ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 259
217#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
220#endif 263#endif
241 284
242#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 286# include <winsock.h>
244#endif 287#endif
245 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
246/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
247 308
248/* 309/*
249 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
265#else 326#else
266# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
267# define noinline 328# define noinline
268# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 330# define inline
270# endif 331# endif
271#endif 332#endif
272 333
273#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
288 349
289typedef ev_watcher *W; 350typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
292 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
293#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 361#endif
323 perror (msg); 387 perror (msg);
324 abort (); 388 abort ();
325 } 389 }
326} 390}
327 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
328static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 408
330void 409void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 411{
333 alloc = cb; 412 alloc = cb;
334} 413}
335 414
336inline_speed void * 415inline_speed void *
337ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
338{ 417{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
340 419
341 if (!ptr && size) 420 if (!ptr && size)
342 { 421 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 423 abort ();
367 W w; 446 W w;
368 int events; 447 int events;
369} ANPENDING; 448} ANPENDING;
370 449
371#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
372typedef struct 452typedef struct
373{ 453{
374 WL head; 454 WL head;
375} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
376#endif 474#endif
377 475
378#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
379 477
380 struct ev_loop 478 struct ev_loop
451 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 551
454 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
455#elif defined(_WIN32) 553#elif defined(_WIN32)
456 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
457#else 555#else
458 struct timeval tv; 556 struct timeval tv;
459 557
460 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 562#endif
465 } 563 }
466} 564}
467 565
468/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 569
470int inline_size 570int inline_size
471array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
472{ 572{
473 int ncur = cur + 1; 573 int ncur = cur + 1;
474 574
475 do 575 do
476 ncur <<= 1; 576 ncur <<= 1;
477 while (cnt > ncur); 577 while (cnt > ncur);
478 578
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 581 {
482 ncur *= elem; 582 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 585 ncur /= elem;
486 } 586 }
487 587
488 return ncur; 588 return ncur;
702 } 802 }
703} 803}
704 804
705/*****************************************************************************/ 805/*****************************************************************************/
706 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
707void inline_speed 827void inline_speed
708upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
709{ 829{
710 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
711 832
712 while (k) 833 for (;;)
713 { 834 {
714 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 838
716 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
717 break; 855 break;
718 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
719 heap [k] = heap [p]; 919 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 921 k = p;
722 } 922 }
723 923
724 heap [k] = w; 924 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 926}
755 927
756void inline_size 928void inline_size
757adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
758{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 932 upheap (heap, k);
933 else
760 downheap (heap, N, k); 934 downheap (heap, N, k);
761} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
762 962
763/*****************************************************************************/ 963/*****************************************************************************/
764 964
765typedef struct 965typedef struct
766{ 966{
802static void noinline 1002static void noinline
803evpipe_init (EV_P) 1003evpipe_init (EV_P)
804{ 1004{
805 if (!ev_is_active (&pipeev)) 1005 if (!ev_is_active (&pipeev))
806 { 1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
807 while (pipe (evpipe)) 1017 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1018 syserr ("(libev) error creating signal/async pipe");
809 1019
810 fd_intern (evpipe [0]); 1020 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1021 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
1024
814 ev_io_start (EV_A_ &pipeev); 1025 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1027 }
817} 1028}
818 1029
822 if (!*flag) 1033 if (!*flag)
823 { 1034 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1035 int old_errno = errno; /* save errno because write might clobber it */
825 1036
826 *flag = 1; 1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
827 write (evpipe [1], &old_errno, 1); 1047 write (evpipe [1], &old_errno, 1);
828 1048
829 errno = old_errno; 1049 errno = old_errno;
830 } 1050 }
831} 1051}
832 1052
833static void 1053static void
834pipecb (EV_P_ ev_io *iow, int revents) 1054pipecb (EV_P_ ev_io *iow, int revents)
835{ 1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
836 { 1058 {
837 int dummy; 1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
838 read (evpipe [0], &dummy, 1); 1066 read (evpipe [0], &dummy, 1);
839 } 1067 }
840 1068
841 if (gotsig && ev_is_default_loop (EV_A)) 1069 if (gotsig && ev_is_default_loop (EV_A))
842 { 1070 {
843 int signum; 1071 int signum;
844 gotsig = 0; 1072 gotsig = 0;
865} 1093}
866 1094
867/*****************************************************************************/ 1095/*****************************************************************************/
868 1096
869static void 1097static void
870sighandler (int signum) 1098ev_sighandler (int signum)
871{ 1099{
872#if EV_MULTIPLICITY 1100#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1101 struct ev_loop *loop = &default_loop_struct;
874#endif 1102#endif
875 1103
876#if _WIN32 1104#if _WIN32
877 signal (signum, sighandler); 1105 signal (signum, ev_sighandler);
878#endif 1106#endif
879 1107
880 signals [signum - 1].gotsig = 1; 1108 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1109 evpipe_write (EV_A_ &gotsig);
882} 1110}
1105 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1334 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1337
1110 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
1112 1340
1113#if EV_USE_PORT 1341#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1343#endif
1139 if (ev_is_active (&pipeev)) 1367 if (ev_is_active (&pipeev))
1140 { 1368 {
1141 ev_ref (EV_A); /* signal watcher */ 1369 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1370 ev_io_stop (EV_A_ &pipeev);
1143 1371
1144 close (evpipe [0]); evpipe [0] = 0; 1372#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1146 } 1382 }
1147 1383
1148#if EV_USE_INOTIFY 1384#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1385 if (fs_fd >= 0)
1150 close (fs_fd); 1386 close (fs_fd);
1195#endif 1431#endif
1196 1432
1197 backend = 0; 1433 backend = 0;
1198} 1434}
1199 1435
1436#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1201 1439
1202void inline_size 1440void inline_size
1203loop_fork (EV_P) 1441loop_fork (EV_P)
1204{ 1442{
1205#if EV_USE_PORT 1443#if EV_USE_PORT
1224 gotasync = 1; 1462 gotasync = 1;
1225#endif 1463#endif
1226 1464
1227 ev_ref (EV_A); 1465 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1229 close (evpipe [0]); 1475 close (evpipe [0]);
1230 close (evpipe [1]); 1476 close (evpipe [1]);
1477 }
1231 1478
1232 evpipe_init (EV_A); 1479 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1480 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1481 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1482 }
1236 1483
1237 postfork = 0; 1484 postfork = 0;
1238} 1485}
1239 1486
1240#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1241struct ev_loop * 1489struct ev_loop *
1242ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1243{ 1491{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1493
1264ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1265{ 1513{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1267} 1515}
1268 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1269#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1270 1553
1271#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1272struct ev_loop * 1555struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1274#else 1557#else
1350 { 1633 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352 1635
1353 p->w->pending = 0; 1636 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1355 } 1639 }
1356 } 1640 }
1357} 1641}
1358
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438 1642
1439#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1440void inline_size 1644void inline_size
1441idle_reify (EV_P) 1645idle_reify (EV_P)
1442{ 1646{
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1659 break;
1456 } 1660 }
1457 } 1661 }
1458 } 1662 }
1663}
1664#endif
1665
1666void inline_size
1667timers_reify (EV_P)
1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1459} 1765}
1460#endif 1766#endif
1461 1767
1462void inline_speed 1768void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1492 */ 1798 */
1493 for (i = 4; --i; ) 1799 for (i = 4; --i; )
1494 { 1800 {
1495 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1496 1802
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1804 return; /* all is well */
1499 1805
1500 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1807 mn_now = get_clock ();
1502 now_floor = mn_now; 1808 now_floor = mn_now;
1518#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1520#endif 1826#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1524 } 1834 }
1525 1835
1526 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1527 } 1837 }
1528} 1838}
1542static int loop_done; 1852static int loop_done;
1543 1853
1544void 1854void
1545ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1546{ 1856{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1857 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1858
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1860
1553 do 1861 do
1554 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1555#ifndef _WIN32 1867#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1558 { 1870 {
1559 curpid = getpid (); 1871 curpid = getpid ();
1600 1912
1601 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1602 1914
1603 if (timercnt) 1915 if (timercnt)
1604 { 1916 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1607 } 1919 }
1608 1920
1609#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 1922 if (periodiccnt)
1611 { 1923 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1614 } 1926 }
1615#endif 1927#endif
1616 1928
1617 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 1965
1654 call_pending (EV_A); 1966 call_pending (EV_A);
1655
1656 } 1967 }
1657 while (expect_true (activecnt && !loop_done)); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1658 1973
1659 if (loop_done == EVUNLOOP_ONE) 1974 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 1975 loop_done = EVUNLOOP_CANCEL;
1661} 1976}
1662 1977
1751 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1752 return; 2067 return;
1753 2068
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1755 2070
2071 EV_FREQUENT_CHECK;
2072
1756 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1758 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1759 2076
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1762} 2081}
1763 2082
1764void noinline 2083void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1766{ 2085{
1767 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1769 return; 2088 return;
1770 2089
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1772 2093
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1775 2096
1776 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1777} 2100}
1778 2101
1779void noinline 2102void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1781{ 2104{
1782 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1783 return; 2106 return;
1784 2107
1785 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1786 2109
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1793 2120
2121 EV_FREQUENT_CHECK;
2122
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2124}
1796 2125
1797void noinline 2126void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2128{
1800 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1802 return; 2131 return;
1803 2132
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2133 EV_FREQUENT_CHECK;
1805 2134
1806 { 2135 {
1807 int active = ((W)w)->active; 2136 int active = ev_active (w);
1808 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1809 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1810 { 2143 {
1811 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1813 } 2146 }
1814 } 2147 }
1815 2148
1816 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1817 2152
1818 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1819} 2154}
1820 2155
1821void noinline 2156void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1823{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1824 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1825 { 2162 {
1826 if (w->repeat) 2163 if (w->repeat)
1827 { 2164 {
1828 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1830 } 2168 }
1831 else 2169 else
1832 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1833 } 2171 }
1834 else if (w->repeat) 2172 else if (w->repeat)
1835 { 2173 {
1836 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1838 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1839} 2179}
1840 2180
1841#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1842void noinline 2182void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2184{
1845 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1846 return; 2186 return;
1847 2187
1848 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2190 else if (w->interval)
1851 { 2191 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2195 }
1856 else 2196 else
1857 ((WT)w)->at = w->offset; 2197 ev_at (w) = w->offset;
1858 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1863 2207
2208 EV_FREQUENT_CHECK;
2209
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2211}
1866 2212
1867void noinline 2213void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2215{
1870 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1872 return; 2218 return;
1873 2219
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2220 EV_FREQUENT_CHECK;
1875 2221
1876 { 2222 {
1877 int active = ((W)w)->active; 2223 int active = ev_active (w);
1878 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1879 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2230 {
1881 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1883 } 2233 }
1884 } 2234 }
1885 2235
2236 EV_FREQUENT_CHECK;
2237
1886 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1887} 2239}
1888 2240
1889void noinline 2241void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1909 return; 2261 return;
1910 2262
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1912 2264
1913 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
1914 2268
1915 { 2269 {
1916#ifndef _WIN32 2270#ifndef _WIN32
1917 sigset_t full, prev; 2271 sigset_t full, prev;
1918 sigfillset (&full); 2272 sigfillset (&full);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2285
1932 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1933 { 2287 {
1934#if _WIN32 2288#if _WIN32
1935 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1936#else 2290#else
1937 struct sigaction sa; 2291 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1942#endif 2296#endif
1943 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
1944} 2300}
1945 2301
1946void noinline 2302void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2304{
1949 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1951 return; 2307 return;
1952 2308
2309 EV_FREQUENT_CHECK;
2310
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1955 2313
1956 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
1958} 2318}
1959 2319
1960void 2320void
1961ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1962{ 2322{
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2325#endif
1966 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1967 return; 2327 return;
1968 2328
2329 EV_FREQUENT_CHECK;
2330
1969 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
1971} 2335}
1972 2336
1973void 2337void
1974ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1975{ 2339{
1976 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1978 return; 2342 return;
1979 2343
2344 EV_FREQUENT_CHECK;
2345
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1982} 2350}
1983 2351
1984#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
1985 2353
1986# ifdef _WIN32 2354# ifdef _WIN32
2004 if (w->wd < 0) 2372 if (w->wd < 0)
2005 { 2373 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2375
2008 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2380 {
2011 char path [4096]; 2381 char path [4096];
2012 strcpy (path, w->path); 2382 strcpy (path, w->path);
2013 2383
2212 else 2582 else
2213#endif 2583#endif
2214 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2215 2585
2216 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2217} 2589}
2218 2590
2219void 2591void
2220ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2221{ 2593{
2222 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2224 return; 2596 return;
2225 2597
2598 EV_FREQUENT_CHECK;
2599
2226#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2228#endif 2602#endif
2229 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2230 2604
2231 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2232} 2608}
2233#endif 2609#endif
2234 2610
2235#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2236void 2612void
2238{ 2614{
2239 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2240 return; 2616 return;
2241 2617
2242 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2243 2621
2244 { 2622 {
2245 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2246 2624
2247 ++idleall; 2625 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2249 2627
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2252 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2253} 2633}
2254 2634
2255void 2635void
2256ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2257{ 2637{
2258 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2260 return; 2640 return;
2261 2641
2642 EV_FREQUENT_CHECK;
2643
2262 { 2644 {
2263 int active = ((W)w)->active; 2645 int active = ev_active (w);
2264 2646
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2649
2268 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2269 --idleall; 2651 --idleall;
2270 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2271} 2655}
2272#endif 2656#endif
2273 2657
2274void 2658void
2275ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 2660{
2277 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2278 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2279 2665
2280 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2283} 2671}
2284 2672
2285void 2673void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 2675{
2288 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2290 return; 2678 return;
2291 2679
2680 EV_FREQUENT_CHECK;
2681
2292 { 2682 {
2293 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2294 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2296 } 2687 }
2297 2688
2298 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2299} 2692}
2300 2693
2301void 2694void
2302ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2303{ 2696{
2304 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2305 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2306 2701
2307 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2310} 2707}
2311 2708
2312void 2709void
2313ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2314{ 2711{
2315 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2317 return; 2714 return;
2318 2715
2716 EV_FREQUENT_CHECK;
2717
2319 { 2718 {
2320 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2321 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2323 } 2723 }
2324 2724
2325 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2326} 2728}
2327 2729
2328#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2329void noinline 2731void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2377 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 2782 }
2381 2783
2784 EV_FREQUENT_CHECK;
2785
2382 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2384 2788
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2388 2792
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 2794
2391 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2392} 2798}
2393 2799
2394void 2800void
2395ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2396{ 2802{
2397 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2399 return; 2805 return;
2400 2806
2807 EV_FREQUENT_CHECK;
2808
2401 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2403 2811
2404 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2405} 2815}
2406#endif 2816#endif
2407 2817
2408#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2409void 2819void
2410ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2411{ 2821{
2412 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2413 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2414 2826
2415 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2418} 2832}
2419 2833
2420void 2834void
2421ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2422{ 2836{
2423 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2425 return; 2839 return;
2426 2840
2841 EV_FREQUENT_CHECK;
2842
2427 { 2843 {
2428 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2429 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2431 } 2848 }
2432 2849
2433 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2434} 2853}
2435#endif 2854#endif
2436 2855
2437#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2438void 2857void
2440{ 2859{
2441 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2442 return; 2861 return;
2443 2862
2444 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2445 2866
2446 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2449} 2872}
2450 2873
2451void 2874void
2452ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2453{ 2876{
2454 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2456 return; 2879 return;
2457 2880
2881 EV_FREQUENT_CHECK;
2882
2458 { 2883 {
2459 int active = ((W)w)->active; 2884 int active = ev_active (w);
2885
2460 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 2887 ev_active (asyncs [active - 1]) = active;
2462 } 2888 }
2463 2889
2464 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2465} 2893}
2466 2894
2467void 2895void
2468ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2469{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines