ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
159#endif 214#endif
160 215
161#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 217# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
164# else 219# else
165# define EV_PID_HASHSIZE 16 220# define EV_PID_HASHSIZE 16
166# endif 221# endif
167#endif 222#endif
168 223
169/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 259
171#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
174#endif 263#endif
176#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
179#endif 268#endif
180 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
181#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 286# include <winsock.h>
183#endif 287#endif
184 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
185/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 318
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 322
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 323#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 326#else
208# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
212#endif 332#endif
213 333
214#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
216 343
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 346
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 348#define EMPTY2(a,b) /* used to suppress some warnings */
222 349
223typedef ev_watcher *W; 350typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
226 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
228 362
229#ifdef _WIN32 363#ifdef _WIN32
230# include "ev_win32.c" 364# include "ev_win32.c"
231#endif 365#endif
232 366
253 perror (msg); 387 perror (msg);
254 abort (); 388 abort ();
255 } 389 }
256} 390}
257 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
258static void *(*alloc)(void *ptr, size_t size) = realloc; 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 408
260void 409void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 411{
263 alloc = cb; 412 alloc = cb;
264} 413}
265 414
266inline_speed void * 415inline_speed void *
267ev_realloc (void *ptr, size_t size) 416ev_realloc (void *ptr, long size)
268{ 417{
269 ptr = alloc (ptr, size); 418 ptr = alloc (ptr, size);
270 419
271 if (!ptr && size) 420 if (!ptr && size)
272 { 421 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 423 abort ();
275 } 424 }
276 425
277 return ptr; 426 return ptr;
278} 427}
295typedef struct 444typedef struct
296{ 445{
297 W w; 446 W w;
298 int events; 447 int events;
299} ANPENDING; 448} ANPENDING;
449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
300 475
301#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
302 477
303 struct ev_loop 478 struct ev_loop
304 { 479 {
361{ 536{
362 return ev_rt_now; 537 return ev_rt_now;
363} 538}
364#endif 539#endif
365 540
366#define array_roundsize(type,n) (((n) | 4) & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
367 597
368#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
370 { \ 600 { \
371 int newcnt = cur; \ 601 int ocur_ = (cur); \
372 do \ 602 (base) = (type *)array_realloc \
373 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 605 }
382 606
607#if 0
383#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 610 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 614 }
615#endif
390 616
391#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 619
394/*****************************************************************************/ 620/*****************************************************************************/
395 621
396void noinline 622void noinline
397ev_feed_event (EV_P_ void *w, int revents) 623ev_feed_event (EV_P_ void *w, int revents)
398{ 624{
399 W w_ = (W)w; 625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
400 627
401 if (expect_false (w_->pending)) 628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
402 { 631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 635 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 636 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 637}
412 638
413void inline_size 639void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 641{
416 int i; 642 int i;
417 643
418 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
450} 676}
451 677
452void 678void
453ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 680{
681 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
456} 683}
457 684
458void inline_size 685void inline_size
459fd_reify (EV_P) 686fd_reify (EV_P)
460{ 687{
464 { 691 {
465 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
467 ev_io *w; 694 ev_io *w;
468 695
469 int events = 0; 696 unsigned char events = 0;
470 697
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 699 events |= (unsigned char)w->events;
473 700
474#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
475 if (events) 702 if (events)
476 { 703 {
477 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
478 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 711 }
481#endif 712#endif
482 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
483 anfd->reify = 0; 718 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
487 } 724 }
488 725
489 fdchangecnt = 0; 726 fdchangecnt = 0;
490} 727}
491 728
492void inline_size 729void inline_size
493fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
494{ 731{
495 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
499 734
735 if (expect_true (!reify))
736 {
500 ++fdchangecnt; 737 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
503} 741}
504 742
505void inline_speed 743void inline_speed
506fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
507{ 745{
554static void noinline 792static void noinline
555fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
556{ 794{
557 int fd; 795 int fd;
558 796
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 798 if (anfds [fd].events)
562 { 799 {
563 anfds [fd].events = 0; 800 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 802 }
566} 803}
567 804
568/*****************************************************************************/ 805/*****************************************************************************/
569 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
570void inline_speed 827void inline_speed
571upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
572{ 829{
573 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
574 832
575 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
581 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
582 heap [k] = w; 866 heap [k] = he;
583 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
584
585} 868}
586 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
587void inline_speed 877void inline_speed
588downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
589{ 879{
590 WT w = heap [k]; 880 ANHE he = heap [k];
591 881
592 while (k < (N >> 1)) 882 for (;;)
593 { 883 {
594 int j = k << 1; 884 int c = k << 1;
595 885
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 887 break;
601 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
602 heap [k] = heap [j]; 895 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
604 k = j; 898 k = c;
605 } 899 }
606 900
607 heap [k] = w; 901 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
609} 926}
610 927
611void inline_size 928void inline_size
612adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
613{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
614 upheap (heap, k); 932 upheap (heap, k);
933 else
615 downheap (heap, N, k); 934 downheap (heap, N, k);
616} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
617 962
618/*****************************************************************************/ 963/*****************************************************************************/
619 964
620typedef struct 965typedef struct
621{ 966{
622 WL head; 967 WL head;
623 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
624} ANSIG; 969} ANSIG;
625 970
626static ANSIG *signals; 971static ANSIG *signals;
627static int signalmax; 972static int signalmax;
628 973
629static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 975
633void inline_size 976void inline_size
634signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
635{ 978{
636 while (count--) 979 while (count--)
640 983
641 ++base; 984 ++base;
642 } 985 }
643} 986}
644 987
645static void 988/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 989
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 990void inline_speed
697fd_intern (int fd) 991fd_intern (int fd)
698{ 992{
699#ifdef _WIN32 993#ifdef _WIN32
700 int arg = 1; 994 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 998 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 999#endif
706} 1000}
707 1001
708static void noinline 1002static void noinline
709siginit (EV_P) 1003evpipe_init (EV_P)
710{ 1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
711 fd_intern (sigpipe [0]); 1020 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
713 1024
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1025 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
717} 1093}
718 1094
719/*****************************************************************************/ 1095/*****************************************************************************/
720 1096
1097static void
1098ev_sighandler (int signum)
1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
721static ev_child *childs [EV_PID_HASHSIZE]; 1134static WL childs [EV_PID_HASHSIZE];
722 1135
723#ifndef _WIN32 1136#ifndef _WIN32
724 1137
725static ev_signal childev; 1138static ev_signal childev;
726 1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
727void inline_speed 1144void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1145child_reap (EV_P_ int chain, int pid, int status)
729{ 1146{
730 ev_child *w; 1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1149
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
733 if (w->pid == pid || !w->pid) 1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
734 { 1154 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1156 w->rpid = pid;
737 w->rstatus = status; 1157 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1159 }
1160 }
740} 1161}
741 1162
742#ifndef WCONTINUED 1163#ifndef WCONTINUED
743# define WCONTINUED 0 1164# define WCONTINUED 0
744#endif 1165#endif
753 if (!WCONTINUED 1174 if (!WCONTINUED
754 || errno != EINVAL 1175 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1177 return;
757 1178
758 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1180 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1182
762 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1184 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1186}
766 1187
767#endif 1188#endif
768 1189
769/*****************************************************************************/ 1190/*****************************************************************************/
841} 1262}
842 1263
843unsigned int 1264unsigned int
844ev_embeddable_backends (void) 1265ev_embeddable_backends (void)
845{ 1266{
846 return EVBACKEND_EPOLL 1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1268
848 | EVBACKEND_PORT; 1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
849} 1274}
850 1275
851unsigned int 1276unsigned int
852ev_backend (EV_P) 1277ev_backend (EV_P)
853{ 1278{
854 return backend; 1279 return backend;
1280}
1281
1282unsigned int
1283ev_loop_count (EV_P)
1284{
1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
855} 1298}
856 1299
857static void noinline 1300static void noinline
858loop_init (EV_P_ unsigned int flags) 1301loop_init (EV_P_ unsigned int flags)
859{ 1302{
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1309 have_monotonic = 1;
867 } 1310 }
868#endif 1311#endif
869 1312
870 ev_rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1314 mn_now = get_clock ();
872 now_floor = mn_now; 1315 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
1326
1327 /* pid check not overridable via env */
1328#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK)
1330 curpid = getpid ();
1331#endif
874 1332
875 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1334 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1337
880 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
882 1340
883 backend = 0;
884#if EV_USE_PORT 1341#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1343#endif
887#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1352#endif
896#if EV_USE_SELECT 1353#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1355#endif
899 1356
900 ev_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1359 }
903} 1360}
904 1361
905static void noinline 1362static void noinline
906loop_destroy (EV_P) 1363loop_destroy (EV_P)
907{ 1364{
908 int i; 1365 int i;
909 1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383
1384#if EV_USE_INOTIFY
1385 if (fs_fd >= 0)
1386 close (fs_fd);
1387#endif
1388
1389 if (backend_fd >= 0)
1390 close (backend_fd);
1391
910#if EV_USE_PORT 1392#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1394#endif
913#if EV_USE_KQUEUE 1395#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 1404#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1405 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1406#endif
925 1407
926 for (i = NUMPRI; i--; ) 1408 for (i = NUMPRI; i--; )
1409 {
927 array_free (pending, [i]); 1410 array_free (pending, [i]);
1411#if EV_IDLE_ENABLE
1412 array_free (idle, [i]);
1413#endif
1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
928 1417
929 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1419 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1420 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1421#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1422 array_free (periodic, EMPTY);
934#endif 1423#endif
1424#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1425 array_free (fork, EMPTY);
1426#endif
936 array_free (prepare, EMPTY0); 1427 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
938 1432
939 backend = 0; 1433 backend = 0;
940} 1434}
1435
1436#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P);
1438#endif
941 1439
942void inline_size 1440void inline_size
943loop_fork (EV_P) 1441loop_fork (EV_P)
944{ 1442{
945#if EV_USE_PORT 1443#if EV_USE_PORT
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1447 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1448#endif
951#if EV_USE_EPOLL 1449#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1450 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1451#endif
1452#if EV_USE_INOTIFY
1453 infy_fork (EV_A);
1454#endif
954 1455
955 if (ev_is_active (&sigev)) 1456 if (ev_is_active (&pipeev))
956 { 1457 {
957 /* default loop */ 1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
958 1464
959 ev_ref (EV_A); 1465 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
961 close (sigpipe [0]); 1475 close (evpipe [0]);
962 close (sigpipe [1]); 1476 close (evpipe [1]);
1477 }
963 1478
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1482 }
969 1483
970 postfork = 0; 1484 postfork = 0;
971} 1485}
972 1486
973#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
974struct ev_loop * 1489struct ev_loop *
975ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
976{ 1491{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 1493
994} 1509}
995 1510
996void 1511void
997ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
998{ 1513{
999 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1000} 1515}
1001 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1002#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1003 1553
1004#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1005struct ev_loop * 1555struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1007#else 1557#else
1008int 1558int
1009ev_default_loop (unsigned int flags) 1559ev_default_loop (unsigned int flags)
1010#endif 1560#endif
1011{ 1561{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1562 if (!ev_default_loop_ptr)
1017 { 1563 {
1018#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1566#else
1023 1569
1024 loop_init (EV_A_ flags); 1570 loop_init (EV_A_ flags);
1025 1571
1026 if (ev_backend (EV_A)) 1572 if (ev_backend (EV_A))
1027 { 1573 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1574#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1595#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
1054#endif 1598#endif
1055 1599
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
1063} 1601}
1064 1602
1065void 1603void
1066ev_default_fork (void) 1604ev_default_fork (void)
1068#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1607 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1608#endif
1071 1609
1072 if (backend) 1610 if (backend)
1073 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1612}
1075 1613
1076/*****************************************************************************/ 1614/*****************************************************************************/
1077 1615
1078int inline_size 1616void
1079any_pending (EV_P) 1617ev_invoke (EV_P_ void *w, int revents)
1080{ 1618{
1081 int pri; 1619 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1620}
1089 1621
1090void inline_speed 1622void inline_speed
1091call_pending (EV_P) 1623call_pending (EV_P)
1092{ 1624{
1101 { 1633 {
1102 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103 1635
1104 p->w->pending = 0; 1636 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1106 } 1639 }
1107 } 1640 }
1108} 1641}
1109 1642
1643#if EV_IDLE_ENABLE
1644void inline_size
1645idle_reify (EV_P)
1646{
1647 if (expect_false (idleall))
1648 {
1649 int pri;
1650
1651 for (pri = NUMPRI; pri--; )
1652 {
1653 if (pendingcnt [pri])
1654 break;
1655
1656 if (idlecnt [pri])
1657 {
1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1659 break;
1660 }
1661 }
1662 }
1663}
1664#endif
1665
1110void inline_size 1666void inline_size
1111timers_reify (EV_P) 1667timers_reify (EV_P)
1112{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 1672 {
1115 ev_timer *w = timers [0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1116 1674
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1676
1119 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
1120 if (w->repeat) 1678 if (w->repeat)
1121 { 1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1685
1124 ((WT)w)->at += w->repeat; 1686 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 1687 downheap (timers, timercnt, HEAP0);
1129 } 1688 }
1130 else 1689 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1691
1692 EV_FREQUENT_CHECK;
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1134 } 1694 }
1135} 1695}
1136 1696
1137#if EV_PERIODIC_ENABLE 1697#if EV_PERIODIC_ENABLE
1138void inline_size 1698void inline_size
1139periodics_reify (EV_P) 1699periodics_reify (EV_P)
1140{ 1700{
1701 EV_FREQUENT_CHECK;
1702
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 1704 {
1143 ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 1706
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1708
1147 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1149 { 1711 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1153 } 1718 }
1154 else if (w->interval) 1719 else if (w->interval)
1155 { 1720 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1158 downheap ((WT *)periodics, periodiccnt, 0); 1736 downheap (periodics, periodiccnt, HEAP0);
1159 } 1737 }
1160 else 1738 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1740
1741 EV_FREQUENT_CHECK;
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 } 1743 }
1165} 1744}
1166 1745
1167static void noinline 1746static void noinline
1168periodics_reschedule (EV_P) 1747periodics_reschedule (EV_P)
1169{ 1748{
1170 int i; 1749 int i;
1171 1750
1172 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 1753 {
1175 ev_periodic *w = periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 1755
1177 if (w->reschedule_cb) 1756 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1758 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1181 } 1775 {
1776 ev_tstamp odiff = rtmn_diff;
1182 1777
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock (); 1778 mn_now = get_clock ();
1193 1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1783 {
1196 ev_rt_now = rtmn_diff + mn_now; 1784 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1785 return;
1198 } 1786 }
1199 else 1787
1200 {
1201 now_floor = mn_now; 1788 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1789 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1790
1207void inline_size 1791 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1792 * on the choice of "4": one iteration isn't enough,
1209{ 1793 * in case we get preempted during the calls to
1210 int i; 1794 * ev_time and get_clock. a second call is almost guaranteed
1211 1795 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1796 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1797 * in the unlikely event of having been preempted here.
1214 { 1798 */
1215 if (time_update_monotonic (EV_A)) 1799 for (i = 4; --i; )
1216 { 1800 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1230 1802
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 1804 return; /* all is well */
1233 1805
1234 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1807 mn_now = get_clock ();
1236 now_floor = mn_now; 1808 now_floor = mn_now;
1237 } 1809 }
1238 1810
1239# if EV_PERIODIC_ENABLE 1811# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1812 periodics_reschedule (EV_A);
1241# endif 1813# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1816 }
1246 else 1817 else
1247#endif 1818#endif
1248 { 1819 {
1249 ev_rt_now = ev_time (); 1820 ev_rt_now = ev_time ();
1250 1821
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1823 {
1253#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1255#endif 1826#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1260 } 1834 }
1261 1835
1262 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1263 } 1837 }
1264} 1838}
1278static int loop_done; 1852static int loop_done;
1279 1853
1280void 1854void
1281ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1282{ 1856{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1857 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1858
1287 while (activecnt) 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1860
1861 do
1288 { 1862 {
1289 /* we might have forked, so reify kernel state if necessary */ 1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1867#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid))
1870 {
1871 curpid = getpid ();
1872 postfork = 1;
1873 }
1874#endif
1875
1290 #if EV_FORK_ENABLE 1876#if EV_FORK_ENABLE
1877 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1878 if (expect_false (postfork))
1292 if (forkcnt) 1879 if (forkcnt)
1293 { 1880 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1882 call_pending (EV_A);
1296 } 1883 }
1297 #endif 1884#endif
1298 1885
1299 /* queue check watchers (and execute them) */ 1886 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1887 if (expect_false (preparecnt))
1301 { 1888 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1890 call_pending (EV_A);
1304 } 1891 }
1305 1892
1893 if (expect_false (!activecnt))
1894 break;
1895
1306 /* we might have forked, so reify kernel state if necessary */ 1896 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1897 if (expect_false (postfork))
1308 loop_fork (EV_A); 1898 loop_fork (EV_A);
1309 1899
1310 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1901 fd_reify (EV_A);
1312 1902
1313 /* calculate blocking time */ 1903 /* calculate blocking time */
1314 { 1904 {
1315 double block; 1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1316 1907
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1909 {
1321 /* update time to cancel out callback processing overhead */ 1910 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1911 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1912
1332 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1333 1914
1334 if (timercnt) 1915 if (timercnt)
1335 { 1916 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1338 } 1919 }
1339 1920
1340#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1922 if (periodiccnt)
1342 { 1923 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1345 } 1926 }
1346#endif 1927#endif
1347 1928
1348 if (expect_false (block < 0.)) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1349 } 1942 }
1350 1943
1944 ++loop_count;
1351 backend_poll (EV_A_ block); 1945 backend_poll (EV_A_ waittime);
1946
1947 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime);
1352 } 1949 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1950
1357 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1953#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1955#endif
1362 1956
1957#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1958 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1959 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1960#endif
1366 1961
1367 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1965
1371 call_pending (EV_A); 1966 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 1967 }
1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1376 1973
1377 if (loop_done == EVUNLOOP_ONE) 1974 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1975 loop_done = EVUNLOOP_CANCEL;
1379} 1976}
1380 1977
1407 head = &(*head)->next; 2004 head = &(*head)->next;
1408 } 2005 }
1409} 2006}
1410 2007
1411void inline_speed 2008void inline_speed
1412ev_clear_pending (EV_P_ W w) 2009clear_pending (EV_P_ W w)
1413{ 2010{
1414 if (w->pending) 2011 if (w->pending)
1415 { 2012 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2013 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 2014 w->pending = 0;
1418 } 2015 }
1419} 2016}
1420 2017
2018int
2019ev_clear_pending (EV_P_ void *w)
2020{
2021 W w_ = (W)w;
2022 int pending = w_->pending;
2023
2024 if (expect_true (pending))
2025 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2027 w_->pending = 0;
2028 p->w = 0;
2029 return p->events;
2030 }
2031 else
2032 return 0;
2033}
2034
2035void inline_size
2036pri_adjust (EV_P_ W w)
2037{
2038 int pri = w->priority;
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri;
2042}
2043
1421void inline_speed 2044void inline_speed
1422ev_start (EV_P_ W w, int active) 2045ev_start (EV_P_ W w, int active)
1423{ 2046{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2047 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2048 w->active = active;
1428 ev_ref (EV_A); 2049 ev_ref (EV_A);
1429} 2050}
1430 2051
1431void inline_size 2052void inline_size
1435 w->active = 0; 2056 w->active = 0;
1436} 2057}
1437 2058
1438/*****************************************************************************/ 2059/*****************************************************************************/
1439 2060
1440void 2061void noinline
1441ev_io_start (EV_P_ ev_io *w) 2062ev_io_start (EV_P_ ev_io *w)
1442{ 2063{
1443 int fd = w->fd; 2064 int fd = w->fd;
1444 2065
1445 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1446 return; 2067 return;
1447 2068
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1449 2070
2071 EV_FREQUENT_CHECK;
2072
1450 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1453 2076
1454 fd_change (EV_A_ fd); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1455} 2078 w->events &= ~EV_IOFDSET;
1456 2079
1457void 2080 EV_FREQUENT_CHECK;
2081}
2082
2083void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1459{ 2085{
1460 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1462 return; 2088 return;
1463 2089
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2091
2092 EV_FREQUENT_CHECK;
2093
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1468 2096
1469 fd_change (EV_A_ w->fd); 2097 fd_change (EV_A_ w->fd, 1);
1470}
1471 2098
1472void 2099 EV_FREQUENT_CHECK;
2100}
2101
2102void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1474{ 2104{
1475 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1476 return; 2106 return;
1477 2107
1478 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1479 2109
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1486 2120
2121 EV_FREQUENT_CHECK;
2122
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2124}
1489 2125
1490void 2126void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2128{
1493 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1495 return; 2131 return;
1496 2132
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2133 EV_FREQUENT_CHECK;
1498 2134
1499 { 2135 {
1500 int active = ((W)w)->active; 2136 int active = ev_active (w);
1501 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1502 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1503 { 2143 {
1504 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1505 adjustheap ((WT *)timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1506 } 2146 }
1507 } 2147 }
1508 2148
1509 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1510 2152
1511 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1512} 2154}
1513 2155
1514void 2156void noinline
1515ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1516{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1517 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1518 { 2162 {
1519 if (w->repeat) 2163 if (w->repeat)
1520 { 2164 {
1521 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1523 } 2168 }
1524 else 2169 else
1525 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1526 } 2171 }
1527 else if (w->repeat) 2172 else if (w->repeat)
1528 { 2173 {
1529 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1530 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1531 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1532} 2179}
1533 2180
1534#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1535void 2182void noinline
1536ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1537{ 2184{
1538 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1539 return; 2186 return;
1540 2187
1541 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 2190 else if (w->interval)
1544 { 2191 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1548 } 2195 }
2196 else
2197 ev_at (w) = w->offset;
1549 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1552 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1554 2207
2208 EV_FREQUENT_CHECK;
2209
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1556} 2211}
1557 2212
1558void 2213void noinline
1559ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1560{ 2215{
1561 ev_clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1563 return; 2218 return;
1564 2219
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2220 EV_FREQUENT_CHECK;
1566 2221
1567 { 2222 {
1568 int active = ((W)w)->active; 2223 int active = ev_active (w);
1569 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1570 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1571 { 2230 {
1572 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1574 } 2233 }
1575 } 2234 }
1576 2235
2236 EV_FREQUENT_CHECK;
2237
1577 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1578} 2239}
1579 2240
1580void 2241void noinline
1581ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1582{ 2243{
1583 /* TODO: use adjustheap and recalculation */ 2244 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 2245 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 2246 ev_periodic_start (EV_A_ w);
1588 2249
1589#ifndef SA_RESTART 2250#ifndef SA_RESTART
1590# define SA_RESTART 0 2251# define SA_RESTART 0
1591#endif 2252#endif
1592 2253
1593void 2254void noinline
1594ev_signal_start (EV_P_ ev_signal *w) 2255ev_signal_start (EV_P_ ev_signal *w)
1595{ 2256{
1596#if EV_MULTIPLICITY 2257#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 2259#endif
1599 if (expect_false (ev_is_active (w))) 2260 if (expect_false (ev_is_active (w)))
1600 return; 2261 return;
1601 2262
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
1604 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 2285
1608 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1609 { 2287 {
1610#if _WIN32 2288#if _WIN32
1611 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1612#else 2290#else
1613 struct sigaction sa; 2291 struct sigaction sa;
1614 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1615 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1618#endif 2296#endif
1619 } 2297 }
1620}
1621 2298
1622void 2299 EV_FREQUENT_CHECK;
2300}
2301
2302void noinline
1623ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1624{ 2304{
1625 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1627 return; 2307 return;
1628 2308
2309 EV_FREQUENT_CHECK;
2310
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1631 2313
1632 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
1634} 2318}
1635 2319
1636void 2320void
1637ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1638{ 2322{
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 2325#endif
1642 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1643 return; 2327 return;
1644 2328
2329 EV_FREQUENT_CHECK;
2330
1645 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
1647} 2335}
1648 2336
1649void 2337void
1650ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1651{ 2339{
1652 ev_clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1654 return; 2342 return;
1655 2343
2344 EV_FREQUENT_CHECK;
2345
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1658} 2350}
1659 2351
1660#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
1661 2353
1662# ifdef _WIN32 2354# ifdef _WIN32
1665# endif 2357# endif
1666 2358
1667#define DEF_STAT_INTERVAL 5.0074891 2359#define DEF_STAT_INTERVAL 5.0074891
1668#define MIN_STAT_INTERVAL 0.1074891 2360#define MIN_STAT_INTERVAL 0.1074891
1669 2361
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363
2364#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192
2366
2367static void noinline
2368infy_add (EV_P_ ev_stat *w)
2369{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371
2372 if (w->wd < 0)
2373 {
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2375
2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 {
2381 char path [4096];
2382 strcpy (path, w->path);
2383
2384 do
2385 {
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388
2389 char *pend = strrchr (path, '/');
2390
2391 if (!pend)
2392 break; /* whoops, no '/', complain to your admin */
2393
2394 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 }
2399 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402
2403 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2405}
2406
2407static void noinline
2408infy_del (EV_P_ ev_stat *w)
2409{
2410 int slot;
2411 int wd = w->wd;
2412
2413 if (wd < 0)
2414 return;
2415
2416 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w);
2419
2420 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd);
2422}
2423
2424static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{
2427 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2430 infy_wd (EV_A_ slot, wd, ev);
2431 else
2432 {
2433 WL w_;
2434
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2436 {
2437 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */
2439
2440 if (w->wd == wd || wd == -1)
2441 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 {
2444 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */
2446 }
2447
2448 stat_timer_cb (EV_A_ &w->timer, 0);
2449 }
2450 }
2451 }
2452}
2453
2454static void
2455infy_cb (EV_P_ ev_io *w, int revents)
2456{
2457 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf));
2461
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2464}
2465
2466void inline_size
2467infy_init (EV_P)
2468{
2469 if (fs_fd != -2)
2470 return;
2471
2472 fs_fd = inotify_init ();
2473
2474 if (fs_fd >= 0)
2475 {
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w);
2479 }
2480}
2481
2482void inline_size
2483infy_fork (EV_P)
2484{
2485 int slot;
2486
2487 if (fs_fd < 0)
2488 return;
2489
2490 close (fs_fd);
2491 fs_fd = inotify_init ();
2492
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2494 {
2495 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0;
2497
2498 while (w_)
2499 {
2500 ev_stat *w = (ev_stat *)w_;
2501 w_ = w_->next; /* lets us add this watcher */
2502
2503 w->wd = -1;
2504
2505 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else
2508 ev_timer_start (EV_A_ &w->timer);
2509 }
2510
2511 }
2512}
2513
2514#endif
2515
1670void 2516void
1671ev_stat_stat (EV_P_ ev_stat *w) 2517ev_stat_stat (EV_P_ ev_stat *w)
1672{ 2518{
1673 if (lstat (w->path, &w->attr) < 0) 2519 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 2520 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 2521 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 2522 w->attr.st_nlink = 1;
1677} 2523}
1678 2524
1679static void 2525static void noinline
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2526stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 2527{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 2529
1684 /* we copy this here each the time so that */ 2530 /* we copy this here each the time so that */
1685 /* prev has the old value when the callback gets invoked */ 2531 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr; 2532 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 2533 ev_stat_stat (EV_A_ w);
1688 2534
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if (
2537 w->prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime
2548 ) {
2549 #if EV_USE_INOTIFY
2550 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */
2553 #endif
2554
1690 ev_feed_event (EV_A_ w, EV_STAT); 2555 ev_feed_event (EV_A_ w, EV_STAT);
2556 }
1691} 2557}
1692 2558
1693void 2559void
1694ev_stat_start (EV_P_ ev_stat *w) 2560ev_stat_start (EV_P_ ev_stat *w)
1695{ 2561{
1705 if (w->interval < MIN_STAT_INTERVAL) 2571 if (w->interval < MIN_STAT_INTERVAL)
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 2573
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1709 ev_set_priority (&w->timer, ev_priority (w)); 2575 ev_set_priority (&w->timer, ev_priority (w));
2576
2577#if EV_USE_INOTIFY
2578 infy_init (EV_A);
2579
2580 if (fs_fd >= 0)
2581 infy_add (EV_A_ w);
2582 else
2583#endif
1710 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
1711 2585
1712 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
1713} 2589}
1714 2590
1715void 2591void
1716ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
1717{ 2593{
1718 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1720 return; 2596 return;
1721 2597
2598 EV_FREQUENT_CHECK;
2599
2600#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w);
2602#endif
1722 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
1723 2604
1724 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
1725}
1726#endif
1727 2606
2607 EV_FREQUENT_CHECK;
2608}
2609#endif
2610
2611#if EV_IDLE_ENABLE
1728void 2612void
1729ev_idle_start (EV_P_ ev_idle *w) 2613ev_idle_start (EV_P_ ev_idle *w)
1730{ 2614{
1731 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
1732 return; 2616 return;
1733 2617
2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2621
2622 {
2623 int active = ++idlecnt [ABSPRI (w)];
2624
2625 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 2626 ev_start (EV_A_ (W)w, active);
2627
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1736 idles [idlecnt - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2630 }
2631
2632 EV_FREQUENT_CHECK;
1737} 2633}
1738 2634
1739void 2635void
1740ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
1741{ 2637{
1742 ev_clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
1744 return; 2640 return;
1745 2641
2642 EV_FREQUENT_CHECK;
2643
1746 { 2644 {
1747 int active = ((W)w)->active; 2645 int active = ev_active (w);
1748 idles [active - 1] = idles [--idlecnt]; 2646
1749 ((W)idles [active - 1])->active = active; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2649
2650 ev_stop (EV_A_ (W)w);
2651 --idleall;
1750 } 2652 }
1751 2653
1752 ev_stop (EV_A_ (W)w); 2654 EV_FREQUENT_CHECK;
1753} 2655}
2656#endif
1754 2657
1755void 2658void
1756ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
1757{ 2660{
1758 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
1759 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
1760 2665
1761 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
1762 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1763 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
1764} 2671}
1765 2672
1766void 2673void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
1768{ 2675{
1769 ev_clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
1771 return; 2678 return;
1772 2679
2680 EV_FREQUENT_CHECK;
2681
1773 { 2682 {
1774 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
1775 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
1776 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
1777 } 2687 }
1778 2688
1779 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
1780} 2692}
1781 2693
1782void 2694void
1783ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
1784{ 2696{
1785 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
1786 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
1787 2701
1788 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
1789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1790 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
1791} 2707}
1792 2708
1793void 2709void
1794ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
1795{ 2711{
1796 ev_clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
1798 return; 2714 return;
1799 2715
2716 EV_FREQUENT_CHECK;
2717
1800 { 2718 {
1801 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
1802 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
1804 } 2723 }
1805 2724
1806 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
1807} 2728}
1808 2729
1809#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
1810void noinline 2731void noinline
1811ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
1812{ 2733{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK); 2734 ev_loop (w->other, EVLOOP_NONBLOCK);
1814} 2735}
1815 2736
1816static void 2737static void
1817embed_cb (EV_P_ ev_io *io, int revents) 2738embed_io_cb (EV_P_ ev_io *io, int revents)
1818{ 2739{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820 2741
1821 if (ev_cb (w)) 2742 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else 2744 else
1824 ev_embed_sweep (loop, w); 2745 ev_loop (w->other, EVLOOP_NONBLOCK);
1825} 2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
1826 2771
1827void 2772void
1828ev_embed_start (EV_P_ ev_embed *w) 2773ev_embed_start (EV_P_ ev_embed *w)
1829{ 2774{
1830 if (expect_false (ev_is_active (w))) 2775 if (expect_false (ev_is_active (w)))
1831 return; 2776 return;
1832 2777
1833 { 2778 {
1834 struct ev_loop *loop = w->loop; 2779 struct ev_loop *loop = w->other;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1837 } 2782 }
2783
2784 EV_FREQUENT_CHECK;
1838 2785
1839 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
1841 2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
1842 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
1843} 2798}
1844 2799
1845void 2800void
1846ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
1847{ 2802{
1848 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1850 return; 2805 return;
1851 2806
2807 EV_FREQUENT_CHECK;
2808
1852 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
1853 2811
1854 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
1855} 2815}
1856#endif 2816#endif
1857 2817
1858#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
1859void 2819void
1860ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
1861{ 2821{
1862 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
1863 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
1864 2826
1865 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
1866 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1867 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
1868} 2832}
1869 2833
1870void 2834void
1871ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
1872{ 2836{
1873 ev_clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
1875 return; 2839 return;
1876 2840
2841 EV_FREQUENT_CHECK;
2842
1877 { 2843 {
1878 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
1879 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
1881 } 2848 }
1882 2849
1883 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
1884} 2900}
1885#endif 2901#endif
1886 2902
1887/*****************************************************************************/ 2903/*****************************************************************************/
1888 2904
1946 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
1947 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
1948 } 2964 }
1949} 2965}
1950 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
1951#ifdef __cplusplus 2971#ifdef __cplusplus
1952} 2972}
1953#endif 2973#endif
1954 2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines