ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 819#if EV_USE_4HEAP
772 820
821#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
774 905
775/* towards the root */ 906/* towards the root */
776void inline_speed 907void inline_speed
777upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
778{ 909{
779 WT w = heap [k]; 910 ANHE he = heap [k];
780 911
781 for (;;) 912 for (;;)
782 { 913 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0; 914 int p = HPARENT (k);
784 915
785 if (p >= HEAP0 || heap [p]->at <= w->at) 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
786 break; 917 break;
787 918
788 heap [k] = heap [p]; 919 heap [k] = heap [p];
789 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
790 k = p; 921 k = p;
791 } 922 }
792 923
793 heap [k] = w; 924 heap [k] = he;
794 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
795} 926}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
809
810 // find minimum child
811 if (expect_true (pos +3 < E))
812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break;
831
832 ev_active (*minpos) = k;
833 heap [k] = *minpos;
834
835 k = minpos - heap;
836 }
837
838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
889 ((W)heap [k])->active = k;
890
891 k = c;
892 }
893
894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898 927
899void inline_size 928void inline_size
900adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
901{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 932 upheap (heap, k);
933 else
903 downheap (heap, N, k); 934 downheap (heap, N, k);
904} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
905 962
906/*****************************************************************************/ 963/*****************************************************************************/
907 964
908typedef struct 965typedef struct
909{ 966{
1426 1483
1427 postfork = 0; 1484 postfork = 0;
1428} 1485}
1429 1486
1430#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1431struct ev_loop * 1489struct ev_loop *
1432ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1433{ 1491{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1493
1453void 1511void
1454ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1455{ 1513{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1457} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1458#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1459 1553
1460#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1461struct ev_loop * 1555struct ev_loop *
1462ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1463#else 1557#else
1539 { 1633 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541 1635
1542 p->w->pending = 0; 1636 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1544 } 1639 }
1545 } 1640 }
1546} 1641}
1547 1642
1548#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1569#endif 1664#endif
1570 1665
1571void inline_size 1666void inline_size
1572timers_reify (EV_P) 1667timers_reify (EV_P)
1573{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1672 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1577 1674
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579 1676
1580 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
1581 if (w->repeat) 1678 if (w->repeat)
1582 { 1679 {
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584
1585 ev_at (w) += w->repeat; 1680 ev_at (w) += w->repeat;
1586 if (ev_at (w) < mn_now) 1681 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now; 1682 ev_at (w) = mn_now;
1588 1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1589 downheap (timers, timercnt, HEAP0); 1687 downheap (timers, timercnt, HEAP0);
1590 } 1688 }
1591 else 1689 else
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1691
1692 EV_FREQUENT_CHECK;
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1595 } 1694 }
1596} 1695}
1597 1696
1598#if EV_PERIODIC_ENABLE 1697#if EV_PERIODIC_ENABLE
1599void inline_size 1698void inline_size
1600periodics_reify (EV_P) 1699periodics_reify (EV_P)
1601{ 1700{
1701 EV_FREQUENT_CHECK;
1702
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1704 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1605 1706
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1607 1708
1608 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1609 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1610 { 1711 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1717 downheap (periodics, periodiccnt, HEAP0);
1614 } 1718 }
1615 else if (w->interval) 1719 else if (w->interval)
1616 { 1720 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1620 downheap (periodics, periodiccnt, HEAP0); 1736 downheap (periodics, periodiccnt, HEAP0);
1621 } 1737 }
1622 else 1738 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1740
1741 EV_FREQUENT_CHECK;
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1626 } 1743 }
1627} 1744}
1628 1745
1629static void noinline 1746static void noinline
1630periodics_reschedule (EV_P) 1747periodics_reschedule (EV_P)
1631{ 1748{
1632 int i; 1749 int i;
1633 1750
1634 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 1753 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 1755
1639 if (w->reschedule_cb) 1756 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 1758 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 }
1644 1760
1645 /* now rebuild the heap */ 1761 ANHE_at_cache (periodics [i]);
1646 for (i = periodiccnt >> 1; --i; ) 1762 }
1763
1647 downheap (periodics, periodiccnt, i + HEAP0); 1764 reheap (periodics, periodiccnt);
1648} 1765}
1649#endif 1766#endif
1650 1767
1651void inline_speed 1768void inline_speed
1652time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1706 { 1823 {
1707#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1709#endif 1826#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now; 1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1713 } 1834 }
1714 1835
1715 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1716 } 1837 }
1717} 1838}
1737 1858
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739 1860
1740 do 1861 do
1741 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1742#ifndef _WIN32 1867#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1745 { 1870 {
1746 curpid = getpid (); 1871 curpid = getpid ();
1787 1912
1788 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1789 1914
1790 if (timercnt) 1915 if (timercnt)
1791 { 1916 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1794 } 1919 }
1795 1920
1796#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 1922 if (periodiccnt)
1798 { 1923 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1801 } 1926 }
1802#endif 1927#endif
1803 1928
1804 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1941 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1942 return; 2067 return;
1943 2068
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1945 2070
2071 EV_FREQUENT_CHECK;
2072
1946 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1948 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1949 2076
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1952} 2081}
1953 2082
1954void noinline 2083void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1956{ 2085{
1957 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1959 return; 2088 return;
1960 2089
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1962 2093
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1965 2096
1966 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1967} 2100}
1968 2101
1969void noinline 2102void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1971{ 2104{
1974 2107
1975 ev_at (w) += mn_now; 2108 ev_at (w) += mn_now;
1976 2109
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
2118 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2119 upheap (timers, ev_active (w));
1983 2120
2121 EV_FREQUENT_CHECK;
2122
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2124}
1986 2125
1987void noinline 2126void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2128{
1990 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1992 return; 2131 return;
1993 2132
2133 EV_FREQUENT_CHECK;
2134
1994 { 2135 {
1995 int active = ev_active (w); 2136 int active = ev_active (w);
1996 2137
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2139
2140 --timercnt;
2141
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2142 if (expect_true (active < timercnt + HEAP0))
2000 { 2143 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2144 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
2003 } 2146 }
2004
2005 --timercnt;
2006 } 2147 }
2148
2149 EV_FREQUENT_CHECK;
2007 2150
2008 ev_at (w) -= mn_now; 2151 ev_at (w) -= mn_now;
2009 2152
2010 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
2011} 2154}
2012 2155
2013void noinline 2156void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
2015{ 2158{
2159 EV_FREQUENT_CHECK;
2160
2016 if (ev_is_active (w)) 2161 if (ev_is_active (w))
2017 { 2162 {
2018 if (w->repeat) 2163 if (w->repeat)
2019 { 2164 {
2020 ev_at (w) = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2167 adjustheap (timers, timercnt, ev_active (w));
2022 } 2168 }
2023 else 2169 else
2024 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
2025 } 2171 }
2026 else if (w->repeat) 2172 else if (w->repeat)
2027 { 2173 {
2028 ev_at (w) = w->repeat; 2174 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
2030 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
2031} 2179}
2032 2180
2033#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
2034void noinline 2182void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2195 }
2048 else 2196 else
2049 ev_at (w) = w->offset; 2197 ev_at (w) = w->offset;
2050 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2205 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2206 upheap (periodics, ev_active (w));
2055 2207
2208 EV_FREQUENT_CHECK;
2209
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2211}
2058 2212
2059void noinline 2213void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2215{
2062 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
2064 return; 2218 return;
2065 2219
2220 EV_FREQUENT_CHECK;
2221
2066 { 2222 {
2067 int active = ev_active (w); 2223 int active = ev_active (w);
2068 2224
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2226
2227 --periodiccnt;
2228
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2229 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2230 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
2075 } 2233 }
2076
2077 --periodiccnt;
2078 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2079 2237
2080 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
2081} 2239}
2082 2240
2083void noinline 2241void noinline
2103 return; 2261 return;
2104 2262
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2106 2264
2107 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2108 2268
2109 { 2269 {
2110#ifndef _WIN32 2270#ifndef _WIN32
2111 sigset_t full, prev; 2271 sigset_t full, prev;
2112 sigfillset (&full); 2272 sigfillset (&full);
2133 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2136#endif 2296#endif
2137 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2138} 2300}
2139 2301
2140void noinline 2302void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2304{
2143 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2145 return; 2307 return;
2146 2308
2309 EV_FREQUENT_CHECK;
2310
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2149 2313
2150 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2152} 2318}
2153 2319
2154void 2320void
2155ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2156{ 2322{
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2325#endif
2160 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2161 return; 2327 return;
2162 2328
2329 EV_FREQUENT_CHECK;
2330
2163 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2165} 2335}
2166 2336
2167void 2337void
2168ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2169{ 2339{
2170 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2172 return; 2342 return;
2173 2343
2344 EV_FREQUENT_CHECK;
2345
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2176} 2350}
2177 2351
2178#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2179 2353
2180# ifdef _WIN32 2354# ifdef _WIN32
2408 else 2582 else
2409#endif 2583#endif
2410 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2411 2585
2412 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2413} 2589}
2414 2590
2415void 2591void
2416ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2593{
2418 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2420 return; 2596 return;
2421 2597
2598 EV_FREQUENT_CHECK;
2599
2422#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2424#endif 2602#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2426 2604
2427 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2428} 2608}
2429#endif 2609#endif
2430 2610
2431#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2432void 2612void
2434{ 2614{
2435 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2436 return; 2616 return;
2437 2617
2438 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2439 2621
2440 { 2622 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2442 2624
2443 ++idleall; 2625 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2445 2627
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2448 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2449} 2633}
2450 2634
2451void 2635void
2452ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2453{ 2637{
2454 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2456 return; 2640 return;
2457 2641
2642 EV_FREQUENT_CHECK;
2643
2458 { 2644 {
2459 int active = ev_active (w); 2645 int active = ev_active (w);
2460 2646
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 2649
2464 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2465 --idleall; 2651 --idleall;
2466 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2467} 2655}
2468#endif 2656#endif
2469 2657
2470void 2658void
2471ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 2660{
2473 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2474 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2475 2665
2476 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2479} 2671}
2480 2672
2481void 2673void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 2675{
2484 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2486 return; 2678 return;
2487 2679
2680 EV_FREQUENT_CHECK;
2681
2488 { 2682 {
2489 int active = ev_active (w); 2683 int active = ev_active (w);
2490 2684
2491 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 2686 ev_active (prepares [active - 1]) = active;
2493 } 2687 }
2494 2688
2495 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2496} 2692}
2497 2693
2498void 2694void
2499ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2500{ 2696{
2501 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2502 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2503 2701
2504 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2507} 2707}
2508 2708
2509void 2709void
2510ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2511{ 2711{
2512 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2514 return; 2714 return;
2515 2715
2716 EV_FREQUENT_CHECK;
2717
2516 { 2718 {
2517 int active = ev_active (w); 2719 int active = ev_active (w);
2518 2720
2519 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 2722 ev_active (checks [active - 1]) = active;
2521 } 2723 }
2522 2724
2523 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2524} 2728}
2525 2729
2526#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2527void noinline 2731void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2575 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 2782 }
2579 2783
2784 EV_FREQUENT_CHECK;
2785
2580 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2582 2788
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2586 2792
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 2794
2589 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2590} 2798}
2591 2799
2592void 2800void
2593ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2594{ 2802{
2595 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2597 return; 2805 return;
2598 2806
2807 EV_FREQUENT_CHECK;
2808
2599 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2601 2811
2602 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2603} 2815}
2604#endif 2816#endif
2605 2817
2606#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2607void 2819void
2608ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2609{ 2821{
2610 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2611 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2612 2826
2613 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2616} 2832}
2617 2833
2618void 2834void
2619ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2620{ 2836{
2621 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2623 return; 2839 return;
2624 2840
2841 EV_FREQUENT_CHECK;
2842
2625 { 2843 {
2626 int active = ev_active (w); 2844 int active = ev_active (w);
2627 2845
2628 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 2847 ev_active (forks [active - 1]) = active;
2630 } 2848 }
2631 2849
2632 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2633} 2853}
2634#endif 2854#endif
2635 2855
2636#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2637void 2857void
2639{ 2859{
2640 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2641 return; 2861 return;
2642 2862
2643 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2644 2866
2645 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2648} 2872}
2649 2873
2650void 2874void
2651ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2652{ 2876{
2653 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2655 return; 2879 return;
2656 2880
2881 EV_FREQUENT_CHECK;
2882
2657 { 2883 {
2658 int active = ev_active (w); 2884 int active = ev_active (w);
2659 2885
2660 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 2887 ev_active (asyncs [active - 1]) = active;
2662 } 2888 }
2663 2889
2664 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2665} 2893}
2666 2894
2667void 2895void
2668ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2669{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines