ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 819#if EV_USE_4HEAP
772 820
773#define DHEAP 4 821#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775 823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
776/* towards the root */ 824#define UPHEAP_DONE(p,k) ((p) == (k))
777void inline_speed
778upheap (WT *heap, int k)
779{
780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
782
783 for (;;)
784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798 825
799/* away from the root */ 826/* away from the root */
800void inline_speed 827void inline_speed
801downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
802{ 829{
803 WT w = heap [k]; 830 ANHE he = heap [k];
804 WT *E = heap + N + HEAP0; 831 ANHE *E = heap + N + HEAP0;
805 832
806 for (;;) 833 for (;;)
807 { 834 {
808 ev_tstamp minat; 835 ev_tstamp minat;
809 WT *minpos; 836 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 838
812 // find minimum child 839 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 840 if (expect_true (pos + DHEAP - 1 < E))
814 { 841 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 846 }
820 else if (pos < E) 847 else if (pos < E)
821 { 848 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 853 }
827 else 854 else
828 break; 855 break;
829 856
830 if (w->at <= minat) 857 if (ANHE_at (he) <= minat)
831 break; 858 break;
832 859
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
835 862
836 k = minpos - heap; 863 k = minpos - heap;
837 } 864 }
838 865
839 heap [k] = w; 866 heap [k] = he;
840 ev_active (heap [k]) = k; 867 ev_active (ANHE_w (he)) = k;
841} 868}
842 869
843#else // 4HEAP 870#else /* 4HEAP */
844 871
845#define HEAP0 1 872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
846 905
847/* towards the root */ 906/* towards the root */
848void inline_speed 907void inline_speed
849upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
850{ 909{
851 WT w = heap [k]; 910 ANHE he = heap [k];
852 911
853 for (;;) 912 for (;;)
854 { 913 {
855 int p = k >> 1; 914 int p = HPARENT (k);
856 915
857 /* maybe we could use a dummy element at heap [0]? */ 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
858 if (!p || heap [p]->at <= w->at)
859 break; 917 break;
860 918
861 heap [k] = heap [p]; 919 heap [k] = heap [p];
862 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
863 k = p; 921 k = p;
864 } 922 }
865 923
866 heap [k] = w; 924 heap [k] = he;
867 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
868} 926}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899 927
900void inline_size 928void inline_size
901adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
902{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
903 upheap (heap, k); 932 upheap (heap, k);
933 else
904 downheap (heap, N, k); 934 downheap (heap, N, k);
905} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
906 962
907/*****************************************************************************/ 963/*****************************************************************************/
908 964
909typedef struct 965typedef struct
910{ 966{
1427 1483
1428 postfork = 0; 1484 postfork = 0;
1429} 1485}
1430 1486
1431#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1432struct ev_loop * 1489struct ev_loop *
1433ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1434{ 1491{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1493
1454void 1511void
1455ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1456{ 1513{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1458} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1459#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1460 1553
1461#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1462struct ev_loop * 1555struct ev_loop *
1463ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1464#else 1557#else
1540 { 1633 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542 1635
1543 p->w->pending = 0; 1636 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1545 } 1639 }
1546 } 1640 }
1547} 1641}
1548 1642
1549#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1570#endif 1664#endif
1571 1665
1572void inline_size 1666void inline_size
1573timers_reify (EV_P) 1667timers_reify (EV_P)
1574{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 1672 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1578 1674
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580 1676
1581 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
1582 if (w->repeat) 1678 if (w->repeat)
1583 { 1679 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat; 1680 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now) 1681 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now; 1682 ev_at (w) = mn_now;
1589 1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1590 downheap (timers, timercnt, HEAP0); 1687 downheap (timers, timercnt, HEAP0);
1591 } 1688 }
1592 else 1689 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 1691
1692 EV_FREQUENT_CHECK;
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 } 1694 }
1597} 1695}
1598 1696
1599#if EV_PERIODIC_ENABLE 1697#if EV_PERIODIC_ENABLE
1600void inline_size 1698void inline_size
1601periodics_reify (EV_P) 1699periodics_reify (EV_P)
1602{ 1700{
1701 EV_FREQUENT_CHECK;
1702
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 1704 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1606 1706
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608 1708
1609 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1610 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1611 { 1711 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 1717 downheap (periodics, periodiccnt, HEAP0);
1615 } 1718 }
1616 else if (w->interval) 1719 else if (w->interval)
1617 { 1720 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1621 downheap (periodics, periodiccnt, HEAP0); 1736 downheap (periodics, periodiccnt, HEAP0);
1622 } 1737 }
1623 else 1738 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 1740
1741 EV_FREQUENT_CHECK;
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 } 1743 }
1628} 1744}
1629 1745
1630static void noinline 1746static void noinline
1631periodics_reschedule (EV_P) 1747periodics_reschedule (EV_P)
1632{ 1748{
1633 int i; 1749 int i;
1634 1750
1635 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 1753 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 1755
1640 if (w->reschedule_cb) 1756 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 1758 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645 1760
1646 /* now rebuild the heap */ 1761 ANHE_at_cache (periodics [i]);
1647 for (i = periodiccnt >> 1; --i; ) 1762 }
1763
1648 downheap (periodics, periodiccnt, i + HEAP0); 1764 reheap (periodics, periodiccnt);
1649} 1765}
1650#endif 1766#endif
1651 1767
1652void inline_speed 1768void inline_speed
1653time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1707 { 1823 {
1708#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1710#endif 1826#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now; 1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1714 } 1834 }
1715 1835
1716 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1717 } 1837 }
1718} 1838}
1738 1858
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740 1860
1741 do 1861 do
1742 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1743#ifndef _WIN32 1867#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1746 { 1870 {
1747 curpid = getpid (); 1871 curpid = getpid ();
1788 1912
1789 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1790 1914
1791 if (timercnt) 1915 if (timercnt)
1792 { 1916 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1795 } 1919 }
1796 1920
1797#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 1922 if (periodiccnt)
1799 { 1923 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1802 } 1926 }
1803#endif 1927#endif
1804 1928
1805 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1942 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1943 return; 2067 return;
1944 2068
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1946 2070
2071 EV_FREQUENT_CHECK;
2072
1947 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1949 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1950 2076
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1953} 2081}
1954 2082
1955void noinline 2083void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1957{ 2085{
1958 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1960 return; 2088 return;
1961 2089
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1963 2093
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1966 2096
1967 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1968} 2100}
1969 2101
1970void noinline 2102void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1972{ 2104{
1975 2107
1976 ev_at (w) += mn_now; 2108 ev_at (w) += mn_now;
1977 2109
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
2118 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2119 upheap (timers, ev_active (w));
1984 2120
2121 EV_FREQUENT_CHECK;
2122
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2124}
1987 2125
1988void noinline 2126void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2128{
1991 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1993 return; 2131 return;
1994 2132
2133 EV_FREQUENT_CHECK;
2134
1995 { 2135 {
1996 int active = ev_active (w); 2136 int active = ev_active (w);
1997 2137
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2139
2140 --timercnt;
2141
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2142 if (expect_true (active < timercnt + HEAP0))
2001 { 2143 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2144 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
2004 } 2146 }
2005
2006 --timercnt;
2007 } 2147 }
2148
2149 EV_FREQUENT_CHECK;
2008 2150
2009 ev_at (w) -= mn_now; 2151 ev_at (w) -= mn_now;
2010 2152
2011 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
2012} 2154}
2013 2155
2014void noinline 2156void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
2016{ 2158{
2159 EV_FREQUENT_CHECK;
2160
2017 if (ev_is_active (w)) 2161 if (ev_is_active (w))
2018 { 2162 {
2019 if (w->repeat) 2163 if (w->repeat)
2020 { 2164 {
2021 ev_at (w) = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2167 adjustheap (timers, timercnt, ev_active (w));
2023 } 2168 }
2024 else 2169 else
2025 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
2026 } 2171 }
2027 else if (w->repeat) 2172 else if (w->repeat)
2028 { 2173 {
2029 ev_at (w) = w->repeat; 2174 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
2031 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
2032} 2179}
2033 2180
2034#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
2035void noinline 2182void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2195 }
2049 else 2196 else
2050 ev_at (w) = w->offset; 2197 ev_at (w) = w->offset;
2051 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2205 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2206 upheap (periodics, ev_active (w));
2056 2207
2208 EV_FREQUENT_CHECK;
2209
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2211}
2059 2212
2060void noinline 2213void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2215{
2063 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
2065 return; 2218 return;
2066 2219
2220 EV_FREQUENT_CHECK;
2221
2067 { 2222 {
2068 int active = ev_active (w); 2223 int active = ev_active (w);
2069 2224
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2226
2227 --periodiccnt;
2228
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2229 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2230 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
2076 } 2233 }
2077
2078 --periodiccnt;
2079 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2080 2237
2081 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
2082} 2239}
2083 2240
2084void noinline 2241void noinline
2104 return; 2261 return;
2105 2262
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2107 2264
2108 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2109 2268
2110 { 2269 {
2111#ifndef _WIN32 2270#ifndef _WIN32
2112 sigset_t full, prev; 2271 sigset_t full, prev;
2113 sigfillset (&full); 2272 sigfillset (&full);
2134 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2137#endif 2296#endif
2138 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2139} 2300}
2140 2301
2141void noinline 2302void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2304{
2144 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2146 return; 2307 return;
2147 2308
2309 EV_FREQUENT_CHECK;
2310
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2150 2313
2151 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2152 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2153} 2318}
2154 2319
2155void 2320void
2156ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2157{ 2322{
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2325#endif
2161 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2162 return; 2327 return;
2163 2328
2329 EV_FREQUENT_CHECK;
2330
2164 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2166} 2335}
2167 2336
2168void 2337void
2169ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2170{ 2339{
2171 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2173 return; 2342 return;
2174 2343
2344 EV_FREQUENT_CHECK;
2345
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2177} 2350}
2178 2351
2179#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2180 2353
2181# ifdef _WIN32 2354# ifdef _WIN32
2409 else 2582 else
2410#endif 2583#endif
2411 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2412 2585
2413 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2414} 2589}
2415 2590
2416void 2591void
2417ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2418{ 2593{
2419 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2421 return; 2596 return;
2422 2597
2598 EV_FREQUENT_CHECK;
2599
2423#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2425#endif 2602#endif
2426 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2427 2604
2428 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2429} 2608}
2430#endif 2609#endif
2431 2610
2432#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2433void 2612void
2435{ 2614{
2436 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2437 return; 2616 return;
2438 2617
2439 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2440 2621
2441 { 2622 {
2442 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2443 2624
2444 ++idleall; 2625 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2446 2627
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2449 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2450} 2633}
2451 2634
2452void 2635void
2453ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2454{ 2637{
2455 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2457 return; 2640 return;
2458 2641
2642 EV_FREQUENT_CHECK;
2643
2459 { 2644 {
2460 int active = ev_active (w); 2645 int active = ev_active (w);
2461 2646
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 2649
2465 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2466 --idleall; 2651 --idleall;
2467 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2468} 2655}
2469#endif 2656#endif
2470 2657
2471void 2658void
2472ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 2660{
2474 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2475 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2476 2665
2477 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2480} 2671}
2481 2672
2482void 2673void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 2675{
2485 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2487 return; 2678 return;
2488 2679
2680 EV_FREQUENT_CHECK;
2681
2489 { 2682 {
2490 int active = ev_active (w); 2683 int active = ev_active (w);
2491 2684
2492 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 2686 ev_active (prepares [active - 1]) = active;
2494 } 2687 }
2495 2688
2496 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2497} 2692}
2498 2693
2499void 2694void
2500ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2501{ 2696{
2502 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2503 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2504 2701
2505 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2508} 2707}
2509 2708
2510void 2709void
2511ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2512{ 2711{
2513 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2515 return; 2714 return;
2516 2715
2716 EV_FREQUENT_CHECK;
2717
2517 { 2718 {
2518 int active = ev_active (w); 2719 int active = ev_active (w);
2519 2720
2520 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 2722 ev_active (checks [active - 1]) = active;
2522 } 2723 }
2523 2724
2524 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2525} 2728}
2526 2729
2527#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2528void noinline 2731void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2576 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 2782 }
2580 2783
2784 EV_FREQUENT_CHECK;
2785
2581 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2583 2788
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2587 2792
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 2794
2590 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2591} 2798}
2592 2799
2593void 2800void
2594ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2595{ 2802{
2596 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2598 return; 2805 return;
2599 2806
2807 EV_FREQUENT_CHECK;
2808
2600 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2602 2811
2603 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2604} 2815}
2605#endif 2816#endif
2606 2817
2607#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2608void 2819void
2609ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2610{ 2821{
2611 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2612 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2613 2826
2614 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2617} 2832}
2618 2833
2619void 2834void
2620ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2621{ 2836{
2622 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2624 return; 2839 return;
2625 2840
2841 EV_FREQUENT_CHECK;
2842
2626 { 2843 {
2627 int active = ev_active (w); 2844 int active = ev_active (w);
2628 2845
2629 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 2847 ev_active (forks [active - 1]) = active;
2631 } 2848 }
2632 2849
2633 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2634} 2853}
2635#endif 2854#endif
2636 2855
2637#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2638void 2857void
2640{ 2859{
2641 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2642 return; 2861 return;
2643 2862
2644 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2645 2866
2646 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2649} 2872}
2650 2873
2651void 2874void
2652ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2653{ 2876{
2654 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2656 return; 2879 return;
2657 2880
2881 EV_FREQUENT_CHECK;
2882
2658 { 2883 {
2659 int active = ev_active (w); 2884 int active = ev_active (w);
2660 2885
2661 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 2887 ev_active (asyncs [active - 1]) = active;
2663 } 2888 }
2664 2889
2665 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2666} 2893}
2667 2894
2668void 2895void
2669ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2670{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines