549
1550#if EV_MINPRI == EV_MAXPRI
1551# define ABSPRI(w) (((W)w), 0)
1552#else
1553# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1554#endif
1555
1556#define EMPTY /* required for microsofts broken pseudo-c compiler */
1557
1558typedef ev_watcher *W;
1559typedef ev_watcher_list *WL;
1560typedef ev_watcher_time *WT;
1561
1562#define ev_active(w) ((W)(w))->active
1563#define ev_at(w) ((WT)(w))->at
1564
1565#if EV_USE_REALTIME
1566/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1567/* giving it a reasonably high chance of working on typical architectures */
1568static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1569#endif
1570
1571#if EV_USE_MONOTONIC
1572static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1573#endif
1574
1575#ifndef EV_FD_TO_WIN32_HANDLE
1576# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1577#endif
1578#ifndef EV_WIN32_HANDLE_TO_FD
1579# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1580#endif
1581#ifndef EV_WIN32_CLOSE_FD
1582# define EV_WIN32_CLOSE_FD(fd) close (fd)
1583#endif
1584
1585#ifdef _WIN32
1586# include "ev_win32.c"
1587#endif
1588
1589/*****************************************************************************/
1590
1591/* define a suitable floor function (only used by periodics atm) */
1592
1593#if EV_USE_FLOOR
1594# include <math.h>
1595# define ev_floor(v) floor (v)
1596#else
1597
1598#include <float.h>
1599
1600/* a floor() replacement function, should be independent of ev_tstamp type */
1601noinline
1602static ev_tstamp
1603ev_floor (ev_tstamp v)
1604{
1605 /* the choice of shift factor is not terribly important */
1606#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1607 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1608#else
1609 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1610#endif
1611
1612 /* argument too large for an unsigned long? */
1613 if (expect_false (v >= shift))
1614 {
1615 ev_tstamp f;
1616
1617 if (v == v - 1.)
1618 return v; /* very large number */
1619
1620 f = shift * ev_floor (v * (1. / shift));
1621 return f + ev_floor (v - f);
1622 }
1623
1624 /* special treatment for negative args? */
1625 if (expect_false (v < 0.))
1626 {
1627 ev_tstamp f = -ev_floor (-v);
1628
1629 return f - (f == v ? 0 : 1);
1630 }
1631
1632 /* fits into an unsigned long */
1633 return (unsigned long)v;
1634}
1635
1636#endif
1637
1638/*****************************************************************************/
1639
1640#ifdef __linux
1641# include <sys/utsname.h>
1642#endif
1643
1644noinline ecb_cold
1645static unsigned int
1646ev_linux_version (void)
1647{
1648#ifdef __linux
1649 unsigned int v = 0;
1650 struct utsname buf;
1651 int i;
1652 char *p = buf.release;
1653
1654 if (uname (&buf))
1655 return 0;
1656
1657 for (i = 3+1; --i; )
1658 {
1659 unsigned int c = 0;
1660
1661 for (;;)
1662 {
1663 if (*p >= '0' && *p <= '9')
1664 c = c * 10 + *p++ - '0';
1665 else
1666 {
1667 p += *p == '.';
1668 break;
1669 }
1670 }
1671
1672 v = (v << 8) | c;
1673 }
1674
1675 return v;
1676#else
1677 return 0;
1678#endif
1679}
1680
1681/*****************************************************************************/
1682
1683#if EV_AVOID_STDIO
1684noinline ecb_cold
1685static void
1686ev_printerr (const char *msg)
1687{
1688 write (STDERR_FILENO, msg, strlen (msg));
1689}
1690#endif
1691
1692static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1693
1694ecb_cold
1695void
1696ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1697{
1698 syserr_cb = cb;
1699}
1700
1701noinline ecb_cold
1702static void
1703ev_syserr (const char *msg)
1704{
1705 if (!msg)
1706 msg = "(libev) system error";
1707
1708 if (syserr_cb)
1709 syserr_cb (msg);
1710 else
1711 {
1712#if EV_AVOID_STDIO
1713 ev_printerr (msg);
1714 ev_printerr (": ");
1715 ev_printerr (strerror (errno));
1716 ev_printerr ("\n");
1717#else
1718 perror (msg);
1719#endif
1720 abort ();
1721 }
1722}
1723
1724static void *
1725ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1726{
1727 /* some systems, notably openbsd and darwin, fail to properly
1728 * implement realloc (x, 0) (as required by both ansi c-89 and
1729 * the single unix specification, so work around them here.
1730 * recently, also (at least) fedora and debian started breaking it,
1731 * despite documenting it otherwise.
1732 */
1733
1734 if (size)
1735 return realloc (ptr, size);
1736
1737 free (ptr);
1738 return 0;
1739}
1740
1741static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1742
1743ecb_cold
1744void
1745ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1746{
1747 alloc = cb;
1748}
1749
1750inline_speed void *
1751ev_realloc (void *ptr, long size)
1752{
1753 ptr = alloc (ptr, size);
1754
1755 if (!ptr && size)
1756 {
1757#if EV_AVOID_STDIO
1758 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1759#else
1760 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1761#endif
1762 abort ();
1763 }
1764
1765 return ptr;
1766}
1767
1768#define ev_malloc(size) ev_realloc (0, (size))
1769#define ev_free(ptr) ev_realloc ((ptr), 0)
1770
1771/*****************************************************************************/
1772
1773/* set in reify when reification needed */
1774#define EV_ANFD_REIFY 1
1775
1776/* file descriptor info structure */
1777typedef struct
1778{
1779 WL head;
1780 unsigned char events; /* the events watched for */
1781 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1782 unsigned char emask; /* some backends store the actual kernel mask in here */
1783 unsigned char unused;
1784#if EV_USE_EPOLL
1785 unsigned int egen; /* generation counter to counter epoll bugs */
1786#endif
1787#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 SOCKET handle;
1789#endif
1790#if EV_USE_IOCP
1791 OVERLAPPED or, ow;
1792#endif
1793} ANFD;
1794
1795/* stores the pending event set for a given watcher */
1796typedef struct
1797{
1798 W w;
1799 int events; /* the pending event set for the given watcher */
1800} ANPENDING;
1801
1802#if EV_USE_INOTIFY
1803/* hash table entry per inotify-id */
1804typedef struct
1805{
1806 WL head;
1807} ANFS;
1808#endif
1809
1810/* Heap Entry */
1811#if EV_HEAP_CACHE_AT
1812 /* a heap element */
1813 typedef struct {
1814 ev_tstamp at;
1815 WT w;
1816 } ANHE;
1817
1818 #define ANHE_w(he) (he).w /* access watcher, read-write */
1819 #define ANHE_at(he) (he).at /* access cached at, read-only */
1820 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1821#else
1822 /* a heap element */
1823 typedef WT ANHE;
1824
1825 #define ANHE_w(he) (he)
1826 #define ANHE_at(he) (he)->at
1827 #define ANHE_at_cache(he)
1828#endif
1829
1830#if EV_MULTIPLICITY
1831
1832 struct ev_loop
1833 {
1834 ev_tstamp ev_rt_now;
1835 #define ev_rt_now ((loop)->ev_rt_now)
1836 #define VAR(name,decl) decl;
1837 #include "ev_vars.h"
1838 #undef VAR
1839 };
1840 #include "ev_wrap.h"
1841
1842 static struct ev_loop default_loop_struct;
1843 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1844
1845#else
1846
1847 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1848 #define VAR(name,decl) static decl;
1849 #include "ev_vars.h"
1850 #undef VAR
1851
1852 static int ev_default_loop_ptr;
1853
1854#endif
1855
1856#if EV_FEATURE_API
1857# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1858# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1859# define EV_INVOKE_PENDING invoke_cb (EV_A)
1860#else
1861# define EV_RELEASE_CB (void)0
1862# define EV_ACQUIRE_CB (void)0
1863# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1864#endif
1865
1866#define EVBREAK_RECURSE 0x80
1867
1868/*****************************************************************************/
1869
1870#ifndef EV_HAVE_EV_TIME
86ev_tstamp 1871ev_tstamp
87ev_time (void) 1872ev_time (void) EV_NOEXCEPT
88{ 1873{
89#if HAVE_REALTIME 1874#if EV_USE_REALTIME
1875 if (expect_true (have_realtime))
1876 {
90 struct timespec ts; 1877 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 1878 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 1879 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 1880 }
1881#endif
1882
94 struct timeval tv; 1883 struct timeval tv;
95 gettimeofday (&tv, 0); 1884 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 1885 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif
98} 1886}
1887#endif
99 1888
100static ev_tstamp 1889inline_size ev_tstamp
101get_clock (void) 1890get_clock (void)
102{ 1891{
103#if HAVE_MONOTONIC 1892#if EV_USE_MONOTONIC
104 if (have_monotonic) 1893 if (expect_true (have_monotonic))
105 { 1894 {
106 struct timespec ts; 1895 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 1896 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 1897 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 1898 }
110#endif 1899#endif
111 1900
112 return ev_time (); 1901 return ev_time ();
113} 1902}
114 1903
115#define array_needsize(base,cur,cnt,init) \ 1904#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 1905ev_tstamp
117 { \ 1906ev_now (EV_P) EV_NOEXCEPT
118 int newcnt = cur; \ 1907{
119 do \ 1908 return ev_rt_now;
120 { \ 1909}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 1910#endif
122 } \ 1911
123 while ((cnt) > newcnt); \ 1912void
124 \ 1913ev_sleep (ev_tstamp delay) EV_NOEXCEPT
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 1914{
126 init (base + cur, newcnt - cur); \ 1915 if (delay > 0.)
127 cur = newcnt; \
128 } 1916 {
1917#if EV_USE_NANOSLEEP
1918 struct timespec ts;
1919
1920 EV_TS_SET (ts, delay);
1921 nanosleep (&ts, 0);
1922#elif defined _WIN32
1923 /* maybe this should round up, as ms is very low resolution */
1924 /* compared to select (µs) or nanosleep (ns) */
1925 Sleep ((unsigned long)(delay * 1e3));
1926#else
1927 struct timeval tv;
1928
1929 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1930 /* something not guaranteed by newer posix versions, but guaranteed */
1931 /* by older ones */
1932 EV_TV_SET (tv, delay);
1933 select (0, 0, 0, 0, &tv);
1934#endif
1935 }
1936}
129 1937
130/*****************************************************************************/ 1938/*****************************************************************************/
131 1939
1940#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1941
1942/* find a suitable new size for the given array, */
1943/* hopefully by rounding to a nice-to-malloc size */
1944inline_size int
1945array_nextsize (int elem, int cur, int cnt)
1946{
1947 int ncur = cur + 1;
1948
1949 do
1950 ncur <<= 1;
1951 while (cnt > ncur);
1952
1953 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1954 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1955 {
1956 ncur *= elem;
1957 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1958 ncur = ncur - sizeof (void *) * 4;
1959 ncur /= elem;
1960 }
1961
1962 return ncur;
1963}
1964
1965noinline ecb_cold
1966static void *
1967array_realloc (int elem, void *base, int *cur, int cnt)
1968{
1969 *cur = array_nextsize (elem, *cur, cnt);
1970 return ev_realloc (base, elem * *cur);
1971}
1972
1973#define array_needsize_noinit(base,count)
1974
1975#define array_needsize_zerofill(base,count) \
1976 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1977
1978#define array_needsize(type,base,cur,cnt,init) \
1979 if (expect_false ((cnt) > (cur))) \
1980 { \
1981 ecb_unused int ocur_ = (cur); \
1982 (base) = (type *)array_realloc \
1983 (sizeof (type), (base), &(cur), (cnt)); \
1984 init ((base) + (ocur_), (cur) - ocur_); \
1985 }
1986
1987#if 0
1988#define array_slim(type,stem) \
1989 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1990 { \
1991 stem ## max = array_roundsize (stem ## cnt >> 1); \
1992 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1993 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1994 }
1995#endif
1996
1997#define array_free(stem, idx) \
1998 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1999
2000/*****************************************************************************/
2001
2002/* dummy callback for pending events */
2003noinline
2004static void
2005pendingcb (EV_P_ ev_prepare *w, int revents)
2006{
2007}
2008
2009noinline
2010void
2011ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2012{
2013 W w_ = (W)w;
2014 int pri = ABSPRI (w_);
2015
2016 if (expect_false (w_->pending))
2017 pendings [pri][w_->pending - 1].events |= revents;
2018 else
2019 {
2020 w_->pending = ++pendingcnt [pri];
2021 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2022 pendings [pri][w_->pending - 1].w = w_;
2023 pendings [pri][w_->pending - 1].events = revents;
2024 }
2025
2026 pendingpri = NUMPRI - 1;
2027}
2028
2029inline_speed void
2030feed_reverse (EV_P_ W w)
2031{
2032 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2033 rfeeds [rfeedcnt++] = w;
2034}
2035
2036inline_size void
2037feed_reverse_done (EV_P_ int revents)
2038{
2039 do
2040 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2041 while (rfeedcnt);
2042}
2043
2044inline_speed void
2045queue_events (EV_P_ W *events, int eventcnt, int type)
2046{
2047 int i;
2048
2049 for (i = 0; i < eventcnt; ++i)
2050 ev_feed_event (EV_A_ events [i], type);
2051}
2052
2053/*****************************************************************************/
2054
2055inline_speed void
2056fd_event_nocheck (EV_P_ int fd, int revents)
2057{
2058 ANFD *anfd = anfds + fd;
2059 ev_io *w;
2060
2061 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2062 {
2063 int ev = w->events & revents;
2064
2065 if (ev)
2066 ev_feed_event (EV_A_ (W)w, ev);
2067 }
2068}
2069
2070/* do not submit kernel events for fds that have reify set */
2071/* because that means they changed while we were polling for new events */
2072inline_speed void
2073fd_event (EV_P_ int fd, int revents)
2074{
2075 ANFD *anfd = anfds + fd;
2076
2077 if (expect_true (!anfd->reify))
2078 fd_event_nocheck (EV_A_ fd, revents);
2079}
2080
2081void
2082ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2083{
2084 if (fd >= 0 && fd < anfdmax)
2085 fd_event_nocheck (EV_A_ fd, revents);
2086}
2087
2088/* make sure the external fd watch events are in-sync */
2089/* with the kernel/libev internal state */
2090inline_size void
2091fd_reify (EV_P)
2092{
2093 int i;
2094
2095#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2096 for (i = 0; i < fdchangecnt; ++i)
2097 {
2098 int fd = fdchanges [i];
2099 ANFD *anfd = anfds + fd;
2100
2101 if (anfd->reify & EV__IOFDSET && anfd->head)
2102 {
2103 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2104
2105 if (handle != anfd->handle)
2106 {
2107 unsigned long arg;
2108
2109 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2110
2111 /* handle changed, but fd didn't - we need to do it in two steps */
2112 backend_modify (EV_A_ fd, anfd->events, 0);
2113 anfd->events = 0;
2114 anfd->handle = handle;
2115 }
2116 }
2117 }
2118#endif
2119
2120 for (i = 0; i < fdchangecnt; ++i)
2121 {
2122 int fd = fdchanges [i];
2123 ANFD *anfd = anfds + fd;
2124 ev_io *w;
2125
2126 unsigned char o_events = anfd->events;
2127 unsigned char o_reify = anfd->reify;
2128
2129 anfd->reify = 0;
2130
2131 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2132 {
2133 anfd->events = 0;
2134
2135 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2136 anfd->events |= (unsigned char)w->events;
2137
2138 if (o_events != anfd->events)
2139 o_reify = EV__IOFDSET; /* actually |= */
2140 }
2141
2142 if (o_reify & EV__IOFDSET)
2143 backend_modify (EV_A_ fd, o_events, anfd->events);
2144 }
2145
2146 fdchangecnt = 0;
2147}
2148
2149/* something about the given fd changed */
2150inline_size
2151void
2152fd_change (EV_P_ int fd, int flags)
2153{
2154 unsigned char reify = anfds [fd].reify;
2155 anfds [fd].reify |= flags;
2156
2157 if (expect_true (!reify))
2158 {
2159 ++fdchangecnt;
2160 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2161 fdchanges [fdchangecnt - 1] = fd;
2162 }
2163}
2164
2165/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2166inline_speed ecb_cold void
2167fd_kill (EV_P_ int fd)
2168{
2169 ev_io *w;
2170
2171 while ((w = (ev_io *)anfds [fd].head))
2172 {
2173 ev_io_stop (EV_A_ w);
2174 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2175 }
2176}
2177
2178/* check whether the given fd is actually valid, for error recovery */
2179inline_size ecb_cold int
2180fd_valid (int fd)
2181{
2182#ifdef _WIN32
2183 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2184#else
2185 return fcntl (fd, F_GETFD) != -1;
2186#endif
2187}
2188
2189/* called on EBADF to verify fds */
2190noinline ecb_cold
2191static void
2192fd_ebadf (EV_P)
2193{
2194 int fd;
2195
2196 for (fd = 0; fd < anfdmax; ++fd)
2197 if (anfds [fd].events)
2198 if (!fd_valid (fd) && errno == EBADF)
2199 fd_kill (EV_A_ fd);
2200}
2201
2202/* called on ENOMEM in select/poll to kill some fds and retry */
2203noinline ecb_cold
2204static void
2205fd_enomem (EV_P)
2206{
2207 int fd;
2208
2209 for (fd = anfdmax; fd--; )
2210 if (anfds [fd].events)
2211 {
2212 fd_kill (EV_A_ fd);
2213 break;
2214 }
2215}
2216
2217/* usually called after fork if backend needs to re-arm all fds from scratch */
2218noinline
2219static void
2220fd_rearm_all (EV_P)
2221{
2222 int fd;
2223
2224 for (fd = 0; fd < anfdmax; ++fd)
2225 if (anfds [fd].events)
2226 {
2227 anfds [fd].events = 0;
2228 anfds [fd].emask = 0;
2229 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2230 }
2231}
2232
2233/* used to prepare libev internal fd's */
2234/* this is not fork-safe */
2235inline_speed void
2236fd_intern (int fd)
2237{
2238#ifdef _WIN32
2239 unsigned long arg = 1;
2240 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2241#else
2242 fcntl (fd, F_SETFD, FD_CLOEXEC);
2243 fcntl (fd, F_SETFL, O_NONBLOCK);
2244#endif
2245}
2246
2247/*****************************************************************************/
2248
2249/*
2250 * the heap functions want a real array index. array index 0 is guaranteed to not
2251 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2252 * the branching factor of the d-tree.
2253 */
2254
2255/*
2256 * at the moment we allow libev the luxury of two heaps,
2257 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2258 * which is more cache-efficient.
2259 * the difference is about 5% with 50000+ watchers.
2260 */
2261#if EV_USE_4HEAP
2262
2263#define DHEAP 4
2264#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2265#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2266#define UPHEAP_DONE(p,k) ((p) == (k))
2267
2268/* away from the root */
2269inline_speed void
2270downheap (ANHE *heap, int N, int k)
2271{
2272 ANHE he = heap [k];
2273 ANHE *E = heap + N + HEAP0;
2274
2275 for (;;)
2276 {
2277 ev_tstamp minat;
2278 ANHE *minpos;
2279 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2280
2281 /* find minimum child */
2282 if (expect_true (pos + DHEAP - 1 < E))
2283 {
2284 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2285 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2286 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2287 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2288 }
2289 else if (pos < E)
2290 {
2291 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2292 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2293 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2294 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2295 }
2296 else
2297 break;
2298
2299 if (ANHE_at (he) <= minat)
2300 break;
2301
2302 heap [k] = *minpos;
2303 ev_active (ANHE_w (*minpos)) = k;
2304
2305 k = minpos - heap;
2306 }
2307
2308 heap [k] = he;
2309 ev_active (ANHE_w (he)) = k;
2310}
2311
2312#else /* 4HEAP */
2313
2314#define HEAP0 1
2315#define HPARENT(k) ((k) >> 1)
2316#define UPHEAP_DONE(p,k) (!(p))
2317
2318/* away from the root */
2319inline_speed void
2320downheap (ANHE *heap, int N, int k)
2321{
2322 ANHE he = heap [k];
2323
2324 for (;;)
2325 {
2326 int c = k << 1;
2327
2328 if (c >= N + HEAP0)
2329 break;
2330
2331 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2332 ? 1 : 0;
2333
2334 if (ANHE_at (he) <= ANHE_at (heap [c]))
2335 break;
2336
2337 heap [k] = heap [c];
2338 ev_active (ANHE_w (heap [k])) = k;
2339
2340 k = c;
2341 }
2342
2343 heap [k] = he;
2344 ev_active (ANHE_w (he)) = k;
2345}
2346#endif
2347
2348/* towards the root */
2349inline_speed void
2350upheap (ANHE *heap, int k)
2351{
2352 ANHE he = heap [k];
2353
2354 for (;;)
2355 {
2356 int p = HPARENT (k);
2357
2358 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2359 break;
2360
2361 heap [k] = heap [p];
2362 ev_active (ANHE_w (heap [k])) = k;
2363 k = p;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369
2370/* move an element suitably so it is in a correct place */
2371inline_size void
2372adjustheap (ANHE *heap, int N, int k)
2373{
2374 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2375 upheap (heap, k);
2376 else
2377 downheap (heap, N, k);
2378}
2379
2380/* rebuild the heap: this function is used only once and executed rarely */
2381inline_size void
2382reheap (ANHE *heap, int N)
2383{
2384 int i;
2385
2386 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2387 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2388 for (i = 0; i < N; ++i)
2389 upheap (heap, i + HEAP0);
2390}
2391
2392/*****************************************************************************/
2393
2394/* associate signal watchers to a signal signal */
132typedef struct 2395typedef struct
133{ 2396{
134 struct ev_io *head; 2397 EV_ATOMIC_T pending;
135 unsigned char wev, rev; /* want, received event set */ 2398#if EV_MULTIPLICITY
136} ANFD; 2399 EV_P;
2400#endif
2401 WL head;
2402} ANSIG;
137 2403
138static ANFD *anfds; 2404static ANSIG signals [EV_NSIG - 1];
139static int anfdmax;
140 2405
141static int *fdchanges; 2406/*****************************************************************************/
142static int fdchangemax, fdchangecnt;
143 2407
2408#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2409
2410noinline ecb_cold
144static void 2411static void
145anfds_init (ANFD *base, int count) 2412evpipe_init (EV_P)
146{ 2413{
147 while (count--) 2414 if (!ev_is_active (&pipe_w))
148 {
149 base->head = 0;
150 base->wev = base->rev = EV_NONE;
151 ++base;
152 } 2415 {
153} 2416 int fds [2];
154 2417
155typedef struct 2418# if EV_USE_EVENTFD
156{ 2419 fds [0] = -1;
157 W w; 2420 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
158 int events; 2421 if (fds [1] < 0 && errno == EINVAL)
159} ANPENDING; 2422 fds [1] = eventfd (0, 0);
160 2423
161static ANPENDING *pendings; 2424 if (fds [1] < 0)
162static int pendingmax, pendingcnt; 2425# endif
2426 {
2427 while (pipe (fds))
2428 ev_syserr ("(libev) error creating signal/async pipe");
163 2429
2430 fd_intern (fds [0]);
2431 }
2432
2433 evpipe [0] = fds [0];
2434
2435 if (evpipe [1] < 0)
2436 evpipe [1] = fds [1]; /* first call, set write fd */
2437 else
2438 {
2439 /* on subsequent calls, do not change evpipe [1] */
2440 /* so that evpipe_write can always rely on its value. */
2441 /* this branch does not do anything sensible on windows, */
2442 /* so must not be executed on windows */
2443
2444 dup2 (fds [1], evpipe [1]);
2445 close (fds [1]);
2446 }
2447
2448 fd_intern (evpipe [1]);
2449
2450 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2451 ev_io_start (EV_A_ &pipe_w);
2452 ev_unref (EV_A); /* watcher should not keep loop alive */
2453 }
2454}
2455
2456inline_speed void
2457evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2458{
2459 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2460
2461 if (expect_true (*flag))
2462 return;
2463
2464 *flag = 1;
2465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2466
2467 pipe_write_skipped = 1;
2468
2469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2470
2471 if (pipe_write_wanted)
2472 {
2473 int old_errno;
2474
2475 pipe_write_skipped = 0;
2476 ECB_MEMORY_FENCE_RELEASE;
2477
2478 old_errno = errno; /* save errno because write will clobber it */
2479
2480#if EV_USE_EVENTFD
2481 if (evpipe [0] < 0)
2482 {
2483 uint64_t counter = 1;
2484 write (evpipe [1], &counter, sizeof (uint64_t));
2485 }
2486 else
2487#endif
2488 {
2489#ifdef _WIN32
2490 WSABUF buf;
2491 DWORD sent;
2492 buf.buf = (char *)&buf;
2493 buf.len = 1;
2494 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2495#else
2496 write (evpipe [1], &(evpipe [1]), 1);
2497#endif
2498 }
2499
2500 errno = old_errno;
2501 }
2502}
2503
2504/* called whenever the libev signal pipe */
2505/* got some events (signal, async) */
164static void 2506static void
165event (W w, int events) 2507pipecb (EV_P_ ev_io *iow, int revents)
166{ 2508{
167 if (w->active) 2509 int i;
168 { 2510
169 w->pending = ++pendingcnt; 2511 if (revents & EV_READ)
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 } 2512 {
2513#if EV_USE_EVENTFD
2514 if (evpipe [0] < 0)
2515 {
2516 uint64_t counter;
2517 read (evpipe [1], &counter, sizeof (uint64_t));
2518 }
2519 else
2520#endif
2521 {
2522 char dummy[4];
2523#ifdef _WIN32
2524 WSABUF buf;
2525 DWORD recvd;
2526 DWORD flags = 0;
2527 buf.buf = dummy;
2528 buf.len = sizeof (dummy);
2529 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2530#else
2531 read (evpipe [0], &dummy, sizeof (dummy));
2532#endif
2533 }
2534 }
2535
2536 pipe_write_skipped = 0;
2537
2538 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2539
2540#if EV_SIGNAL_ENABLE
2541 if (sig_pending)
2542 {
2543 sig_pending = 0;
2544
2545 ECB_MEMORY_FENCE;
2546
2547 for (i = EV_NSIG - 1; i--; )
2548 if (expect_false (signals [i].pending))
2549 ev_feed_signal_event (EV_A_ i + 1);
2550 }
2551#endif
2552
2553#if EV_ASYNC_ENABLE
2554 if (async_pending)
2555 {
2556 async_pending = 0;
2557
2558 ECB_MEMORY_FENCE;
2559
2560 for (i = asynccnt; i--; )
2561 if (asyncs [i]->sent)
2562 {
2563 asyncs [i]->sent = 0;
2564 ECB_MEMORY_FENCE_RELEASE;
2565 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2566 }
2567 }
2568#endif
2569}
2570
2571/*****************************************************************************/
2572
2573void
2574ev_feed_signal (int signum) EV_NOEXCEPT
2575{
2576#if EV_MULTIPLICITY
2577 EV_P;
2578 ECB_MEMORY_FENCE_ACQUIRE;
2579 EV_A = signals [signum - 1].loop;
2580
2581 if (!EV_A)
2582 return;
2583#endif
2584
2585 signals [signum - 1].pending = 1;
2586 evpipe_write (EV_A_ &sig_pending);
174} 2587}
175 2588
176static void 2589static void
177fd_event (int fd, int events) 2590ev_sighandler (int signum)
178{ 2591{
179 ANFD *anfd = anfds + fd; 2592#ifdef _WIN32
180 struct ev_io *w; 2593 signal (signum, ev_sighandler);
2594#endif
181 2595
2596 ev_feed_signal (signum);
2597}
2598
2599noinline
2600void
2601ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2602{
2603 WL w;
2604
2605 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2606 return;
2607
2608 --signum;
2609
2610#if EV_MULTIPLICITY
2611 /* it is permissible to try to feed a signal to the wrong loop */
2612 /* or, likely more useful, feeding a signal nobody is waiting for */
2613
2614 if (expect_false (signals [signum].loop != EV_A))
2615 return;
2616#endif
2617
2618 signals [signum].pending = 0;
2619 ECB_MEMORY_FENCE_RELEASE;
2620
182 for (w = anfd->head; w; w = w->next) 2621 for (w = signals [signum].head; w; w = w->next)
183 { 2622 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 }
189} 2623}
190 2624
2625#if EV_USE_SIGNALFD
191static void 2626static void
192queue_events (W *events, int eventcnt, int type) 2627sigfdcb (EV_P_ ev_io *iow, int revents)
193{ 2628{
194 int i; 2629 struct signalfd_siginfo si[2], *sip; /* these structs are big */
195 2630
196 for (i = 0; i < eventcnt; ++i) 2631 for (;;)
197 event (events [i], type); 2632 {
198} 2633 ssize_t res = read (sigfd, si, sizeof (si));
199 2634
200/* called on EBADF to verify fds */ 2635 /* not ISO-C, as res might be -1, but works with SuS */
201static void 2636 for (sip = si; (char *)sip < (char *)si + res; ++sip)
202fd_recheck (void) 2637 ev_feed_signal_event (EV_A_ sip->ssi_signo);
203{
204 int fd;
205 2638
206 for (fd = 0; fd < anfdmax; ++fd) 2639 if (res < (ssize_t)sizeof (si))
207 if (anfds [fd].wev) 2640 break;
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2641 }
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214} 2642}
2643#endif
2644
2645#endif
215 2646
216/*****************************************************************************/ 2647/*****************************************************************************/
217 2648
218static struct ev_timer **timers; 2649#if EV_CHILD_ENABLE
219static int timermax, timercnt; 2650static WL childs [EV_PID_HASHSIZE];
220 2651
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG;
272
273static ANSIG *signals;
274static int signalmax;
275
276static int sigpipe [2];
277static sig_atomic_t gotsig;
278static struct ev_io sigev;
279
280static void
281signals_init (ANSIG *base, int count)
282{
283 while (count--)
284 {
285 base->head = 0;
286 base->gotsig = 0;
287 ++base;
288 }
289}
290
291static void
292sighandler (int signum)
293{
294 signals [signum - 1].gotsig = 1;
295
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301}
302
303static void
304sigcb (struct ev_io *iow, int revents)
305{
306 struct ev_signal *w;
307 int sig;
308
309 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311
312 for (sig = signalmax; sig--; )
313 if (signals [sig].gotsig)
314 {
315 signals [sig].gotsig = 0;
316
317 for (w = signals [sig].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334}
335
336/*****************************************************************************/
337
338static struct ev_idle **idles;
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 2652static ev_signal childev;
2653
2654#ifndef WIFCONTINUED
2655# define WIFCONTINUED(status) 0
2656#endif
2657
2658/* handle a single child status event */
2659inline_speed void
2660child_reap (EV_P_ int chain, int pid, int status)
2661{
2662 ev_child *w;
2663 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2664
2665 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2666 {
2667 if ((w->pid == pid || !w->pid)
2668 && (!traced || (w->flags & 1)))
2669 {
2670 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2671 w->rpid = pid;
2672 w->rstatus = status;
2673 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2674 }
2675 }
2676}
351 2677
352#ifndef WCONTINUED 2678#ifndef WCONTINUED
353# define WCONTINUED 0 2679# define WCONTINUED 0
354#endif 2680#endif
355 2681
2682/* called on sigchld etc., calls waitpid */
356static void 2683static void
357childcb (struct ev_signal *sw, int revents) 2684childcb (EV_P_ ev_signal *sw, int revents)
358{ 2685{
359 struct ev_child *w;
360 int pid, status; 2686 int pid, status;
361 2687
2688 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2689 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2690 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 2691 || errno != EINVAL
2692 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2693 return;
2694
2695 /* make sure we are called again until all children have been reaped */
2696 /* we need to do it this way so that the callback gets called before we continue */
2697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2698
2699 child_reap (EV_A_ pid, pid, status);
2700 if ((EV_PID_HASHSIZE) > 1)
2701 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2702}
2703
2704#endif
2705
2706/*****************************************************************************/
2707
2708#if EV_USE_IOCP
2709# include "ev_iocp.c"
2710#endif
2711#if EV_USE_PORT
2712# include "ev_port.c"
2713#endif
2714#if EV_USE_KQUEUE
2715# include "ev_kqueue.c"
2716#endif
2717#if EV_USE_LINUXAIO
2718# include "ev_linuxaio.c"
2719#endif
2720#if EV_USE_EPOLL
2721# include "ev_epoll.c"
2722#endif
2723#if EV_USE_POLL
2724# include "ev_poll.c"
2725#endif
2726#if EV_USE_SELECT
2727# include "ev_select.c"
2728#endif
2729
2730ecb_cold int
2731ev_version_major (void) EV_NOEXCEPT
2732{
2733 return EV_VERSION_MAJOR;
2734}
2735
2736ecb_cold int
2737ev_version_minor (void) EV_NOEXCEPT
2738{
2739 return EV_VERSION_MINOR;
2740}
2741
2742/* return true if we are running with elevated privileges and should ignore env variables */
2743inline_size ecb_cold int
2744enable_secure (void)
2745{
2746#ifdef _WIN32
2747 return 0;
2748#else
2749 return getuid () != geteuid ()
2750 || getgid () != getegid ();
2751#endif
2752}
2753
2754ecb_cold
2755unsigned int
2756ev_supported_backends (void) EV_NOEXCEPT
2757{
2758 unsigned int flags = 0;
2759
2760 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2761 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2762 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2763 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2764 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2765 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2766
2767 return flags;
2768}
2769
2770ecb_cold
2771unsigned int
2772ev_recommended_backends (void) EV_NOEXCEPT
2773{
2774 unsigned int flags = ev_supported_backends ();
2775
2776#ifndef __NetBSD__
2777 /* kqueue is borked on everything but netbsd apparently */
2778 /* it usually doesn't work correctly on anything but sockets and pipes */
2779 flags &= ~EVBACKEND_KQUEUE;
2780#endif
2781#ifdef __APPLE__
2782 /* only select works correctly on that "unix-certified" platform */
2783 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2784 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2785#endif
2786#ifdef __FreeBSD__
2787 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2788#endif
2789
2790 return flags;
2791}
2792
2793ecb_cold
2794unsigned int
2795ev_embeddable_backends (void) EV_NOEXCEPT
2796{
2797 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2798
2799 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2800 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2801 flags &= ~EVBACKEND_EPOLL;
2802
2803 return flags;
2804}
2805
2806unsigned int
2807ev_backend (EV_P) EV_NOEXCEPT
2808{
2809 return backend;
2810}
2811
2812#if EV_FEATURE_API
2813unsigned int
2814ev_iteration (EV_P) EV_NOEXCEPT
2815{
2816 return loop_count;
2817}
2818
2819unsigned int
2820ev_depth (EV_P) EV_NOEXCEPT
2821{
2822 return loop_depth;
2823}
2824
2825void
2826ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2827{
2828 io_blocktime = interval;
2829}
2830
2831void
2832ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2833{
2834 timeout_blocktime = interval;
2835}
2836
2837void
2838ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2839{
2840 userdata = data;
2841}
2842
2843void *
2844ev_userdata (EV_P) EV_NOEXCEPT
2845{
2846 return userdata;
2847}
2848
2849void
2850ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2851{
2852 invoke_cb = invoke_pending_cb;
2853}
2854
2855void
2856ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2857{
2858 release_cb = release;
2859 acquire_cb = acquire;
2860}
2861#endif
2862
2863/* initialise a loop structure, must be zero-initialised */
2864noinline ecb_cold
2865static void
2866loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2867{
2868 if (!backend)
2869 {
2870 origflags = flags;
2871
2872#if EV_USE_REALTIME
2873 if (!have_realtime)
365 { 2874 {
366 w->status = status; 2875 struct timespec ts;
367 event ((W)w, EV_CHILD); 2876
2877 if (!clock_gettime (CLOCK_REALTIME, &ts))
2878 have_realtime = 1;
368 } 2879 }
2880#endif
2881
2882#if EV_USE_MONOTONIC
2883 if (!have_monotonic)
2884 {
2885 struct timespec ts;
2886
2887 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2888 have_monotonic = 1;
2889 }
2890#endif
2891
2892 /* pid check not overridable via env */
2893#ifndef _WIN32
2894 if (flags & EVFLAG_FORKCHECK)
2895 curpid = getpid ();
2896#endif
2897
2898 if (!(flags & EVFLAG_NOENV)
2899 && !enable_secure ()
2900 && getenv ("LIBEV_FLAGS"))
2901 flags = atoi (getenv ("LIBEV_FLAGS"));
2902
2903 ev_rt_now = ev_time ();
2904 mn_now = get_clock ();
2905 now_floor = mn_now;
2906 rtmn_diff = ev_rt_now - mn_now;
2907#if EV_FEATURE_API
2908 invoke_cb = ev_invoke_pending;
2909#endif
2910
2911 io_blocktime = 0.;
2912 timeout_blocktime = 0.;
2913 backend = 0;
2914 backend_fd = -1;
2915 sig_pending = 0;
2916#if EV_ASYNC_ENABLE
2917 async_pending = 0;
2918#endif
2919 pipe_write_skipped = 0;
2920 pipe_write_wanted = 0;
2921 evpipe [0] = -1;
2922 evpipe [1] = -1;
2923#if EV_USE_INOTIFY
2924 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2925#endif
2926#if EV_USE_SIGNALFD
2927 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2928#endif
2929
2930 if (!(flags & EVBACKEND_MASK))
2931 flags |= ev_recommended_backends ();
2932
2933#if EV_USE_IOCP
2934 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2935#endif
2936#if EV_USE_PORT
2937 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2938#endif
2939#if EV_USE_KQUEUE
2940 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2941#endif
2942#if EV_USE_LINUXAIO
2943 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2944#endif
2945#if EV_USE_EPOLL
2946 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2947#endif
2948#if EV_USE_POLL
2949 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2950#endif
2951#if EV_USE_SELECT
2952 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2953#endif
2954
2955 ev_prepare_init (&pending_w, pendingcb);
2956
2957#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2958 ev_init (&pipe_w, pipecb);
2959 ev_set_priority (&pipe_w, EV_MAXPRI);
2960#endif
2961 }
2962}
2963
2964/* free up a loop structure */
2965ecb_cold
2966void
2967ev_loop_destroy (EV_P)
2968{
2969 int i;
2970
2971#if EV_MULTIPLICITY
2972 /* mimic free (0) */
2973 if (!EV_A)
2974 return;
2975#endif
2976
2977#if EV_CLEANUP_ENABLE
2978 /* queue cleanup watchers (and execute them) */
2979 if (expect_false (cleanupcnt))
2980 {
2981 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2982 EV_INVOKE_PENDING;
2983 }
2984#endif
2985
2986#if EV_CHILD_ENABLE
2987 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2988 {
2989 ev_ref (EV_A); /* child watcher */
2990 ev_signal_stop (EV_A_ &childev);
2991 }
2992#endif
2993
2994 if (ev_is_active (&pipe_w))
2995 {
2996 /*ev_ref (EV_A);*/
2997 /*ev_io_stop (EV_A_ &pipe_w);*/
2998
2999 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3000 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3001 }
3002
3003#if EV_USE_SIGNALFD
3004 if (ev_is_active (&sigfd_w))
3005 close (sigfd);
3006#endif
3007
3008#if EV_USE_INOTIFY
3009 if (fs_fd >= 0)
3010 close (fs_fd);
3011#endif
3012
3013 if (backend_fd >= 0)
3014 close (backend_fd);
3015
3016#if EV_USE_IOCP
3017 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3018#endif
3019#if EV_USE_PORT
3020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3021#endif
3022#if EV_USE_KQUEUE
3023 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3024#endif
3025#if EV_USE_LINUXAIO
3026 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3027#endif
3028#if EV_USE_EPOLL
3029 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3030#endif
3031#if EV_USE_POLL
3032 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3033#endif
3034#if EV_USE_SELECT
3035 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3036#endif
3037
3038 for (i = NUMPRI; i--; )
3039 {
3040 array_free (pending, [i]);
3041#if EV_IDLE_ENABLE
3042 array_free (idle, [i]);
3043#endif
3044 }
3045
3046 ev_free (anfds); anfds = 0; anfdmax = 0;
3047
3048 /* have to use the microsoft-never-gets-it-right macro */
3049 array_free (rfeed, EMPTY);
3050 array_free (fdchange, EMPTY);
3051 array_free (timer, EMPTY);
3052#if EV_PERIODIC_ENABLE
3053 array_free (periodic, EMPTY);
3054#endif
3055#if EV_FORK_ENABLE
3056 array_free (fork, EMPTY);
3057#endif
3058#if EV_CLEANUP_ENABLE
3059 array_free (cleanup, EMPTY);
3060#endif
3061 array_free (prepare, EMPTY);
3062 array_free (check, EMPTY);
3063#if EV_ASYNC_ENABLE
3064 array_free (async, EMPTY);
3065#endif
3066
3067 backend = 0;
3068
3069#if EV_MULTIPLICITY
3070 if (ev_is_default_loop (EV_A))
3071#endif
3072 ev_default_loop_ptr = 0;
3073#if EV_MULTIPLICITY
3074 else
3075 ev_free (EV_A);
3076#endif
3077}
3078
3079#if EV_USE_INOTIFY
3080inline_size void infy_fork (EV_P);
3081#endif
3082
3083inline_size void
3084loop_fork (EV_P)
3085{
3086#if EV_USE_PORT
3087 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3088#endif
3089#if EV_USE_KQUEUE
3090 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3091#endif
3092#if EV_USE_LINUXAIO
3093 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3094#endif
3095#if EV_USE_EPOLL
3096 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3097#endif
3098#if EV_USE_INOTIFY
3099 infy_fork (EV_A);
3100#endif
3101
3102#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3103 if (ev_is_active (&pipe_w) && postfork != 2)
3104 {
3105 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3106
3107 ev_ref (EV_A);
3108 ev_io_stop (EV_A_ &pipe_w);
3109
3110 if (evpipe [0] >= 0)
3111 EV_WIN32_CLOSE_FD (evpipe [0]);
3112
3113 evpipe_init (EV_A);
3114 /* iterate over everything, in case we missed something before */
3115 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3116 }
3117#endif
3118
3119 postfork = 0;
3120}
3121
3122#if EV_MULTIPLICITY
3123
3124ecb_cold
3125struct ev_loop *
3126ev_loop_new (unsigned int flags) EV_NOEXCEPT
3127{
3128 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3129
3130 memset (EV_A, 0, sizeof (struct ev_loop));
3131 loop_init (EV_A_ flags);
3132
3133 if (ev_backend (EV_A))
3134 return EV_A;
3135
3136 ev_free (EV_A);
3137 return 0;
3138}
3139
3140#endif /* multiplicity */
3141
3142#if EV_VERIFY
3143noinline ecb_cold
3144static void
3145verify_watcher (EV_P_ W w)
3146{
3147 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3148
3149 if (w->pending)
3150 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3151}
3152
3153noinline ecb_cold
3154static void
3155verify_heap (EV_P_ ANHE *heap, int N)
3156{
3157 int i;
3158
3159 for (i = HEAP0; i < N + HEAP0; ++i)
3160 {
3161 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3162 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3163 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3164
3165 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3166 }
3167}
3168
3169noinline ecb_cold
3170static void
3171array_verify (EV_P_ W *ws, int cnt)
3172{
3173 while (cnt--)
3174 {
3175 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3176 verify_watcher (EV_A_ ws [cnt]);
3177 }
3178}
3179#endif
3180
3181#if EV_FEATURE_API
3182void ecb_cold
3183ev_verify (EV_P) EV_NOEXCEPT
3184{
3185#if EV_VERIFY
3186 int i;
3187 WL w, w2;
3188
3189 assert (activecnt >= -1);
3190
3191 assert (fdchangemax >= fdchangecnt);
3192 for (i = 0; i < fdchangecnt; ++i)
3193 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3194
3195 assert (anfdmax >= 0);
3196 for (i = 0; i < anfdmax; ++i)
3197 {
3198 int j = 0;
3199
3200 for (w = w2 = anfds [i].head; w; w = w->next)
3201 {
3202 verify_watcher (EV_A_ (W)w);
3203
3204 if (j++ & 1)
3205 {
3206 assert (("libev: io watcher list contains a loop", w != w2));
3207 w2 = w2->next;
3208 }
3209
3210 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3211 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3212 }
3213 }
3214
3215 assert (timermax >= timercnt);
3216 verify_heap (EV_A_ timers, timercnt);
3217
3218#if EV_PERIODIC_ENABLE
3219 assert (periodicmax >= periodiccnt);
3220 verify_heap (EV_A_ periodics, periodiccnt);
3221#endif
3222
3223 for (i = NUMPRI; i--; )
3224 {
3225 assert (pendingmax [i] >= pendingcnt [i]);
3226#if EV_IDLE_ENABLE
3227 assert (idleall >= 0);
3228 assert (idlemax [i] >= idlecnt [i]);
3229 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3230#endif
3231 }
3232
3233#if EV_FORK_ENABLE
3234 assert (forkmax >= forkcnt);
3235 array_verify (EV_A_ (W *)forks, forkcnt);
3236#endif
3237
3238#if EV_CLEANUP_ENABLE
3239 assert (cleanupmax >= cleanupcnt);
3240 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3241#endif
3242
3243#if EV_ASYNC_ENABLE
3244 assert (asyncmax >= asynccnt);
3245 array_verify (EV_A_ (W *)asyncs, asynccnt);
3246#endif
3247
3248#if EV_PREPARE_ENABLE
3249 assert (preparemax >= preparecnt);
3250 array_verify (EV_A_ (W *)prepares, preparecnt);
3251#endif
3252
3253#if EV_CHECK_ENABLE
3254 assert (checkmax >= checkcnt);
3255 array_verify (EV_A_ (W *)checks, checkcnt);
3256#endif
3257
3258# if 0
3259#if EV_CHILD_ENABLE
3260 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3261 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3262#endif
3263# endif
3264#endif
3265}
3266#endif
3267
3268#if EV_MULTIPLICITY
3269ecb_cold
3270struct ev_loop *
3271#else
3272int
3273#endif
3274ev_default_loop (unsigned int flags) EV_NOEXCEPT
3275{
3276 if (!ev_default_loop_ptr)
3277 {
3278#if EV_MULTIPLICITY
3279 EV_P = ev_default_loop_ptr = &default_loop_struct;
3280#else
3281 ev_default_loop_ptr = 1;
3282#endif
3283
3284 loop_init (EV_A_ flags);
3285
3286 if (ev_backend (EV_A))
3287 {
3288#if EV_CHILD_ENABLE
3289 ev_signal_init (&childev, childcb, SIGCHLD);
3290 ev_set_priority (&childev, EV_MAXPRI);
3291 ev_signal_start (EV_A_ &childev);
3292 ev_unref (EV_A); /* child watcher should not keep loop alive */
3293#endif
3294 }
3295 else
3296 ev_default_loop_ptr = 0;
3297 }
3298
3299 return ev_default_loop_ptr;
3300}
3301
3302void
3303ev_loop_fork (EV_P) EV_NOEXCEPT
3304{
3305 postfork = 1;
369} 3306}
370 3307
371/*****************************************************************************/ 3308/*****************************************************************************/
372 3309
373#if HAVE_EPOLL 3310void
374# include "ev_epoll.c" 3311ev_invoke (EV_P_ void *w, int revents)
3312{
3313 EV_CB_INVOKE ((W)w, revents);
3314}
3315
3316unsigned int
3317ev_pending_count (EV_P) EV_NOEXCEPT
3318{
3319 int pri;
3320 unsigned int count = 0;
3321
3322 for (pri = NUMPRI; pri--; )
3323 count += pendingcnt [pri];
3324
3325 return count;
3326}
3327
3328noinline
3329void
3330ev_invoke_pending (EV_P)
3331{
3332 pendingpri = NUMPRI;
3333
3334 do
3335 {
3336 --pendingpri;
3337
3338 /* pendingpri possibly gets modified in the inner loop */
3339 while (pendingcnt [pendingpri])
3340 {
3341 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3342
3343 p->w->pending = 0;
3344 EV_CB_INVOKE (p->w, p->events);
3345 EV_FREQUENT_CHECK;
3346 }
3347 }
3348 while (pendingpri);
3349}
3350
3351#if EV_IDLE_ENABLE
3352/* make idle watchers pending. this handles the "call-idle */
3353/* only when higher priorities are idle" logic */
3354inline_size void
3355idle_reify (EV_P)
3356{
3357 if (expect_false (idleall))
3358 {
3359 int pri;
3360
3361 for (pri = NUMPRI; pri--; )
3362 {
3363 if (pendingcnt [pri])
3364 break;
3365
3366 if (idlecnt [pri])
3367 {
3368 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3369 break;
3370 }
3371 }
3372 }
3373}
3374#endif
3375
3376/* make timers pending */
3377inline_size void
3378timers_reify (EV_P)
3379{
3380 EV_FREQUENT_CHECK;
3381
3382 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3383 {
3384 do
3385 {
3386 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3387
3388 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3389
3390 /* first reschedule or stop timer */
3391 if (w->repeat)
3392 {
3393 ev_at (w) += w->repeat;
3394 if (ev_at (w) < mn_now)
3395 ev_at (w) = mn_now;
3396
3397 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3398
3399 ANHE_at_cache (timers [HEAP0]);
3400 downheap (timers, timercnt, HEAP0);
3401 }
3402 else
3403 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3404
3405 EV_FREQUENT_CHECK;
3406 feed_reverse (EV_A_ (W)w);
3407 }
3408 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3409
3410 feed_reverse_done (EV_A_ EV_TIMER);
3411 }
3412}
3413
3414#if EV_PERIODIC_ENABLE
3415
3416noinline
3417static void
3418periodic_recalc (EV_P_ ev_periodic *w)
3419{
3420 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3421 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3422
3423 /* the above almost always errs on the low side */
3424 while (at <= ev_rt_now)
3425 {
3426 ev_tstamp nat = at + w->interval;
3427
3428 /* when resolution fails us, we use ev_rt_now */
3429 if (expect_false (nat == at))
3430 {
3431 at = ev_rt_now;
3432 break;
3433 }
3434
3435 at = nat;
3436 }
3437
3438 ev_at (w) = at;
3439}
3440
3441/* make periodics pending */
3442inline_size void
3443periodics_reify (EV_P)
3444{
3445 EV_FREQUENT_CHECK;
3446
3447 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3448 {
3449 do
3450 {
3451 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3452
3453 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3454
3455 /* first reschedule or stop timer */
3456 if (w->reschedule_cb)
3457 {
3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3459
3460 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3461
3462 ANHE_at_cache (periodics [HEAP0]);
3463 downheap (periodics, periodiccnt, HEAP0);
3464 }
3465 else if (w->interval)
3466 {
3467 periodic_recalc (EV_A_ w);
3468 ANHE_at_cache (periodics [HEAP0]);
3469 downheap (periodics, periodiccnt, HEAP0);
3470 }
3471 else
3472 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3473
3474 EV_FREQUENT_CHECK;
3475 feed_reverse (EV_A_ (W)w);
3476 }
3477 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3478
3479 feed_reverse_done (EV_A_ EV_PERIODIC);
3480 }
3481}
3482
3483/* simply recalculate all periodics */
3484/* TODO: maybe ensure that at least one event happens when jumping forward? */
3485noinline ecb_cold
3486static void
3487periodics_reschedule (EV_P)
3488{
3489 int i;
3490
3491 /* adjust periodics after time jump */
3492 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3493 {
3494 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3495
3496 if (w->reschedule_cb)
3497 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3498 else if (w->interval)
3499 periodic_recalc (EV_A_ w);
3500
3501 ANHE_at_cache (periodics [i]);
3502 }
3503
3504 reheap (periodics, periodiccnt);
3505}
3506#endif
3507
3508/* adjust all timers by a given offset */
3509noinline ecb_cold
3510static void
3511timers_reschedule (EV_P_ ev_tstamp adjust)
3512{
3513 int i;
3514
3515 for (i = 0; i < timercnt; ++i)
3516 {
3517 ANHE *he = timers + i + HEAP0;
3518 ANHE_w (*he)->at += adjust;
3519 ANHE_at_cache (*he);
3520 }
3521}
3522
3523/* fetch new monotonic and realtime times from the kernel */
3524/* also detect if there was a timejump, and act accordingly */
3525inline_speed void
3526time_update (EV_P_ ev_tstamp max_block)
3527{
3528#if EV_USE_MONOTONIC
3529 if (expect_true (have_monotonic))
3530 {
3531 int i;
3532 ev_tstamp odiff = rtmn_diff;
3533
3534 mn_now = get_clock ();
3535
3536 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3537 /* interpolate in the meantime */
3538 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3539 {
3540 ev_rt_now = rtmn_diff + mn_now;
3541 return;
3542 }
3543
3544 now_floor = mn_now;
3545 ev_rt_now = ev_time ();
3546
3547 /* loop a few times, before making important decisions.
3548 * on the choice of "4": one iteration isn't enough,
3549 * in case we get preempted during the calls to
3550 * ev_time and get_clock. a second call is almost guaranteed
3551 * to succeed in that case, though. and looping a few more times
3552 * doesn't hurt either as we only do this on time-jumps or
3553 * in the unlikely event of having been preempted here.
3554 */
3555 for (i = 4; --i; )
3556 {
3557 ev_tstamp diff;
3558 rtmn_diff = ev_rt_now - mn_now;
3559
3560 diff = odiff - rtmn_diff;
3561
3562 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3563 return; /* all is well */
3564
3565 ev_rt_now = ev_time ();
3566 mn_now = get_clock ();
3567 now_floor = mn_now;
3568 }
3569
3570 /* no timer adjustment, as the monotonic clock doesn't jump */
3571 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3572# if EV_PERIODIC_ENABLE
3573 periodics_reschedule (EV_A);
375#endif 3574# endif
376#if HAVE_SELECT 3575 }
377# include "ev_select.c" 3576 else
378#endif 3577#endif
3578 {
3579 ev_rt_now = ev_time ();
3580
3581 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3582 {
3583 /* adjust timers. this is easy, as the offset is the same for all of them */
3584 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3585#if EV_PERIODIC_ENABLE
3586 periodics_reschedule (EV_A);
3587#endif
3588 }
3589
3590 mn_now = ev_rt_now;
3591 }
3592}
379 3593
380int 3594int
381ev_version_major (void) 3595ev_run (EV_P_ int flags)
382{ 3596{
383 return EV_VERSION_MAJOR; 3597#if EV_FEATURE_API
3598 ++loop_depth;
3599#endif
3600
3601 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3602
3603 loop_done = EVBREAK_CANCEL;
3604
3605 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3606
3607 do
3608 {
3609#if EV_VERIFY >= 2
3610 ev_verify (EV_A);
3611#endif
3612
3613#ifndef _WIN32
3614 if (expect_false (curpid)) /* penalise the forking check even more */
3615 if (expect_false (getpid () != curpid))
3616 {
3617 curpid = getpid ();
3618 postfork = 1;
3619 }
3620#endif
3621
3622#if EV_FORK_ENABLE
3623 /* we might have forked, so queue fork handlers */
3624 if (expect_false (postfork))
3625 if (forkcnt)
3626 {
3627 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3628 EV_INVOKE_PENDING;
3629 }
3630#endif
3631
3632#if EV_PREPARE_ENABLE
3633 /* queue prepare watchers (and execute them) */
3634 if (expect_false (preparecnt))
3635 {
3636 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3637 EV_INVOKE_PENDING;
3638 }
3639#endif
3640
3641 if (expect_false (loop_done))
3642 break;
3643
3644 /* we might have forked, so reify kernel state if necessary */
3645 if (expect_false (postfork))
3646 loop_fork (EV_A);
3647
3648 /* update fd-related kernel structures */
3649 fd_reify (EV_A);
3650
3651 /* calculate blocking time */
3652 {
3653 ev_tstamp waittime = 0.;
3654 ev_tstamp sleeptime = 0.;
3655
3656 /* remember old timestamp for io_blocktime calculation */
3657 ev_tstamp prev_mn_now = mn_now;
3658
3659 /* update time to cancel out callback processing overhead */
3660 time_update (EV_A_ 1e100);
3661
3662 /* from now on, we want a pipe-wake-up */
3663 pipe_write_wanted = 1;
3664
3665 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3666
3667 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3668 {
3669 waittime = MAX_BLOCKTIME;
3670
3671 if (timercnt)
3672 {
3673 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3674 if (waittime > to) waittime = to;
3675 }
3676
3677#if EV_PERIODIC_ENABLE
3678 if (periodiccnt)
3679 {
3680 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3681 if (waittime > to) waittime = to;
3682 }
3683#endif
3684
3685 /* don't let timeouts decrease the waittime below timeout_blocktime */
3686 if (expect_false (waittime < timeout_blocktime))
3687 waittime = timeout_blocktime;
3688
3689 /* at this point, we NEED to wait, so we have to ensure */
3690 /* to pass a minimum nonzero value to the backend */
3691 if (expect_false (waittime < backend_mintime))
3692 waittime = backend_mintime;
3693
3694 /* extra check because io_blocktime is commonly 0 */
3695 if (expect_false (io_blocktime))
3696 {
3697 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3698
3699 if (sleeptime > waittime - backend_mintime)
3700 sleeptime = waittime - backend_mintime;
3701
3702 if (expect_true (sleeptime > 0.))
3703 {
3704 ev_sleep (sleeptime);
3705 waittime -= sleeptime;
3706 }
3707 }
3708 }
3709
3710#if EV_FEATURE_API
3711 ++loop_count;
3712#endif
3713 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3714 backend_poll (EV_A_ waittime);
3715 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3716
3717 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3718
3719 ECB_MEMORY_FENCE_ACQUIRE;
3720 if (pipe_write_skipped)
3721 {
3722 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3723 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3724 }
3725
3726
3727 /* update ev_rt_now, do magic */
3728 time_update (EV_A_ waittime + sleeptime);
3729 }
3730
3731 /* queue pending timers and reschedule them */
3732 timers_reify (EV_A); /* relative timers called last */
3733#if EV_PERIODIC_ENABLE
3734 periodics_reify (EV_A); /* absolute timers called first */
3735#endif
3736
3737#if EV_IDLE_ENABLE
3738 /* queue idle watchers unless other events are pending */
3739 idle_reify (EV_A);
3740#endif
3741
3742#if EV_CHECK_ENABLE
3743 /* queue check watchers, to be executed first */
3744 if (expect_false (checkcnt))
3745 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3746#endif
3747
3748 EV_INVOKE_PENDING;
3749 }
3750 while (expect_true (
3751 activecnt
3752 && !loop_done
3753 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3754 ));
3755
3756 if (loop_done == EVBREAK_ONE)
3757 loop_done = EVBREAK_CANCEL;
3758
3759#if EV_FEATURE_API
3760 --loop_depth;
3761#endif
3762
3763 return activecnt;
3764}
3765
3766void
3767ev_break (EV_P_ int how) EV_NOEXCEPT
3768{
3769 loop_done = how;
3770}
3771
3772void
3773ev_ref (EV_P) EV_NOEXCEPT
3774{
3775 ++activecnt;
3776}
3777
3778void
3779ev_unref (EV_P) EV_NOEXCEPT
3780{
3781 --activecnt;
3782}
3783
3784void
3785ev_now_update (EV_P) EV_NOEXCEPT
3786{
3787 time_update (EV_A_ 1e100);
3788}
3789
3790void
3791ev_suspend (EV_P) EV_NOEXCEPT
3792{
3793 ev_now_update (EV_A);
3794}
3795
3796void
3797ev_resume (EV_P) EV_NOEXCEPT
3798{
3799 ev_tstamp mn_prev = mn_now;
3800
3801 ev_now_update (EV_A);
3802 timers_reschedule (EV_A_ mn_now - mn_prev);
3803#if EV_PERIODIC_ENABLE
3804 /* TODO: really do this? */
3805 periodics_reschedule (EV_A);
3806#endif
3807}
3808
3809/*****************************************************************************/
3810/* singly-linked list management, used when the expected list length is short */
3811
3812inline_size void
3813wlist_add (WL *head, WL elem)
3814{
3815 elem->next = *head;
3816 *head = elem;
3817}
3818
3819inline_size void
3820wlist_del (WL *head, WL elem)
3821{
3822 while (*head)
3823 {
3824 if (expect_true (*head == elem))
3825 {
3826 *head = elem->next;
3827 break;
3828 }
3829
3830 head = &(*head)->next;
3831 }
3832}
3833
3834/* internal, faster, version of ev_clear_pending */
3835inline_speed void
3836clear_pending (EV_P_ W w)
3837{
3838 if (w->pending)
3839 {
3840 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3841 w->pending = 0;
3842 }
384} 3843}
385 3844
386int 3845int
387ev_version_minor (void) 3846ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
388{ 3847{
389 return EV_VERSION_MINOR; 3848 W w_ = (W)w;
390} 3849 int pending = w_->pending;
391 3850
392int ev_init (int flags) 3851 if (expect_true (pending))
393{ 3852 {
394 if (!ev_method) 3853 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3854 p->w = (W)&pending_w;
3855 w_->pending = 0;
3856 return p->events;
395 { 3857 }
396#if HAVE_MONOTONIC 3858 else
3859 return 0;
3860}
3861
3862inline_size void
3863pri_adjust (EV_P_ W w)
3864{
3865 int pri = ev_priority (w);
3866 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3867 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3868 ev_set_priority (w, pri);
3869}
3870
3871inline_speed void
3872ev_start (EV_P_ W w, int active)
3873{
3874 pri_adjust (EV_A_ w);
3875 w->active = active;
3876 ev_ref (EV_A);
3877}
3878
3879inline_size void
3880ev_stop (EV_P_ W w)
3881{
3882 ev_unref (EV_A);
3883 w->active = 0;
3884}
3885
3886/*****************************************************************************/
3887
3888noinline
3889void
3890ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3891{
3892 int fd = w->fd;
3893
3894 if (expect_false (ev_is_active (w)))
3895 return;
3896
3897 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3898 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3899
3900 EV_FREQUENT_CHECK;
3901
3902 ev_start (EV_A_ (W)w, 1);
3903 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3904 wlist_add (&anfds[fd].head, (WL)w);
3905
3906 /* common bug, apparently */
3907 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3908
3909 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3910 w->events &= ~EV__IOFDSET;
3911
3912 EV_FREQUENT_CHECK;
3913}
3914
3915noinline
3916void
3917ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3918{
3919 clear_pending (EV_A_ (W)w);
3920 if (expect_false (!ev_is_active (w)))
3921 return;
3922
3923 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3924
3925 EV_FREQUENT_CHECK;
3926
3927 wlist_del (&anfds[w->fd].head, (WL)w);
3928 ev_stop (EV_A_ (W)w);
3929
3930 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3931
3932 EV_FREQUENT_CHECK;
3933}
3934
3935noinline
3936void
3937ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3938{
3939 if (expect_false (ev_is_active (w)))
3940 return;
3941
3942 ev_at (w) += mn_now;
3943
3944 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3945
3946 EV_FREQUENT_CHECK;
3947
3948 ++timercnt;
3949 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3950 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3951 ANHE_w (timers [ev_active (w)]) = (WT)w;
3952 ANHE_at_cache (timers [ev_active (w)]);
3953 upheap (timers, ev_active (w));
3954
3955 EV_FREQUENT_CHECK;
3956
3957 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3958}
3959
3960noinline
3961void
3962ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3963{
3964 clear_pending (EV_A_ (W)w);
3965 if (expect_false (!ev_is_active (w)))
3966 return;
3967
3968 EV_FREQUENT_CHECK;
3969
3970 {
3971 int active = ev_active (w);
3972
3973 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3974
3975 --timercnt;
3976
3977 if (expect_true (active < timercnt + HEAP0))
397 { 3978 {
398 struct timespec ts; 3979 timers [active] = timers [timercnt + HEAP0];
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3980 adjustheap (timers, timercnt, active);
400 have_monotonic = 1;
401 } 3981 }
402#endif 3982 }
403 3983
404 ev_now = ev_time (); 3984 ev_at (w) -= mn_now;
405 now = get_clock ();
406 diff = ev_now - now;
407 3985
408 if (pipe (sigpipe)) 3986 ev_stop (EV_A_ (W)w);
409 return 0;
410 3987
411 ev_method = EVMETHOD_NONE; 3988 EV_FREQUENT_CHECK;
412#if HAVE_EPOLL 3989}
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
414#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 3990
419 if (ev_method) 3991noinline
420 { 3992void
421 evw_init (&sigev, sigcb); 3993ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
422 siginit (); 3994{
3995 EV_FREQUENT_CHECK;
423 3996
424 evsignal_init (&childev, childcb, SIGCHLD); 3997 clear_pending (EV_A_ (W)w);
425 evsignal_start (&childev); 3998
426 } 3999 if (ev_is_active (w))
427 } 4000 {
428
429 return ev_method;
430}
431
432/*****************************************************************************/
433
434void
435ev_prefork (void)
436{
437 /* nop */
438}
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void
464fd_reify (void)
465{
466 int i;
467
468 for (i = 0; i < fdchangecnt; ++i)
469 {
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt;
495
496 if (p->w)
497 {
498 p->w->pending = 0;
499 p->w->cb (p->w, p->events);
500 }
501 }
502}
503
504static void
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512
513 /* first reschedule or stop timer */
514 if (w->repeat) 4001 if (w->repeat)
515 { 4002 {
516 w->at = now + w->repeat; 4003 ev_at (w) = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now)); 4004 ANHE_at_cache (timers [ev_active (w)]);
518 downheap ((WT *)timers, timercnt, 0); 4005 adjustheap (timers, timercnt, ev_active (w));
519 } 4006 }
520 else 4007 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 4008 ev_timer_stop (EV_A_ w);
522 }
523}
524
525static void
526periodics_reify (void)
527{
528 while (periodiccnt && periodics [0]->at <= ev_now)
529 { 4009 }
530 struct ev_periodic *w = periodics [0]; 4010 else if (w->repeat)
4011 {
4012 ev_at (w) = w->repeat;
4013 ev_timer_start (EV_A_ w);
4014 }
531 4015
532 /* first reschedule or stop timer */ 4016 EV_FREQUENT_CHECK;
4017}
4018
4019ev_tstamp
4020ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4021{
4022 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4023}
4024
4025#if EV_PERIODIC_ENABLE
4026noinline
4027void
4028ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4029{
4030 if (expect_false (ev_is_active (w)))
4031 return;
4032
4033 if (w->reschedule_cb)
4034 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
533 if (w->interval) 4035 else if (w->interval)
4036 {
4037 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4038 periodic_recalc (EV_A_ w);
4039 }
4040 else
4041 ev_at (w) = w->offset;
4042
4043 EV_FREQUENT_CHECK;
4044
4045 ++periodiccnt;
4046 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4047 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4048 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4049 ANHE_at_cache (periodics [ev_active (w)]);
4050 upheap (periodics, ev_active (w));
4051
4052 EV_FREQUENT_CHECK;
4053
4054 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4055}
4056
4057noinline
4058void
4059ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4060{
4061 clear_pending (EV_A_ (W)w);
4062 if (expect_false (!ev_is_active (w)))
4063 return;
4064
4065 EV_FREQUENT_CHECK;
4066
4067 {
4068 int active = ev_active (w);
4069
4070 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4071
4072 --periodiccnt;
4073
4074 if (expect_true (active < periodiccnt + HEAP0))
4075 {
4076 periodics [active] = periodics [periodiccnt + HEAP0];
4077 adjustheap (periodics, periodiccnt, active);
4078 }
4079 }
4080
4081 ev_stop (EV_A_ (W)w);
4082
4083 EV_FREQUENT_CHECK;
4084}
4085
4086noinline
4087void
4088ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4089{
4090 /* TODO: use adjustheap and recalculation */
4091 ev_periodic_stop (EV_A_ w);
4092 ev_periodic_start (EV_A_ w);
4093}
4094#endif
4095
4096#ifndef SA_RESTART
4097# define SA_RESTART 0
4098#endif
4099
4100#if EV_SIGNAL_ENABLE
4101
4102noinline
4103void
4104ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4105{
4106 if (expect_false (ev_is_active (w)))
4107 return;
4108
4109 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4110
4111#if EV_MULTIPLICITY
4112 assert (("libev: a signal must not be attached to two different loops",
4113 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4114
4115 signals [w->signum - 1].loop = EV_A;
4116 ECB_MEMORY_FENCE_RELEASE;
4117#endif
4118
4119 EV_FREQUENT_CHECK;
4120
4121#if EV_USE_SIGNALFD
4122 if (sigfd == -2)
4123 {
4124 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4125 if (sigfd < 0 && errno == EINVAL)
4126 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4127
4128 if (sigfd >= 0)
534 { 4129 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4130 fd_intern (sigfd); /* doing it twice will not hurt */
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 4131
537 downheap ((WT *)periodics, periodiccnt, 0); 4132 sigemptyset (&sigfd_set);
4133
4134 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4135 ev_set_priority (&sigfd_w, EV_MAXPRI);
4136 ev_io_start (EV_A_ &sigfd_w);
4137 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4138 }
4139 }
4140
4141 if (sigfd >= 0)
4142 {
4143 /* TODO: check .head */
4144 sigaddset (&sigfd_set, w->signum);
4145 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4146
4147 signalfd (sigfd, &sigfd_set, 0);
4148 }
4149#endif
4150
4151 ev_start (EV_A_ (W)w, 1);
4152 wlist_add (&signals [w->signum - 1].head, (WL)w);
4153
4154 if (!((WL)w)->next)
4155# if EV_USE_SIGNALFD
4156 if (sigfd < 0) /*TODO*/
4157# endif
4158 {
4159# ifdef _WIN32
4160 evpipe_init (EV_A);
4161
4162 signal (w->signum, ev_sighandler);
4163# else
4164 struct sigaction sa;
4165
4166 evpipe_init (EV_A);
4167
4168 sa.sa_handler = ev_sighandler;
4169 sigfillset (&sa.sa_mask);
4170 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4171 sigaction (w->signum, &sa, 0);
4172
4173 if (origflags & EVFLAG_NOSIGMASK)
4174 {
4175 sigemptyset (&sa.sa_mask);
4176 sigaddset (&sa.sa_mask, w->signum);
4177 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4178 }
4179#endif
4180 }
4181
4182 EV_FREQUENT_CHECK;
4183}
4184
4185noinline
4186void
4187ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4188{
4189 clear_pending (EV_A_ (W)w);
4190 if (expect_false (!ev_is_active (w)))
4191 return;
4192
4193 EV_FREQUENT_CHECK;
4194
4195 wlist_del (&signals [w->signum - 1].head, (WL)w);
4196 ev_stop (EV_A_ (W)w);
4197
4198 if (!signals [w->signum - 1].head)
4199 {
4200#if EV_MULTIPLICITY
4201 signals [w->signum - 1].loop = 0; /* unattach from signal */
4202#endif
4203#if EV_USE_SIGNALFD
4204 if (sigfd >= 0)
4205 {
4206 sigset_t ss;
4207
4208 sigemptyset (&ss);
4209 sigaddset (&ss, w->signum);
4210 sigdelset (&sigfd_set, w->signum);
4211
4212 signalfd (sigfd, &sigfd_set, 0);
4213 sigprocmask (SIG_UNBLOCK, &ss, 0);
538 } 4214 }
539 else 4215 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 4216#endif
541 4217 signal (w->signum, SIG_DFL);
542 event ((W)w, EV_TIMEOUT);
543 } 4218 }
544}
545 4219
4220 EV_FREQUENT_CHECK;
4221}
4222
4223#endif
4224
4225#if EV_CHILD_ENABLE
4226
4227void
4228ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4229{
4230#if EV_MULTIPLICITY
4231 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4232#endif
4233 if (expect_false (ev_is_active (w)))
4234 return;
4235
4236 EV_FREQUENT_CHECK;
4237
4238 ev_start (EV_A_ (W)w, 1);
4239 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4240
4241 EV_FREQUENT_CHECK;
4242}
4243
4244void
4245ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4246{
4247 clear_pending (EV_A_ (W)w);
4248 if (expect_false (!ev_is_active (w)))
4249 return;
4250
4251 EV_FREQUENT_CHECK;
4252
4253 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
4257}
4258
4259#endif
4260
4261#if EV_STAT_ENABLE
4262
4263# ifdef _WIN32
4264# undef lstat
4265# define lstat(a,b) _stati64 (a,b)
4266# endif
4267
4268#define DEF_STAT_INTERVAL 5.0074891
4269#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4270#define MIN_STAT_INTERVAL 0.1074891
4271
4272noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4273
4274#if EV_USE_INOTIFY
4275
4276/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4277# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4278
4279noinline
546static void 4280static void
547periodics_reschedule (ev_tstamp diff) 4281infy_add (EV_P_ ev_stat *w)
548{ 4282{
549 int i; 4283 w->wd = inotify_add_watch (fs_fd, w->path,
4284 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4285 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4286 | IN_DONT_FOLLOW | IN_MASK_ADD);
550 4287
551 /* adjust periodics after time jump */ 4288 if (w->wd >= 0)
552 for (i = 0; i < periodiccnt; ++i) 4289 {
4290 struct statfs sfs;
4291
4292 /* now local changes will be tracked by inotify, but remote changes won't */
4293 /* unless the filesystem is known to be local, we therefore still poll */
4294 /* also do poll on <2.6.25, but with normal frequency */
4295
4296 if (!fs_2625)
4297 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4298 else if (!statfs (w->path, &sfs)
4299 && (sfs.f_type == 0x1373 /* devfs */
4300 || sfs.f_type == 0x4006 /* fat */
4301 || sfs.f_type == 0x4d44 /* msdos */
4302 || sfs.f_type == 0xEF53 /* ext2/3 */
4303 || sfs.f_type == 0x72b6 /* jffs2 */
4304 || sfs.f_type == 0x858458f6 /* ramfs */
4305 || sfs.f_type == 0x5346544e /* ntfs */
4306 || sfs.f_type == 0x3153464a /* jfs */
4307 || sfs.f_type == 0x9123683e /* btrfs */
4308 || sfs.f_type == 0x52654973 /* reiser3 */
4309 || sfs.f_type == 0x01021994 /* tmpfs */
4310 || sfs.f_type == 0x58465342 /* xfs */))
4311 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4312 else
4313 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
553 { 4314 }
554 struct ev_periodic *w = periodics [i]; 4315 else
4316 {
4317 /* can't use inotify, continue to stat */
4318 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
555 4319
556 if (w->interval) 4320 /* if path is not there, monitor some parent directory for speedup hints */
4321 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4322 /* but an efficiency issue only */
4323 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
557 { 4324 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4325 char path [4096];
4326 strcpy (path, w->path);
559 4327
560 if (fabs (diff) >= 1e-4) 4328 do
561 { 4329 {
562 evperiodic_stop (w); 4330 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
563 evperiodic_start (w); 4331 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
564 4332
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4333 char *pend = strrchr (path, '/');
4334
4335 if (!pend || pend == path)
4336 break;
4337
4338 *pend = 0;
4339 w->wd = inotify_add_watch (fs_fd, path, mask);
4340 }
4341 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4342 }
4343 }
4344
4345 if (w->wd >= 0)
4346 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4347
4348 /* now re-arm timer, if required */
4349 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4350 ev_timer_again (EV_A_ &w->timer);
4351 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4352}
4353
4354noinline
4355static void
4356infy_del (EV_P_ ev_stat *w)
4357{
4358 int slot;
4359 int wd = w->wd;
4360
4361 if (wd < 0)
4362 return;
4363
4364 w->wd = -2;
4365 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4366 wlist_del (&fs_hash [slot].head, (WL)w);
4367
4368 /* remove this watcher, if others are watching it, they will rearm */
4369 inotify_rm_watch (fs_fd, wd);
4370}
4371
4372noinline
4373static void
4374infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4375{
4376 if (slot < 0)
4377 /* overflow, need to check for all hash slots */
4378 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4379 infy_wd (EV_A_ slot, wd, ev);
4380 else
4381 {
4382 WL w_;
4383
4384 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4385 {
4386 ev_stat *w = (ev_stat *)w_;
4387 w_ = w_->next; /* lets us remove this watcher and all before it */
4388
4389 if (w->wd == wd || wd == -1)
4390 {
4391 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4392 {
4393 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4394 w->wd = -1;
4395 infy_add (EV_A_ w); /* re-add, no matter what */
4396 }
4397
4398 stat_timer_cb (EV_A_ &w->timer, 0);
566 } 4399 }
567 } 4400 }
568 } 4401 }
569} 4402}
570 4403
571static void 4404static void
572time_update (void) 4405infy_cb (EV_P_ ev_io *w, int revents)
573{ 4406{
4407 char buf [EV_INOTIFY_BUFSIZE];
574 int i; 4408 int ofs;
4409 int len = read (fs_fd, buf, sizeof (buf));
575 4410
576 ev_now = ev_time (); 4411 for (ofs = 0; ofs < len; )
577 4412 {
578 if (have_monotonic) 4413 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4414 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4415 ofs += sizeof (struct inotify_event) + ev->len;
579 { 4416 }
580 ev_tstamp odiff = diff; 4417}
581 4418
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4419inline_size ecb_cold
4420void
4421ev_check_2625 (EV_P)
4422{
4423 /* kernels < 2.6.25 are borked
4424 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4425 */
4426 if (ev_linux_version () < 0x020619)
4427 return;
4428
4429 fs_2625 = 1;
4430}
4431
4432inline_size int
4433infy_newfd (void)
4434{
4435#if defined IN_CLOEXEC && defined IN_NONBLOCK
4436 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4437 if (fd >= 0)
4438 return fd;
4439#endif
4440 return inotify_init ();
4441}
4442
4443inline_size void
4444infy_init (EV_P)
4445{
4446 if (fs_fd != -2)
4447 return;
4448
4449 fs_fd = -1;
4450
4451 ev_check_2625 (EV_A);
4452
4453 fs_fd = infy_newfd ();
4454
4455 if (fs_fd >= 0)
4456 {
4457 fd_intern (fs_fd);
4458 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4459 ev_set_priority (&fs_w, EV_MAXPRI);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463}
4464
4465inline_size void
4466infy_fork (EV_P)
4467{
4468 int slot;
4469
4470 if (fs_fd < 0)
4471 return;
4472
4473 ev_ref (EV_A);
4474 ev_io_stop (EV_A_ &fs_w);
4475 close (fs_fd);
4476 fs_fd = infy_newfd ();
4477
4478 if (fs_fd >= 0)
4479 {
4480 fd_intern (fs_fd);
4481 ev_io_set (&fs_w, fs_fd, EV_READ);
4482 ev_io_start (EV_A_ &fs_w);
4483 ev_unref (EV_A);
4484 }
4485
4486 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4487 {
4488 WL w_ = fs_hash [slot].head;
4489 fs_hash [slot].head = 0;
4490
4491 while (w_)
583 { 4492 {
584 now = get_clock (); 4493 ev_stat *w = (ev_stat *)w_;
585 diff = ev_now - now; 4494 w_ = w_->next; /* lets us add this watcher */
586 4495
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4496 w->wd = -1;
588 return; /* all is well */
589 4497
590 ev_now = ev_time (); 4498 if (fs_fd >= 0)
4499 infy_add (EV_A_ w); /* re-add, no matter what */
4500 else
4501 {
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4504 ev_timer_again (EV_A_ &w->timer);
4505 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4506 }
591 } 4507 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 4508 }
4509}
4510
4511#endif
4512
4513#ifdef _WIN32
4514# define EV_LSTAT(p,b) _stati64 (p, b)
4515#else
4516# define EV_LSTAT(p,b) lstat (p, b)
4517#endif
4518
4519void
4520ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4521{
4522 if (lstat (w->path, &w->attr) < 0)
4523 w->attr.st_nlink = 0;
4524 else if (!w->attr.st_nlink)
4525 w->attr.st_nlink = 1;
4526}
4527
4528noinline
4529static void
4530stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4531{
4532 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4533
4534 ev_statdata prev = w->attr;
4535 ev_stat_stat (EV_A_ w);
4536
4537 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4538 if (
4539 prev.st_dev != w->attr.st_dev
4540 || prev.st_ino != w->attr.st_ino
4541 || prev.st_mode != w->attr.st_mode
4542 || prev.st_nlink != w->attr.st_nlink
4543 || prev.st_uid != w->attr.st_uid
4544 || prev.st_gid != w->attr.st_gid
4545 || prev.st_rdev != w->attr.st_rdev
4546 || prev.st_size != w->attr.st_size
4547 || prev.st_atime != w->attr.st_atime
4548 || prev.st_mtime != w->attr.st_mtime
4549 || prev.st_ctime != w->attr.st_ctime
4550 ) {
4551 /* we only update w->prev on actual differences */
4552 /* in case we test more often than invoke the callback, */
4553 /* to ensure that prev is always different to attr */
4554 w->prev = prev;
4555
4556 #if EV_USE_INOTIFY
4557 if (fs_fd >= 0)
4558 {
4559 infy_del (EV_A_ w);
4560 infy_add (EV_A_ w);
4561 ev_stat_stat (EV_A_ w); /* avoid race... */
4562 }
4563 #endif
4564
4565 ev_feed_event (EV_A_ w, EV_STAT);
4566 }
4567}
4568
4569void
4570ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4571{
4572 if (expect_false (ev_is_active (w)))
4573 return;
4574
4575 ev_stat_stat (EV_A_ w);
4576
4577 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4578 w->interval = MIN_STAT_INTERVAL;
4579
4580 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4581 ev_set_priority (&w->timer, ev_priority (w));
4582
4583#if EV_USE_INOTIFY
4584 infy_init (EV_A);
4585
4586 if (fs_fd >= 0)
4587 infy_add (EV_A_ w);
596 else 4588 else
4589#endif
4590 {
4591 ev_timer_again (EV_A_ &w->timer);
4592 ev_unref (EV_A);
597 { 4593 }
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 4594
4595 ev_start (EV_A_ (W)w, 1);
4596
4597 EV_FREQUENT_CHECK;
4598}
4599
4600void
4601ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4602{
4603 clear_pending (EV_A_ (W)w);
4604 if (expect_false (!ev_is_active (w)))
4605 return;
4606
4607 EV_FREQUENT_CHECK;
4608
4609#if EV_USE_INOTIFY
4610 infy_del (EV_A_ w);
4611#endif
4612
4613 if (ev_is_active (&w->timer))
4614 {
4615 ev_ref (EV_A);
4616 ev_timer_stop (EV_A_ &w->timer);
4617 }
4618
4619 ev_stop (EV_A_ (W)w);
4620
4621 EV_FREQUENT_CHECK;
4622}
4623#endif
4624
4625#if EV_IDLE_ENABLE
4626void
4627ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4628{
4629 if (expect_false (ev_is_active (w)))
4630 return;
4631
4632 pri_adjust (EV_A_ (W)w);
4633
4634 EV_FREQUENT_CHECK;
4635
4636 {
4637 int active = ++idlecnt [ABSPRI (w)];
4638
4639 ++idleall;
4640 ev_start (EV_A_ (W)w, active);
4641
4642 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4643 idles [ABSPRI (w)][active - 1] = w;
4644 }
4645
4646 EV_FREQUENT_CHECK;
4647}
4648
4649void
4650ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4651{
4652 clear_pending (EV_A_ (W)w);
4653 if (expect_false (!ev_is_active (w)))
4654 return;
4655
4656 EV_FREQUENT_CHECK;
4657
4658 {
4659 int active = ev_active (w);
4660
4661 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4662 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4663
4664 ev_stop (EV_A_ (W)w);
4665 --idleall;
4666 }
4667
4668 EV_FREQUENT_CHECK;
4669}
4670#endif
4671
4672#if EV_PREPARE_ENABLE
4673void
4674ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4675{
4676 if (expect_false (ev_is_active (w)))
4677 return;
4678
4679 EV_FREQUENT_CHECK;
4680
4681 ev_start (EV_A_ (W)w, ++preparecnt);
4682 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4683 prepares [preparecnt - 1] = w;
4684
4685 EV_FREQUENT_CHECK;
4686}
4687
4688void
4689ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4690{
4691 clear_pending (EV_A_ (W)w);
4692 if (expect_false (!ev_is_active (w)))
4693 return;
4694
4695 EV_FREQUENT_CHECK;
4696
4697 {
4698 int active = ev_active (w);
4699
4700 prepares [active - 1] = prepares [--preparecnt];
4701 ev_active (prepares [active - 1]) = active;
4702 }
4703
4704 ev_stop (EV_A_ (W)w);
4705
4706 EV_FREQUENT_CHECK;
4707}
4708#endif
4709
4710#if EV_CHECK_ENABLE
4711void
4712ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4713{
4714 if (expect_false (ev_is_active (w)))
4715 return;
4716
4717 EV_FREQUENT_CHECK;
4718
4719 ev_start (EV_A_ (W)w, ++checkcnt);
4720 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4721 checks [checkcnt - 1] = w;
4722
4723 EV_FREQUENT_CHECK;
4724}
4725
4726void
4727ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4728{
4729 clear_pending (EV_A_ (W)w);
4730 if (expect_false (!ev_is_active (w)))
4731 return;
4732
4733 EV_FREQUENT_CHECK;
4734
4735 {
4736 int active = ev_active (w);
4737
4738 checks [active - 1] = checks [--checkcnt];
4739 ev_active (checks [active - 1]) = active;
4740 }
4741
4742 ev_stop (EV_A_ (W)w);
4743
4744 EV_FREQUENT_CHECK;
4745}
4746#endif
4747
4748#if EV_EMBED_ENABLE
4749noinline
4750void
4751ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4752{
4753 ev_run (w->other, EVRUN_NOWAIT);
4754}
4755
4756static void
4757embed_io_cb (EV_P_ ev_io *io, int revents)
4758{
4759 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4760
4761 if (ev_cb (w))
4762 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4763 else
4764 ev_run (w->other, EVRUN_NOWAIT);
4765}
4766
4767static void
4768embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4769{
4770 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4771
4772 {
4773 EV_P = w->other;
4774
4775 while (fdchangecnt)
599 { 4776 {
600 periodics_reschedule (ev_now - now); 4777 fd_reify (EV_A);
601 4778 ev_run (EV_A_ EVRUN_NOWAIT);
602 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff;
605 } 4779 }
606
607 now = ev_now;
608 } 4780 }
609} 4781}
610 4782
611int ev_loop_done; 4783static void
612 4784embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
613void ev_loop (int flags)
614{ 4785{
615 double block; 4786 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
617 4787
618 do 4788 ev_embed_stop (EV_A_ w);
4789
619 { 4790 {
620 /* queue check watchers (and execute them) */ 4791 EV_P = w->other;
621 if (preparecnt)
622 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
624 call_pending ();
625 }
626 4792
627 /* update fd-related kernel structures */ 4793 ev_loop_fork (EV_A);
628 fd_reify (); 4794 ev_run (EV_A_ EVRUN_NOWAIT);
629
630 /* calculate blocking time */
631
632 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 {
640 block = MAX_BLOCKTIME;
641
642 if (timercnt)
643 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
645 if (block > to) block = to;
646 }
647
648 if (periodiccnt)
649 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
651 if (block > to) block = to;
652 }
653
654 if (block < 0.) block = 0.;
655 }
656
657 method_poll (block);
658
659 /* update ev_now, do magic */
660 time_update ();
661
662 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */
665
666 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE);
669
670 /* queue check watchers, to be executed first */
671 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK);
673
674 call_pending ();
675 } 4795 }
676 while (!ev_loop_done);
677 4796
678 if (ev_loop_done != 2) 4797 ev_embed_start (EV_A_ w);
679 ev_loop_done = 0;
680} 4798}
4799
4800#if 0
4801static void
4802embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4803{
4804 ev_idle_stop (EV_A_ idle);
4805}
4806#endif
4807
4808void
4809ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4810{
4811 if (expect_false (ev_is_active (w)))
4812 return;
4813
4814 {
4815 EV_P = w->other;
4816 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4817 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4818 }
4819
4820 EV_FREQUENT_CHECK;
4821
4822 ev_set_priority (&w->io, ev_priority (w));
4823 ev_io_start (EV_A_ &w->io);
4824
4825 ev_prepare_init (&w->prepare, embed_prepare_cb);
4826 ev_set_priority (&w->prepare, EV_MINPRI);
4827 ev_prepare_start (EV_A_ &w->prepare);
4828
4829 ev_fork_init (&w->fork, embed_fork_cb);
4830 ev_fork_start (EV_A_ &w->fork);
4831
4832 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4833
4834 ev_start (EV_A_ (W)w, 1);
4835
4836 EV_FREQUENT_CHECK;
4837}
4838
4839void
4840ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4841{
4842 clear_pending (EV_A_ (W)w);
4843 if (expect_false (!ev_is_active (w)))
4844 return;
4845
4846 EV_FREQUENT_CHECK;
4847
4848 ev_io_stop (EV_A_ &w->io);
4849 ev_prepare_stop (EV_A_ &w->prepare);
4850 ev_fork_stop (EV_A_ &w->fork);
4851
4852 ev_stop (EV_A_ (W)w);
4853
4854 EV_FREQUENT_CHECK;
4855}
4856#endif
4857
4858#if EV_FORK_ENABLE
4859void
4860ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4861{
4862 if (expect_false (ev_is_active (w)))
4863 return;
4864
4865 EV_FREQUENT_CHECK;
4866
4867 ev_start (EV_A_ (W)w, ++forkcnt);
4868 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4869 forks [forkcnt - 1] = w;
4870
4871 EV_FREQUENT_CHECK;
4872}
4873
4874void
4875ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4876{
4877 clear_pending (EV_A_ (W)w);
4878 if (expect_false (!ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 {
4884 int active = ev_active (w);
4885
4886 forks [active - 1] = forks [--forkcnt];
4887 ev_active (forks [active - 1]) = active;
4888 }
4889
4890 ev_stop (EV_A_ (W)w);
4891
4892 EV_FREQUENT_CHECK;
4893}
4894#endif
4895
4896#if EV_CLEANUP_ENABLE
4897void
4898ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4899{
4900 if (expect_false (ev_is_active (w)))
4901 return;
4902
4903 EV_FREQUENT_CHECK;
4904
4905 ev_start (EV_A_ (W)w, ++cleanupcnt);
4906 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4907 cleanups [cleanupcnt - 1] = w;
4908
4909 /* cleanup watchers should never keep a refcount on the loop */
4910 ev_unref (EV_A);
4911 EV_FREQUENT_CHECK;
4912}
4913
4914void
4915ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4916{
4917 clear_pending (EV_A_ (W)w);
4918 if (expect_false (!ev_is_active (w)))
4919 return;
4920
4921 EV_FREQUENT_CHECK;
4922 ev_ref (EV_A);
4923
4924 {
4925 int active = ev_active (w);
4926
4927 cleanups [active - 1] = cleanups [--cleanupcnt];
4928 ev_active (cleanups [active - 1]) = active;
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934}
4935#endif
4936
4937#if EV_ASYNC_ENABLE
4938void
4939ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4940{
4941 if (expect_false (ev_is_active (w)))
4942 return;
4943
4944 w->sent = 0;
4945
4946 evpipe_init (EV_A);
4947
4948 EV_FREQUENT_CHECK;
4949
4950 ev_start (EV_A_ (W)w, ++asynccnt);
4951 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4952 asyncs [asynccnt - 1] = w;
4953
4954 EV_FREQUENT_CHECK;
4955}
4956
4957void
4958ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4959{
4960 clear_pending (EV_A_ (W)w);
4961 if (expect_false (!ev_is_active (w)))
4962 return;
4963
4964 EV_FREQUENT_CHECK;
4965
4966 {
4967 int active = ev_active (w);
4968
4969 asyncs [active - 1] = asyncs [--asynccnt];
4970 ev_active (asyncs [active - 1]) = active;
4971 }
4972
4973 ev_stop (EV_A_ (W)w);
4974
4975 EV_FREQUENT_CHECK;
4976}
4977
4978void
4979ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4980{
4981 w->sent = 1;
4982 evpipe_write (EV_A_ &async_pending);
4983}
4984#endif
681 4985
682/*****************************************************************************/ 4986/*****************************************************************************/
683 4987
684static void
685wlist_add (WL *head, WL elem)
686{
687 elem->next = *head;
688 *head = elem;
689}
690
691static void
692wlist_del (WL *head, WL elem)
693{
694 while (*head)
695 {
696 if (*head == elem)
697 {
698 *head = elem->next;
699 return;
700 }
701
702 head = &(*head)->next;
703 }
704}
705
706static void
707ev_clear (W w)
708{
709 if (w->pending)
710 {
711 pendings [w->pending - 1].w = 0;
712 w->pending = 0;
713 }
714}
715
716static void
717ev_start (W w, int active)
718{
719 w->active = active;
720}
721
722static void
723ev_stop (W w)
724{
725 w->active = 0;
726}
727
728/*****************************************************************************/
729
730void
731evio_start (struct ev_io *w)
732{
733 if (ev_is_active (w))
734 return;
735
736 int fd = w->fd;
737
738 ev_start ((W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741
742 ++fdchangecnt;
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745
746 if (w->fd == 9)
747 printf ("start %p:%x\n", w, w->events);//D
748}
749
750void
751evio_stop (struct ev_io *w)
752{
753 if (w->fd == 9)
754 printf ("stop %p:%x\n", w, w->events);//D
755 ev_clear ((W)w);
756 if (!ev_is_active (w))
757 return;
758
759 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
760 ev_stop ((W)w);
761
762 ++fdchangecnt;
763 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
764 fdchanges [fdchangecnt - 1] = w->fd;
765}
766
767void
768evtimer_start (struct ev_timer *w)
769{
770 if (ev_is_active (w))
771 return;
772
773 w->at += now;
774
775 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
776
777 ev_start ((W)w, ++timercnt);
778 array_needsize (timers, timermax, timercnt, );
779 timers [timercnt - 1] = w;
780 upheap ((WT *)timers, timercnt - 1);
781}
782
783void
784evtimer_stop (struct ev_timer *w)
785{
786 ev_clear ((W)w);
787 if (!ev_is_active (w))
788 return;
789
790 if (w->active < timercnt--)
791 {
792 timers [w->active - 1] = timers [timercnt];
793 downheap ((WT *)timers, timercnt, w->active - 1);
794 }
795
796 w->at = w->repeat;
797
798 ev_stop ((W)w);
799}
800
801void
802evtimer_again (struct ev_timer *w)
803{
804 if (ev_is_active (w))
805 {
806 if (w->repeat)
807 {
808 w->at = now + w->repeat;
809 downheap ((WT *)timers, timercnt, w->active - 1);
810 }
811 else
812 evtimer_stop (w);
813 }
814 else if (w->repeat)
815 evtimer_start (w);
816}
817
818void
819evperiodic_start (struct ev_periodic *w)
820{
821 if (ev_is_active (w))
822 return;
823
824 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
825
826 /* this formula differs from the one in periodic_reify because we do not always round up */
827 if (w->interval)
828 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
829
830 ev_start ((W)w, ++periodiccnt);
831 array_needsize (periodics, periodicmax, periodiccnt, );
832 periodics [periodiccnt - 1] = w;
833 upheap ((WT *)periodics, periodiccnt - 1);
834}
835
836void
837evperiodic_stop (struct ev_periodic *w)
838{
839 ev_clear ((W)w);
840 if (!ev_is_active (w))
841 return;
842
843 if (w->active < periodiccnt--)
844 {
845 periodics [w->active - 1] = periodics [periodiccnt];
846 downheap ((WT *)periodics, periodiccnt, w->active - 1);
847 }
848
849 ev_stop ((W)w);
850}
851
852void
853evsignal_start (struct ev_signal *w)
854{
855 if (ev_is_active (w))
856 return;
857
858 ev_start ((W)w, 1);
859 array_needsize (signals, signalmax, w->signum, signals_init);
860 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
861
862 if (!w->next)
863 {
864 struct sigaction sa;
865 sa.sa_handler = sighandler;
866 sigfillset (&sa.sa_mask);
867 sa.sa_flags = 0;
868 sigaction (w->signum, &sa, 0);
869 }
870}
871
872void
873evsignal_stop (struct ev_signal *w)
874{
875 ev_clear ((W)w);
876 if (!ev_is_active (w))
877 return;
878
879 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
880 ev_stop ((W)w);
881
882 if (!signals [w->signum - 1].head)
883 signal (w->signum, SIG_DFL);
884}
885
886void evidle_start (struct ev_idle *w)
887{
888 if (ev_is_active (w))
889 return;
890
891 ev_start ((W)w, ++idlecnt);
892 array_needsize (idles, idlemax, idlecnt, );
893 idles [idlecnt - 1] = w;
894}
895
896void evidle_stop (struct ev_idle *w)
897{
898 ev_clear ((W)w);
899 if (ev_is_active (w))
900 return;
901
902 idles [w->active - 1] = idles [--idlecnt];
903 ev_stop ((W)w);
904}
905
906void evprepare_start (struct ev_prepare *w)
907{
908 if (ev_is_active (w))
909 return;
910
911 ev_start ((W)w, ++preparecnt);
912 array_needsize (prepares, preparemax, preparecnt, );
913 prepares [preparecnt - 1] = w;
914}
915
916void evprepare_stop (struct ev_prepare *w)
917{
918 ev_clear ((W)w);
919 if (ev_is_active (w))
920 return;
921
922 prepares [w->active - 1] = prepares [--preparecnt];
923 ev_stop ((W)w);
924}
925
926void evcheck_start (struct ev_check *w)
927{
928 if (ev_is_active (w))
929 return;
930
931 ev_start ((W)w, ++checkcnt);
932 array_needsize (checks, checkmax, checkcnt, );
933 checks [checkcnt - 1] = w;
934}
935
936void evcheck_stop (struct ev_check *w)
937{
938 ev_clear ((W)w);
939 if (ev_is_active (w))
940 return;
941
942 checks [w->active - 1] = checks [--checkcnt];
943 ev_stop ((W)w);
944}
945
946void evchild_start (struct ev_child *w)
947{
948 if (ev_is_active (w))
949 return;
950
951 ev_start ((W)w, 1);
952 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
953}
954
955void evchild_stop (struct ev_child *w)
956{
957 ev_clear ((W)w);
958 if (ev_is_active (w))
959 return;
960
961 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
962 ev_stop ((W)w);
963}
964
965/*****************************************************************************/
966
967struct ev_once 4988struct ev_once
968{ 4989{
969 struct ev_io io; 4990 ev_io io;
970 struct ev_timer to; 4991 ev_timer to;
971 void (*cb)(int revents, void *arg); 4992 void (*cb)(int revents, void *arg);
972 void *arg; 4993 void *arg;
973}; 4994};
974 4995
975static void 4996static void
976once_cb (struct ev_once *once, int revents) 4997once_cb (EV_P_ struct ev_once *once, int revents)
977{ 4998{
978 void (*cb)(int revents, void *arg) = once->cb; 4999 void (*cb)(int revents, void *arg) = once->cb;
979 void *arg = once->arg; 5000 void *arg = once->arg;
980 5001
981 evio_stop (&once->io); 5002 ev_io_stop (EV_A_ &once->io);
982 evtimer_stop (&once->to); 5003 ev_timer_stop (EV_A_ &once->to);
983 free (once); 5004 ev_free (once);
984 5005
985 cb (revents, arg); 5006 cb (revents, arg);
986} 5007}
987 5008
988static void 5009static void
989once_cb_io (struct ev_io *w, int revents) 5010once_cb_io (EV_P_ ev_io *w, int revents)
990{ 5011{
991 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5012 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5013
5014 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
992} 5015}
993 5016
994static void 5017static void
995once_cb_to (struct ev_timer *w, int revents) 5018once_cb_to (EV_P_ ev_timer *w, int revents)
996{ 5019{
997 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5020 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
998}
999 5021
5022 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5023}
5024
1000void 5025void
1001ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5026ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1002{ 5027{
1003 struct ev_once *once = malloc (sizeof (struct ev_once)); 5028 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1004 5029
1005 if (!once)
1006 cb (EV_ERROR, arg);
1007 else
1008 {
1009 once->cb = cb; 5030 once->cb = cb;
1010 once->arg = arg; 5031 once->arg = arg;
1011 5032
1012 evw_init (&once->io, once_cb_io); 5033 ev_init (&once->io, once_cb_io);
1013
1014 if (fd >= 0) 5034 if (fd >= 0)
5035 {
5036 ev_io_set (&once->io, fd, events);
5037 ev_io_start (EV_A_ &once->io);
5038 }
5039
5040 ev_init (&once->to, once_cb_to);
5041 if (timeout >= 0.)
5042 {
5043 ev_timer_set (&once->to, timeout, 0.);
5044 ev_timer_start (EV_A_ &once->to);
5045 }
5046}
5047
5048/*****************************************************************************/
5049
5050#if EV_WALK_ENABLE
5051ecb_cold
5052void
5053ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5054{
5055 int i, j;
5056 ev_watcher_list *wl, *wn;
5057
5058 if (types & (EV_IO | EV_EMBED))
5059 for (i = 0; i < anfdmax; ++i)
5060 for (wl = anfds [i].head; wl; )
1015 { 5061 {
1016 evio_set (&once->io, fd, events); 5062 wn = wl->next;
1017 evio_start (&once->io); 5063
5064#if EV_EMBED_ENABLE
5065 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5066 {
5067 if (types & EV_EMBED)
5068 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5069 }
5070 else
5071#endif
5072#if EV_USE_INOTIFY
5073 if (ev_cb ((ev_io *)wl) == infy_cb)
5074 ;
5075 else
5076#endif
5077 if ((ev_io *)wl != &pipe_w)
5078 if (types & EV_IO)
5079 cb (EV_A_ EV_IO, wl);
5080
5081 wl = wn;
1018 } 5082 }
1019 5083
1020 evw_init (&once->to, once_cb_to); 5084 if (types & (EV_TIMER | EV_STAT))
1021 5085 for (i = timercnt + HEAP0; i-- > HEAP0; )
1022 if (timeout >= 0.) 5086#if EV_STAT_ENABLE
5087 /*TODO: timer is not always active*/
5088 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1023 { 5089 {
1024 evtimer_set (&once->to, timeout, 0.); 5090 if (types & EV_STAT)
1025 evtimer_start (&once->to); 5091 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1026 } 5092 }
1027 } 5093 else
1028} 5094#endif
5095 if (types & EV_TIMER)
5096 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1029 5097
1030/*****************************************************************************/ 5098#if EV_PERIODIC_ENABLE
5099 if (types & EV_PERIODIC)
5100 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5101 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5102#endif
1031 5103
1032#if 0 5104#if EV_IDLE_ENABLE
5105 if (types & EV_IDLE)
5106 for (j = NUMPRI; j--; )
5107 for (i = idlecnt [j]; i--; )
5108 cb (EV_A_ EV_IDLE, idles [j][i]);
5109#endif
1033 5110
1034struct ev_io wio; 5111#if EV_FORK_ENABLE
5112 if (types & EV_FORK)
5113 for (i = forkcnt; i--; )
5114 if (ev_cb (forks [i]) != embed_fork_cb)
5115 cb (EV_A_ EV_FORK, forks [i]);
5116#endif
1035 5117
1036static void 5118#if EV_ASYNC_ENABLE
1037sin_cb (struct ev_io *w, int revents) 5119 if (types & EV_ASYNC)
1038{ 5120 for (i = asynccnt; i--; )
1039 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5121 cb (EV_A_ EV_ASYNC, asyncs [i]);
1040} 5122#endif
1041 5123
1042static void 5124#if EV_PREPARE_ENABLE
1043ocb (struct ev_timer *w, int revents) 5125 if (types & EV_PREPARE)
1044{ 5126 for (i = preparecnt; i--; )
1045 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5127# if EV_EMBED_ENABLE
1046 evtimer_stop (w); 5128 if (ev_cb (prepares [i]) != embed_prepare_cb)
1047 evtimer_start (w);
1048}
1049
1050static void
1051scb (struct ev_signal *w, int revents)
1052{
1053 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1054 evio_stop (&wio);
1055 evio_start (&wio);
1056}
1057
1058static void
1059gcb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "generic %x\n", revents);
1062
1063}
1064
1065int main (void)
1066{
1067 ev_init (0);
1068
1069 evio_init (&wio, sin_cb, 0, EV_READ);
1070 evio_start (&wio);
1071
1072 struct ev_timer t[10000];
1073
1074#if 0
1075 int i;
1076 for (i = 0; i < 10000; ++i)
1077 {
1078 struct ev_timer *w = t + i;
1079 evw_init (w, ocb, i);
1080 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1081 evtimer_start (w);
1082 if (drand48 () < 0.5)
1083 evtimer_stop (w);
1084 }
1085#endif 5129# endif
1086 5130 cb (EV_A_ EV_PREPARE, prepares [i]);
1087 struct ev_timer t1;
1088 evtimer_init (&t1, ocb, 5, 10);
1089 evtimer_start (&t1);
1090
1091 struct ev_signal sig;
1092 evsignal_init (&sig, scb, SIGQUIT);
1093 evsignal_start (&sig);
1094
1095 struct ev_check cw;
1096 evcheck_init (&cw, gcb);
1097 evcheck_start (&cw);
1098
1099 struct ev_idle iw;
1100 evidle_init (&iw, gcb);
1101 evidle_start (&iw);
1102
1103 ev_loop (0);
1104
1105 return 0;
1106}
1107
1108#endif 5131#endif
1109 5132
5133#if EV_CHECK_ENABLE
5134 if (types & EV_CHECK)
5135 for (i = checkcnt; i--; )
5136 cb (EV_A_ EV_CHECK, checks [i]);
5137#endif
1110 5138
5139#if EV_SIGNAL_ENABLE
5140 if (types & EV_SIGNAL)
5141 for (i = 0; i < EV_NSIG - 1; ++i)
5142 for (wl = signals [i].head; wl; )
5143 {
5144 wn = wl->next;
5145 cb (EV_A_ EV_SIGNAL, wl);
5146 wl = wn;
5147 }
5148#endif
1111 5149
5150#if EV_CHILD_ENABLE
5151 if (types & EV_CHILD)
5152 for (i = (EV_PID_HASHSIZE); i--; )
5153 for (wl = childs [i]; wl; )
5154 {
5155 wn = wl->next;
5156 cb (EV_A_ EV_CHILD, wl);
5157 wl = wn;
5158 }
5159#endif
5160/* EV_STAT 0x00001000 /* stat data changed */
5161/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5162}
5163#endif
1112 5164
5165#if EV_MULTIPLICITY
5166 #include "ev_wrap.h"
5167#endif
5168

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines