ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
269#endif 287#endif
270 288
271#if EV_USE_EVENTFD 289#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
274int eventfd (unsigned int initval, int flags); 295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
275#endif 299#endif
276 300
277/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
278 308
279/* 309/*
280 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
294# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
296#else 326#else
297# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
298# define noinline 328# define noinline
299# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 330# define inline
301# endif 331# endif
302#endif 332#endif
303 333
304#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
319 349
320typedef ev_watcher *W; 350typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
323 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
324#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 361#endif
354 perror (msg); 387 perror (msg);
355 abort (); 388 abort ();
356 } 389 }
357} 390}
358 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
359static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 408
361void 409void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 411{
364 alloc = cb; 412 alloc = cb;
365} 413}
366 414
367inline_speed void * 415inline_speed void *
368ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
369{ 417{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
371 419
372 if (!ptr && size) 420 if (!ptr && size)
373 { 421 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 423 abort ();
398 W w; 446 W w;
399 int events; 447 int events;
400} ANPENDING; 448} ANPENDING;
401 449
402#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
403typedef struct 452typedef struct
404{ 453{
405 WL head; 454 WL head;
406} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
407#endif 474#endif
408 475
409#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
410 477
411 struct ev_loop 478 struct ev_loop
496 } 563 }
497} 564}
498 565
499/*****************************************************************************/ 566/*****************************************************************************/
500 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
501int inline_size 570int inline_size
502array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
503{ 572{
504 int ncur = cur + 1; 573 int ncur = cur + 1;
505 574
506 do 575 do
507 ncur <<= 1; 576 ncur <<= 1;
508 while (cnt > ncur); 577 while (cnt > ncur);
509 578
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 581 {
513 ncur *= elem; 582 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 585 ncur /= elem;
517 } 586 }
518 587
519 return ncur; 588 return ncur;
733 } 802 }
734} 803}
735 804
736/*****************************************************************************/ 805/*****************************************************************************/
737 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
738void inline_speed 827void inline_speed
739upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
740{ 829{
741 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
742 832
743 while (k) 833 for (;;)
744 { 834 {
745 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
746 838
747 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
748 break; 855 break;
749 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
750 heap [k] = heap [p]; 919 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 921 k = p;
753 } 922 }
754 923
755 heap [k] = w; 924 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785} 926}
786 927
787void inline_size 928void inline_size
788adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
789{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
790 upheap (heap, k); 932 upheap (heap, k);
933 else
791 downheap (heap, N, k); 934 downheap (heap, N, k);
792} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
793 962
794/*****************************************************************************/ 963/*****************************************************************************/
795 964
796typedef struct 965typedef struct
797{ 966{
885pipecb (EV_P_ ev_io *iow, int revents) 1054pipecb (EV_P_ ev_io *iow, int revents)
886{ 1055{
887#if EV_USE_EVENTFD 1056#if EV_USE_EVENTFD
888 if (evfd >= 0) 1057 if (evfd >= 0)
889 { 1058 {
890 uint64_t counter = 1; 1059 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1060 read (evfd, &counter, sizeof (uint64_t));
892 } 1061 }
893 else 1062 else
894#endif 1063#endif
895 { 1064 {
1164 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1334 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1337
1169 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
1171 1340
1172#if EV_USE_PORT 1341#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1343#endif
1262#endif 1431#endif
1263 1432
1264 backend = 0; 1433 backend = 0;
1265} 1434}
1266 1435
1436#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1268 1439
1269void inline_size 1440void inline_size
1270loop_fork (EV_P) 1441loop_fork (EV_P)
1271{ 1442{
1272#if EV_USE_PORT 1443#if EV_USE_PORT
1312 1483
1313 postfork = 0; 1484 postfork = 0;
1314} 1485}
1315 1486
1316#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1317struct ev_loop * 1489struct ev_loop *
1318ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1319{ 1491{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 1493
1340ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1341{ 1513{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1343} 1515}
1344 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1345#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1346 1553
1347#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1348struct ev_loop * 1555struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1350#else 1557#else
1426 { 1633 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428 1635
1429 p->w->pending = 0; 1636 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1431 } 1639 }
1432 } 1640 }
1433} 1641}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 1642
1515#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1516void inline_size 1644void inline_size
1517idle_reify (EV_P) 1645idle_reify (EV_P)
1518{ 1646{
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break; 1659 break;
1532 } 1660 }
1533 } 1661 }
1534 } 1662 }
1663}
1664#endif
1665
1666void inline_size
1667timers_reify (EV_P)
1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1535} 1765}
1536#endif 1766#endif
1537 1767
1538void inline_speed 1768void inline_speed
1539time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1568 */ 1798 */
1569 for (i = 4; --i; ) 1799 for (i = 4; --i; )
1570 { 1800 {
1571 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1572 1802
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 1804 return; /* all is well */
1575 1805
1576 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 1807 mn_now = get_clock ();
1578 now_floor = mn_now; 1808 now_floor = mn_now;
1594#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1596#endif 1826#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1599 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1600 } 1834 }
1601 1835
1602 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1603 } 1837 }
1604} 1838}
1624 1858
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626 1860
1627 do 1861 do
1628 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1629#ifndef _WIN32 1867#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1632 { 1870 {
1633 curpid = getpid (); 1871 curpid = getpid ();
1674 1912
1675 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1676 1914
1677 if (timercnt) 1915 if (timercnt)
1678 { 1916 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1681 } 1919 }
1682 1920
1683#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 1922 if (periodiccnt)
1685 { 1923 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1688 } 1926 }
1689#endif 1927#endif
1690 1928
1691 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1828 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1829 return; 2067 return;
1830 2068
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1832 2070
2071 EV_FREQUENT_CHECK;
2072
1833 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1835 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1836 2076
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1839} 2081}
1840 2082
1841void noinline 2083void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1843{ 2085{
1844 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1846 return; 2088 return;
1847 2089
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1849 2093
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1852 2096
1853 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1854} 2100}
1855 2101
1856void noinline 2102void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1858{ 2104{
1859 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1860 return; 2106 return;
1861 2107
1862 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1863 2109
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1870 2120
2121 EV_FREQUENT_CHECK;
2122
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2124}
1873 2125
1874void noinline 2126void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2128{
1877 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1879 return; 2131 return;
1880 2132
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2133 EV_FREQUENT_CHECK;
1882 2134
1883 { 2135 {
1884 int active = ((W)w)->active; 2136 int active = ev_active (w);
1885 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1886 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1887 { 2143 {
1888 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1890 } 2146 }
1891 } 2147 }
1892 2148
1893 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1894 2152
1895 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1896} 2154}
1897 2155
1898void noinline 2156void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1900{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1901 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1902 { 2162 {
1903 if (w->repeat) 2163 if (w->repeat)
1904 { 2164 {
1905 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1907 } 2168 }
1908 else 2169 else
1909 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1910 } 2171 }
1911 else if (w->repeat) 2172 else if (w->repeat)
1912 { 2173 {
1913 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1915 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1916} 2179}
1917 2180
1918#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1919void noinline 2182void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2184{
1922 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1923 return; 2186 return;
1924 2187
1925 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2190 else if (w->interval)
1928 { 2191 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2195 }
1933 else 2196 else
1934 ((WT)w)->at = w->offset; 2197 ev_at (w) = w->offset;
1935 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1940 2207
2208 EV_FREQUENT_CHECK;
2209
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2211}
1943 2212
1944void noinline 2213void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2215{
1947 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1949 return; 2218 return;
1950 2219
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2220 EV_FREQUENT_CHECK;
1952 2221
1953 { 2222 {
1954 int active = ((W)w)->active; 2223 int active = ev_active (w);
1955 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1956 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2230 {
1958 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1960 } 2233 }
1961 } 2234 }
1962 2235
2236 EV_FREQUENT_CHECK;
2237
1963 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1964} 2239}
1965 2240
1966void noinline 2241void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1986 return; 2261 return;
1987 2262
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1989 2264
1990 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
1991 2268
1992 { 2269 {
1993#ifndef _WIN32 2270#ifndef _WIN32
1994 sigset_t full, prev; 2271 sigset_t full, prev;
1995 sigfillset (&full); 2272 sigfillset (&full);
2016 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2019#endif 2296#endif
2020 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2021} 2300}
2022 2301
2023void noinline 2302void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2304{
2026 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2028 return; 2307 return;
2029 2308
2309 EV_FREQUENT_CHECK;
2310
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2032 2313
2033 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2034 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2035} 2318}
2036 2319
2037void 2320void
2038ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2039{ 2322{
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2325#endif
2043 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2044 return; 2327 return;
2045 2328
2329 EV_FREQUENT_CHECK;
2330
2046 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2048} 2335}
2049 2336
2050void 2337void
2051ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2052{ 2339{
2053 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2055 return; 2342 return;
2056 2343
2344 EV_FREQUENT_CHECK;
2345
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2059} 2350}
2060 2351
2061#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2062 2353
2063# ifdef _WIN32 2354# ifdef _WIN32
2081 if (w->wd < 0) 2372 if (w->wd < 0)
2082 { 2373 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2375
2085 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2380 {
2088 char path [4096]; 2381 char path [4096];
2089 strcpy (path, w->path); 2382 strcpy (path, w->path);
2090 2383
2289 else 2582 else
2290#endif 2583#endif
2291 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2292 2585
2293 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2294} 2589}
2295 2590
2296void 2591void
2297ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2298{ 2593{
2299 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2301 return; 2596 return;
2302 2597
2598 EV_FREQUENT_CHECK;
2599
2303#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2305#endif 2602#endif
2306 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2307 2604
2308 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2309} 2608}
2310#endif 2609#endif
2311 2610
2312#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2313void 2612void
2315{ 2614{
2316 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2317 return; 2616 return;
2318 2617
2319 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2320 2621
2321 { 2622 {
2322 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2323 2624
2324 ++idleall; 2625 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2326 2627
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2329 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2330} 2633}
2331 2634
2332void 2635void
2333ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2334{ 2637{
2335 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2337 return; 2640 return;
2338 2641
2642 EV_FREQUENT_CHECK;
2643
2339 { 2644 {
2340 int active = ((W)w)->active; 2645 int active = ev_active (w);
2341 2646
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2649
2345 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2346 --idleall; 2651 --idleall;
2347 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2348} 2655}
2349#endif 2656#endif
2350 2657
2351void 2658void
2352ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 2660{
2354 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2355 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2356 2665
2357 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2360} 2671}
2361 2672
2362void 2673void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 2675{
2365 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2367 return; 2678 return;
2368 2679
2680 EV_FREQUENT_CHECK;
2681
2369 { 2682 {
2370 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2371 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2373 } 2687 }
2374 2688
2375 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2376} 2692}
2377 2693
2378void 2694void
2379ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2380{ 2696{
2381 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2382 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2383 2701
2384 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2387} 2707}
2388 2708
2389void 2709void
2390ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2391{ 2711{
2392 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2394 return; 2714 return;
2395 2715
2716 EV_FREQUENT_CHECK;
2717
2396 { 2718 {
2397 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2398 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2400 } 2723 }
2401 2724
2402 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2403} 2728}
2404 2729
2405#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2406void noinline 2731void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2454 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 2782 }
2458 2783
2784 EV_FREQUENT_CHECK;
2785
2459 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2461 2788
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2465 2792
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 2794
2468 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2469} 2798}
2470 2799
2471void 2800void
2472ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2473{ 2802{
2474 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2476 return; 2805 return;
2477 2806
2807 EV_FREQUENT_CHECK;
2808
2478 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2480 2811
2481 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2482} 2815}
2483#endif 2816#endif
2484 2817
2485#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2486void 2819void
2487ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2488{ 2821{
2489 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2490 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2491 2826
2492 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2495} 2832}
2496 2833
2497void 2834void
2498ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2499{ 2836{
2500 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2502 return; 2839 return;
2503 2840
2841 EV_FREQUENT_CHECK;
2842
2504 { 2843 {
2505 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2506 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2508 } 2848 }
2509 2849
2510 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2511} 2853}
2512#endif 2854#endif
2513 2855
2514#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2515void 2857void
2517{ 2859{
2518 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2519 return; 2861 return;
2520 2862
2521 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2522 2866
2523 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2526} 2872}
2527 2873
2528void 2874void
2529ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2530{ 2876{
2531 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2533 return; 2879 return;
2534 2880
2881 EV_FREQUENT_CHECK;
2882
2535 { 2883 {
2536 int active = ((W)w)->active; 2884 int active = ev_active (w);
2885
2537 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 2887 ev_active (asyncs [active - 1]) = active;
2539 } 2888 }
2540 2889
2541 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2542} 2893}
2543 2894
2544void 2895void
2545ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2546{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines