ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC vs.
Revision 1.427 by root, Sun May 6 19:29:59 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
163# endif 209# endif
210# undef EV_AVOID_STDIO
164#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
165 220
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
167 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
168#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
169# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
170#endif 269#endif
171 270
172#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 273#endif
175 274
176#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
177# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
178#endif 281#endif
179 282
180#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 285#endif
183 286
184#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
185# ifdef _WIN32 288# ifdef _WIN32
186# define EV_USE_POLL 0 289# define EV_USE_POLL 0
187# else 290# else
188# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 292# endif
190#endif 293#endif
191 294
192#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 298# else
196# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
197# endif 300# endif
198#endif 301#endif
199 302
205# define EV_USE_PORT 0 308# define EV_USE_PORT 0
206#endif 309#endif
207 310
208#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 314# else
212# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
213# endif 316# endif
214#endif 317#endif
215 318
216#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 321#endif
223 322
224#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 325#endif
231 326
232#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 330# else
236# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
237# endif 340# endif
238#endif 341#endif
239 342
240#if 0 /* debugging */ 343#if 0 /* debugging */
241# define EV_VERIFY 3 344# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
244#endif 347#endif
245 348
246#ifndef EV_VERIFY 349#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 351#endif
249 352
250#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 355#endif
253 356
254#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
256#endif 373#endif
257 374
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
259 382
260#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
263#endif 386#endif
271# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
273#endif 396#endif
274 397
275#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
277# include <sys/select.h> 401# include <sys/select.h>
278# endif 402# endif
279#endif 403#endif
280 404
281#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
282# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
283#endif 413#endif
284 414
285#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 416# include <winsock.h>
287#endif 417#endif
288 418
289#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 421# include <stdint.h>
292# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
293extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
294# endif 424# endif
295int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 426# ifdef O_CLOEXEC
297} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
298# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
299#endif 455#endif
300 456
301/**/ 457/**/
302 458
303#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 461#else
306# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
307#endif 463#endif
308 464
309/* 465/*
310 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 468 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 471
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
323#if __GNUC__ >= 4 519 #if __GNUC__
324# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
325# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
326#else 526#else
327# define expect(expr,value) (expr) 527 #include <inttypes.h>
328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
332#endif 542 #endif
543#endif
333 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
334#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
336#define inline_size static inline 960#define inline_size ecb_inline
337 961
338#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
339# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
340#else 972#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
346 975
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
349 978
350typedef ev_watcher *W; 979typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
353 982
354#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
356 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
357#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1004#endif
362 1005
363#ifdef _WIN32 1006#ifdef _WIN32
364# include "ev_win32.c" 1007# include "ev_win32.c"
365#endif 1008#endif
366 1009
367/*****************************************************************************/ 1010/*****************************************************************************/
368 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
369static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
370 1111
371void 1112void ecb_cold
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
373{ 1114{
374 syserr_cb = cb; 1115 syserr_cb = cb;
375} 1116}
376 1117
377static void noinline 1118static void noinline ecb_cold
378syserr (const char *msg) 1119ev_syserr (const char *msg)
379{ 1120{
380 if (!msg) 1121 if (!msg)
381 msg = "(libev) system error"; 1122 msg = "(libev) system error";
382 1123
383 if (syserr_cb) 1124 if (syserr_cb)
384 syserr_cb (msg); 1125 syserr_cb (msg);
385 else 1126 else
386 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
387 perror (msg); 1134 perror (msg);
1135#endif
388 abort (); 1136 abort ();
389 } 1137 }
390} 1138}
391 1139
392static void * 1140static void *
393ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
394{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
395 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
398 */ 1149 */
399 1150
400 if (size) 1151 if (size)
401 return realloc (ptr, size); 1152 return realloc (ptr, size);
402 1153
403 free (ptr); 1154 free (ptr);
404 return 0; 1155 return 0;
1156#endif
405} 1157}
406 1158
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
408 1160
409void 1161void ecb_cold
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
411{ 1163{
412 alloc = cb; 1164 alloc = cb;
413} 1165}
414 1166
415inline_speed void * 1167inline_speed void *
417{ 1169{
418 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
419 1171
420 if (!ptr && size) 1172 if (!ptr && size)
421 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
423 abort (); 1179 abort ();
424 } 1180 }
425 1181
426 return ptr; 1182 return ptr;
427} 1183}
429#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
431 1187
432/*****************************************************************************/ 1188/*****************************************************************************/
433 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
434typedef struct 1194typedef struct
435{ 1195{
436 WL head; 1196 WL head;
437 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
439#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 1205 SOCKET handle;
441#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
442} ANFD; 1210} ANFD;
443 1211
1212/* stores the pending event set for a given watcher */
444typedef struct 1213typedef struct
445{ 1214{
446 W w; 1215 W w;
447 int events; 1216 int events; /* the pending event set for the given watcher */
448} ANPENDING; 1217} ANPENDING;
449 1218
450#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 1220/* hash table entry per inotify-id */
452typedef struct 1221typedef struct
455} ANFS; 1224} ANFS;
456#endif 1225#endif
457 1226
458/* Heap Entry */ 1227/* Heap Entry */
459#if EV_HEAP_CACHE_AT 1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
460 typedef struct { 1230 typedef struct {
461 ev_tstamp at; 1231 ev_tstamp at;
462 WT w; 1232 WT w;
463 } ANHE; 1233 } ANHE;
464 1234
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 1238#else
1239 /* a heap element */
469 typedef WT ANHE; 1240 typedef WT ANHE;
470 1241
471 #define ANHE_w(he) (he) 1242 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 1243 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 1244 #define ANHE_at_cache(he)
484 #undef VAR 1255 #undef VAR
485 }; 1256 };
486 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
487 1258
488 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 1261
491#else 1262#else
492 1263
493 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 1266 #include "ev_vars.h"
496 #undef VAR 1267 #undef VAR
497 1268
498 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
499 1270
500#endif 1271#endif
501 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
502/*****************************************************************************/ 1285/*****************************************************************************/
503 1286
1287#ifndef EV_HAVE_EV_TIME
504ev_tstamp 1288ev_tstamp
505ev_time (void) 1289ev_time (void) EV_THROW
506{ 1290{
507#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
508 struct timespec ts; 1294 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 1297 }
1298#endif
1299
512 struct timeval tv; 1300 struct timeval tv;
513 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 1303}
1304#endif
517 1305
518ev_tstamp inline_size 1306inline_size ev_tstamp
519get_clock (void) 1307get_clock (void)
520{ 1308{
521#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
523 { 1311 {
530 return ev_time (); 1318 return ev_time ();
531} 1319}
532 1320
533#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
534ev_tstamp 1322ev_tstamp
535ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
536{ 1324{
537 return ev_rt_now; 1325 return ev_rt_now;
538} 1326}
539#endif 1327#endif
540 1328
541void 1329void
542ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
543{ 1331{
544 if (delay > 0.) 1332 if (delay > 0.)
545 { 1333 {
546#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
547 struct timespec ts; 1335 struct timespec ts;
548 1336
549 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
553#elif defined(_WIN32) 1339#elif defined _WIN32
554 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
555#else 1341#else
556 struct timeval tv; 1342 struct timeval tv;
557 1343
558 tv.tv_sec = (time_t)delay; 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1345 /* something not guaranteed by newer posix versions, but guaranteed */
560 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
562#endif 1349#endif
563 } 1350 }
564} 1351}
565 1352
566/*****************************************************************************/ 1353/*****************************************************************************/
567 1354
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 1356
570int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
571array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
572{ 1361{
573 int ncur = cur + 1; 1362 int ncur = cur + 1;
574 1363
575 do 1364 do
576 ncur <<= 1; 1365 ncur <<= 1;
577 while (cnt > ncur); 1366 while (cnt > ncur);
578 1367
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 1370 {
582 ncur *= elem; 1371 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
586 } 1375 }
587 1376
588 return ncur; 1377 return ncur;
589} 1378}
590 1379
591static noinline void * 1380static void * noinline ecb_cold
592array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
593{ 1382{
594 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
596} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 1389
598#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
600 { \ 1392 { \
601 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
605 } 1397 }
606 1398
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 1406 }
615#endif 1407#endif
616 1408
617#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 1411
620/*****************************************************************************/ 1412/*****************************************************************************/
621 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
622void noinline 1420void noinline
623ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
624{ 1422{
625 W w_ = (W)w; 1423 W w_ = (W)w;
626 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
627 1425
628 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
632 w_->pending = ++pendingcnt [pri]; 1430 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
636 } 1434 }
637}
638 1435
639void inline_speed 1436 pendingpri = NUMPRI - 1;
1437}
1438
1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 1456{
642 int i; 1457 int i;
643 1458
644 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
646} 1461}
647 1462
648/*****************************************************************************/ 1463/*****************************************************************************/
649 1464
650void inline_size 1465inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
665{ 1467{
666 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
667 ev_io *w; 1469 ev_io *w;
668 1470
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 1475 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
675 } 1477 }
676} 1478}
677 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
678void 1491void
679ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
680{ 1493{
681 if (fd >= 0 && fd < anfdmax) 1494 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
683} 1496}
684 1497
685void inline_size 1498/* make sure the external fd watch events are in-sync */
1499/* with the kernel/libev internal state */
1500inline_size void
686fd_reify (EV_P) 1501fd_reify (EV_P)
687{ 1502{
688 int i; 1503 int i;
1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528#endif
689 1529
690 for (i = 0; i < fdchangecnt; ++i) 1530 for (i = 0; i < fdchangecnt; ++i)
691 { 1531 {
692 int fd = fdchanges [i]; 1532 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 1533 ANFD *anfd = anfds + fd;
694 ev_io *w; 1534 ev_io *w;
695 1535
696 unsigned char events = 0; 1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
697 1538
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1539 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 1540
701#if EV_SELECT_IS_WINSOCKET 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 1542 {
704 unsigned long argp; 1543 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 1544
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 1546 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 1547
709 #endif 1548 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1549 o_reify = EV__IOFDSET; /* actually |= */
711 } 1550 }
712#endif
713 1551
714 { 1552 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 1554 }
725 1555
726 fdchangecnt = 0; 1556 fdchangecnt = 0;
727} 1557}
728 1558
729void inline_size 1559/* something about the given fd changed */
1560inline_size void
730fd_change (EV_P_ int fd, int flags) 1561fd_change (EV_P_ int fd, int flags)
731{ 1562{
732 unsigned char reify = anfds [fd].reify; 1563 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1564 anfds [fd].reify |= flags;
734 1565
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
740 } 1571 }
741} 1572}
742 1573
743void inline_speed 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
744fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
745{ 1577{
746 ev_io *w; 1578 ev_io *w;
747 1579
748 while ((w = (ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1584 }
753} 1585}
754 1586
755int inline_size 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
756fd_valid (int fd) 1589fd_valid (int fd)
757{ 1590{
758#ifdef _WIN32 1591#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1593#else
761 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
762#endif 1595#endif
763} 1596}
764 1597
765/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
766static void noinline 1599static void noinline ecb_cold
767fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
768{ 1601{
769 int fd; 1602 int fd;
770 1603
771 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1605 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
775} 1608}
776 1609
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1611static void noinline ecb_cold
779fd_enomem (EV_P) 1612fd_enomem (EV_P)
780{ 1613{
781 int fd; 1614 int fd;
782 1615
783 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1617 if (anfds [fd].events)
785 { 1618 {
786 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
787 return; 1620 break;
788 } 1621 }
789} 1622}
790 1623
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1625static void noinline
796 1629
797 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1631 if (anfds [fd].events)
799 { 1632 {
800 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
1634 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1636 }
803} 1637}
804 1638
1639/* used to prepare libev internal fd's */
1640/* this is not fork-safe */
1641inline_speed void
1642fd_intern (int fd)
1643{
1644#ifdef _WIN32
1645 unsigned long arg = 1;
1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1647#else
1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
1649 fcntl (fd, F_SETFL, O_NONBLOCK);
1650#endif
1651}
1652
805/*****************************************************************************/ 1653/*****************************************************************************/
806 1654
807/* 1655/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1656 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1658 * the branching factor of the d-tree.
811 */ 1659 */
812 1660
813/* 1661/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1672#define UPHEAP_DONE(p,k) ((p) == (k))
825 1673
826/* away from the root */ 1674/* away from the root */
827void inline_speed 1675inline_speed void
828downheap (ANHE *heap, int N, int k) 1676downheap (ANHE *heap, int N, int k)
829{ 1677{
830 ANHE he = heap [k]; 1678 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1679 ANHE *E = heap + N + HEAP0;
832 1680
872#define HEAP0 1 1720#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1721#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1722#define UPHEAP_DONE(p,k) (!(p))
875 1723
876/* away from the root */ 1724/* away from the root */
877void inline_speed 1725inline_speed void
878downheap (ANHE *heap, int N, int k) 1726downheap (ANHE *heap, int N, int k)
879{ 1727{
880 ANHE he = heap [k]; 1728 ANHE he = heap [k];
881 1729
882 for (;;) 1730 for (;;)
883 { 1731 {
884 int c = k << 1; 1732 int c = k << 1;
885 1733
886 if (c > N + HEAP0 - 1) 1734 if (c >= N + HEAP0)
887 break; 1735 break;
888 1736
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1738 ? 1 : 0;
891 1739
902 ev_active (ANHE_w (he)) = k; 1750 ev_active (ANHE_w (he)) = k;
903} 1751}
904#endif 1752#endif
905 1753
906/* towards the root */ 1754/* towards the root */
907void inline_speed 1755inline_speed void
908upheap (ANHE *heap, int k) 1756upheap (ANHE *heap, int k)
909{ 1757{
910 ANHE he = heap [k]; 1758 ANHE he = heap [k];
911 1759
912 for (;;) 1760 for (;;)
923 1771
924 heap [k] = he; 1772 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1773 ev_active (ANHE_w (he)) = k;
926} 1774}
927 1775
928void inline_size 1776/* move an element suitably so it is in a correct place */
1777inline_size void
929adjustheap (ANHE *heap, int N, int k) 1778adjustheap (ANHE *heap, int N, int k)
930{ 1779{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1781 upheap (heap, k);
933 else 1782 else
934 downheap (heap, N, k); 1783 downheap (heap, N, k);
935} 1784}
936 1785
937/* rebuild the heap: this function is used only once and executed rarely */ 1786/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1787inline_size void
939reheap (ANHE *heap, int N) 1788reheap (ANHE *heap, int N)
940{ 1789{
941 int i; 1790 int i;
1791
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i) 1794 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0); 1795 upheap (heap, i + HEAP0);
946} 1796}
947 1797
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/ 1798/*****************************************************************************/
964 1799
1800/* associate signal watchers to a signal signal */
965typedef struct 1801typedef struct
966{ 1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
967 WL head; 1807 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG; 1808} ANSIG;
970 1809
971static ANSIG *signals; 1810static ANSIG signals [EV_NSIG - 1];
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975
976void inline_size
977signals_init (ANSIG *base, int count)
978{
979 while (count--)
980 {
981 base->head = 0;
982 base->gotsig = 0;
983
984 ++base;
985 }
986}
987 1811
988/*****************************************************************************/ 1812/*****************************************************************************/
989 1813
990void inline_speed 1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001 1815
1002static void noinline 1816static void noinline ecb_cold
1003evpipe_init (EV_P) 1817evpipe_init (EV_P)
1004{ 1818{
1005 if (!ev_is_active (&pipeev)) 1819 if (!ev_is_active (&pipe_w))
1006 { 1820 {
1007#if EV_USE_EVENTFD 1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1008 if ((evfd = eventfd (0, 0)) >= 0) 1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1009 { 1827 {
1010 evpipe [0] = -1; 1828 evpipe [0] = -1;
1011 fd_intern (evfd); 1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1012 ev_io_set (&pipeev, evfd, EV_READ); 1830 ev_io_set (&pipe_w, evfd, EV_READ);
1013 } 1831 }
1014 else 1832 else
1015#endif 1833# endif
1016 { 1834 {
1017 while (pipe (evpipe)) 1835 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe"); 1836 ev_syserr ("(libev) error creating signal/async pipe");
1019 1837
1020 fd_intern (evpipe [0]); 1838 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]); 1839 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ); 1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1023 } 1841 }
1024 1842
1025 ev_io_start (EV_A_ &pipeev); 1843 ev_io_start (EV_A_ &pipe_w);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */ 1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 } 1845 }
1028} 1846}
1029 1847
1030void inline_size 1848inline_speed void
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{ 1850{
1033 if (!*flag) 1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1034 { 1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1035 int old_errno = errno; /* save errno because write might clobber it */ 1870 old_errno = errno; /* save errno because write will clobber it */
1036
1037 *flag = 1;
1038 1871
1039#if EV_USE_EVENTFD 1872#if EV_USE_EVENTFD
1040 if (evfd >= 0) 1873 if (evfd >= 0)
1041 { 1874 {
1042 uint64_t counter = 1; 1875 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t)); 1876 write (evfd, &counter, sizeof (uint64_t));
1044 } 1877 }
1045 else 1878 else
1046#endif 1879#endif
1880 {
1881#ifdef _WIN32
1882 WSABUF buf;
1883 DWORD sent;
1884 buf.buf = &buf;
1885 buf.len = 1;
1886 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1887#else
1047 write (evpipe [1], &old_errno, 1); 1888 write (evpipe [1], &(evpipe [1]), 1);
1889#endif
1890 }
1048 1891
1049 errno = old_errno; 1892 errno = old_errno;
1050 } 1893 }
1051} 1894}
1052 1895
1896/* called whenever the libev signal pipe */
1897/* got some events (signal, async) */
1053static void 1898static void
1054pipecb (EV_P_ ev_io *iow, int revents) 1899pipecb (EV_P_ ev_io *iow, int revents)
1055{ 1900{
1901 int i;
1902
1903 if (revents & EV_READ)
1904 {
1056#if EV_USE_EVENTFD 1905#if EV_USE_EVENTFD
1057 if (evfd >= 0) 1906 if (evfd >= 0)
1058 { 1907 {
1059 uint64_t counter; 1908 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t)); 1909 read (evfd, &counter, sizeof (uint64_t));
1061 } 1910 }
1062 else 1911 else
1063#endif 1912#endif
1064 { 1913 {
1065 char dummy; 1914 char dummy[4];
1915#ifdef _WIN32
1916 WSABUF buf;
1917 DWORD recvd;
1918 buf.buf = dummy;
1919 buf.len = sizeof (dummy);
1920 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1921#else
1066 read (evpipe [0], &dummy, 1); 1922 read (evpipe [0], &dummy, sizeof (dummy));
1923#endif
1924 }
1925 }
1926
1927 pipe_write_skipped = 0;
1928
1929 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1930
1931#if EV_SIGNAL_ENABLE
1932 if (sig_pending)
1067 } 1933 {
1934 sig_pending = 0;
1068 1935
1069 if (gotsig && ev_is_default_loop (EV_A)) 1936 ECB_MEMORY_FENCE_RELEASE;
1070 {
1071 int signum;
1072 gotsig = 0;
1073 1937
1074 for (signum = signalmax; signum--; ) 1938 for (i = EV_NSIG - 1; i--; )
1075 if (signals [signum].gotsig) 1939 if (expect_false (signals [i].pending))
1076 ev_feed_signal_event (EV_A_ signum + 1); 1940 ev_feed_signal_event (EV_A_ i + 1);
1077 } 1941 }
1942#endif
1078 1943
1079#if EV_ASYNC_ENABLE 1944#if EV_ASYNC_ENABLE
1080 if (gotasync) 1945 if (async_pending)
1081 { 1946 {
1082 int i; 1947 async_pending = 0;
1083 gotasync = 0; 1948
1949 ECB_MEMORY_FENCE_RELEASE;
1084 1950
1085 for (i = asynccnt; i--; ) 1951 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent) 1952 if (asyncs [i]->sent)
1087 { 1953 {
1088 asyncs [i]->sent = 0; 1954 asyncs [i]->sent = 0;
1092#endif 1958#endif
1093} 1959}
1094 1960
1095/*****************************************************************************/ 1961/*****************************************************************************/
1096 1962
1963void
1964ev_feed_signal (int signum) EV_THROW
1965{
1966#if EV_MULTIPLICITY
1967 EV_P = signals [signum - 1].loop;
1968
1969 if (!EV_A)
1970 return;
1971#endif
1972
1973 if (!ev_active (&pipe_w))
1974 return;
1975
1976 signals [signum - 1].pending = 1;
1977 evpipe_write (EV_A_ &sig_pending);
1978}
1979
1097static void 1980static void
1098ev_sighandler (int signum) 1981ev_sighandler (int signum)
1099{ 1982{
1983#ifdef _WIN32
1984 signal (signum, ev_sighandler);
1985#endif
1986
1987 ev_feed_signal (signum);
1988}
1989
1990void noinline
1991ev_feed_signal_event (EV_P_ int signum) EV_THROW
1992{
1993 WL w;
1994
1995 if (expect_false (signum <= 0 || signum > EV_NSIG))
1996 return;
1997
1998 --signum;
1999
1100#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct; 2001 /* it is permissible to try to feed a signal to the wrong loop */
1102#endif 2002 /* or, likely more useful, feeding a signal nobody is waiting for */
1103 2003
1104#if _WIN32 2004 if (expect_false (signals [signum].loop != EV_A))
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return; 2005 return;
2006#endif
1125 2007
1126 signals [signum].gotsig = 0; 2008 signals [signum].pending = 0;
1127 2009
1128 for (w = signals [signum].head; w; w = w->next) 2010 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130} 2012}
1131 2013
2014#if EV_USE_SIGNALFD
2015static void
2016sigfdcb (EV_P_ ev_io *iow, int revents)
2017{
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031}
2032#endif
2033
2034#endif
2035
1132/*****************************************************************************/ 2036/*****************************************************************************/
1133 2037
2038#if EV_CHILD_ENABLE
1134static WL childs [EV_PID_HASHSIZE]; 2039static WL childs [EV_PID_HASHSIZE];
1135
1136#ifndef _WIN32
1137 2040
1138static ev_signal childev; 2041static ev_signal childev;
1139 2042
1140#ifndef WIFCONTINUED 2043#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0 2044# define WIFCONTINUED(status) 0
1142#endif 2045#endif
1143 2046
1144void inline_speed 2047/* handle a single child status event */
2048inline_speed void
1145child_reap (EV_P_ int chain, int pid, int status) 2049child_reap (EV_P_ int chain, int pid, int status)
1146{ 2050{
1147 ev_child *w; 2051 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149 2053
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 { 2055 {
1152 if ((w->pid == pid || !w->pid) 2056 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1))) 2057 && (!traced || (w->flags & 1)))
1154 { 2058 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1162 2066
1163#ifndef WCONTINUED 2067#ifndef WCONTINUED
1164# define WCONTINUED 0 2068# define WCONTINUED 0
1165#endif 2069#endif
1166 2070
2071/* called on sigchld etc., calls waitpid */
1167static void 2072static void
1168childcb (EV_P_ ev_signal *sw, int revents) 2073childcb (EV_P_ ev_signal *sw, int revents)
1169{ 2074{
1170 int pid, status; 2075 int pid, status;
1171 2076
1179 /* make sure we are called again until all children have been reaped */ 2084 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */ 2085 /* we need to do it this way so that the callback gets called before we continue */
1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1182 2087
1183 child_reap (EV_A_ pid, pid, status); 2088 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1) 2089 if ((EV_PID_HASHSIZE) > 1)
1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1186} 2091}
1187 2092
1188#endif 2093#endif
1189 2094
1190/*****************************************************************************/ 2095/*****************************************************************************/
1191 2096
2097#if EV_USE_IOCP
2098# include "ev_iocp.c"
2099#endif
1192#if EV_USE_PORT 2100#if EV_USE_PORT
1193# include "ev_port.c" 2101# include "ev_port.c"
1194#endif 2102#endif
1195#if EV_USE_KQUEUE 2103#if EV_USE_KQUEUE
1196# include "ev_kqueue.c" 2104# include "ev_kqueue.c"
1203#endif 2111#endif
1204#if EV_USE_SELECT 2112#if EV_USE_SELECT
1205# include "ev_select.c" 2113# include "ev_select.c"
1206#endif 2114#endif
1207 2115
1208int 2116int ecb_cold
1209ev_version_major (void) 2117ev_version_major (void) EV_THROW
1210{ 2118{
1211 return EV_VERSION_MAJOR; 2119 return EV_VERSION_MAJOR;
1212} 2120}
1213 2121
1214int 2122int ecb_cold
1215ev_version_minor (void) 2123ev_version_minor (void) EV_THROW
1216{ 2124{
1217 return EV_VERSION_MINOR; 2125 return EV_VERSION_MINOR;
1218} 2126}
1219 2127
1220/* return true if we are running with elevated privileges and should ignore env variables */ 2128/* return true if we are running with elevated privileges and should ignore env variables */
1221int inline_size 2129int inline_size ecb_cold
1222enable_secure (void) 2130enable_secure (void)
1223{ 2131{
1224#ifdef _WIN32 2132#ifdef _WIN32
1225 return 0; 2133 return 0;
1226#else 2134#else
1227 return getuid () != geteuid () 2135 return getuid () != geteuid ()
1228 || getgid () != getegid (); 2136 || getgid () != getegid ();
1229#endif 2137#endif
1230} 2138}
1231 2139
1232unsigned int 2140unsigned int ecb_cold
1233ev_supported_backends (void) 2141ev_supported_backends (void) EV_THROW
1234{ 2142{
1235 unsigned int flags = 0; 2143 unsigned int flags = 0;
1236 2144
1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242 2150
1243 return flags; 2151 return flags;
1244} 2152}
1245 2153
1246unsigned int 2154unsigned int ecb_cold
1247ev_recommended_backends (void) 2155ev_recommended_backends (void) EV_THROW
1248{ 2156{
1249 unsigned int flags = ev_supported_backends (); 2157 unsigned int flags = ev_supported_backends ();
1250 2158
1251#ifndef __NetBSD__ 2159#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */ 2160 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */ 2161 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE; 2162 flags &= ~EVBACKEND_KQUEUE;
1255#endif 2163#endif
1256#ifdef __APPLE__ 2164#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation 2165 /* only select works correctly on that "unix-certified" platform */
1258 flags &= ~EVBACKEND_POLL; 2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168#endif
2169#ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1259#endif 2171#endif
1260 2172
1261 return flags; 2173 return flags;
1262} 2174}
1263 2175
2176unsigned int ecb_cold
2177ev_embeddable_backends (void) EV_THROW
2178{
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186}
2187
1264unsigned int 2188unsigned int
1265ev_embeddable_backends (void) 2189ev_backend (EV_P) EV_THROW
1266{ 2190{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2191 return backend;
1268
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
1274} 2192}
1275 2193
2194#if EV_FEATURE_API
1276unsigned int 2195unsigned int
1277ev_backend (EV_P) 2196ev_iteration (EV_P) EV_THROW
1278{ 2197{
1279 return backend; 2198 return loop_count;
1280} 2199}
1281 2200
1282unsigned int 2201unsigned int
1283ev_loop_count (EV_P) 2202ev_depth (EV_P) EV_THROW
1284{ 2203{
1285 return loop_count; 2204 return loop_depth;
1286} 2205}
1287 2206
1288void 2207void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2208ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2209{
1291 io_blocktime = interval; 2210 io_blocktime = interval;
1292} 2211}
1293 2212
1294void 2213void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2214ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1296{ 2215{
1297 timeout_blocktime = interval; 2216 timeout_blocktime = interval;
1298} 2217}
1299 2218
2219void
2220ev_set_userdata (EV_P_ void *data) EV_THROW
2221{
2222 userdata = data;
2223}
2224
2225void *
2226ev_userdata (EV_P) EV_THROW
2227{
2228 return userdata;
2229}
2230
2231void
2232ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233{
2234 invoke_cb = invoke_pending_cb;
2235}
2236
2237void
2238ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239{
2240 release_cb = release;
2241 acquire_cb = acquire;
2242}
2243#endif
2244
2245/* initialise a loop structure, must be zero-initialised */
1300static void noinline 2246static void noinline ecb_cold
1301loop_init (EV_P_ unsigned int flags) 2247loop_init (EV_P_ unsigned int flags) EV_THROW
1302{ 2248{
1303 if (!backend) 2249 if (!backend)
1304 { 2250 {
2251 origflags = flags;
2252
2253#if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261#endif
2262
1305#if EV_USE_MONOTONIC 2263#if EV_USE_MONOTONIC
2264 if (!have_monotonic)
1306 { 2265 {
1307 struct timespec ts; 2266 struct timespec ts;
2267
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1; 2269 have_monotonic = 1;
1310 } 2270 }
1311#endif
1312
1313 ev_rt_now = ev_time ();
1314 mn_now = get_clock ();
1315 now_floor = mn_now;
1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif 2271#endif
1326 2272
1327 /* pid check not overridable via env */ 2273 /* pid check not overridable via env */
1328#ifndef _WIN32 2274#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK) 2275 if (flags & EVFLAG_FORKCHECK)
1333 if (!(flags & EVFLAG_NOENV) 2279 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure () 2280 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS")) 2281 && getenv ("LIBEV_FLAGS"))
1336 flags = atoi (getenv ("LIBEV_FLAGS")); 2282 flags = atoi (getenv ("LIBEV_FLAGS"));
1337 2283
1338 if (!(flags & 0x0000ffffU)) 2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288#if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290#endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297#if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299#endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302#if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304#endif
2305#if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307#endif
2308
2309 if (!(flags & EVBACKEND_MASK))
1339 flags |= ev_recommended_backends (); 2310 flags |= ev_recommended_backends ();
1340 2311
2312#if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314#endif
1341#if EV_USE_PORT 2315#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1343#endif 2317#endif
1344#if EV_USE_KQUEUE 2318#if EV_USE_KQUEUE
1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1352#endif 2326#endif
1353#if EV_USE_SELECT 2327#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif 2329#endif
1356 2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1357 ev_init (&pipeev, pipecb); 2334 ev_init (&pipe_w, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI); 2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336#endif
1359 } 2337 }
1360} 2338}
1361 2339
1362static void noinline 2340/* free up a loop structure */
2341void ecb_cold
1363loop_destroy (EV_P) 2342ev_loop_destroy (EV_P)
1364{ 2343{
1365 int i; 2344 int i;
1366 2345
2346#if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350#endif
2351
2352#if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_CHILD_ENABLE
2362 if (ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367#endif
2368
1367 if (ev_is_active (&pipeev)) 2369 if (ev_is_active (&pipe_w))
1368 { 2370 {
1369 ev_ref (EV_A); /* signal watcher */ 2371 /*ev_ref (EV_A);*/
1370 ev_io_stop (EV_A_ &pipeev); 2372 /*ev_io_stop (EV_A_ &pipe_w);*/
1371 2373
1372#if EV_USE_EVENTFD 2374#if EV_USE_EVENTFD
1373 if (evfd >= 0) 2375 if (evfd >= 0)
1374 close (evfd); 2376 close (evfd);
1375#endif 2377#endif
1376 2378
1377 if (evpipe [0] >= 0) 2379 if (evpipe [0] >= 0)
1378 { 2380 {
1379 close (evpipe [0]); 2381 EV_WIN32_CLOSE_FD (evpipe [0]);
1380 close (evpipe [1]); 2382 EV_WIN32_CLOSE_FD (evpipe [1]);
1381 } 2383 }
1382 } 2384 }
2385
2386#if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389#endif
1383 2390
1384#if EV_USE_INOTIFY 2391#if EV_USE_INOTIFY
1385 if (fs_fd >= 0) 2392 if (fs_fd >= 0)
1386 close (fs_fd); 2393 close (fs_fd);
1387#endif 2394#endif
1388 2395
1389 if (backend_fd >= 0) 2396 if (backend_fd >= 0)
1390 close (backend_fd); 2397 close (backend_fd);
1391 2398
2399#if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401#endif
1392#if EV_USE_PORT 2402#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1394#endif 2404#endif
1395#if EV_USE_KQUEUE 2405#if EV_USE_KQUEUE
1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1411#if EV_IDLE_ENABLE 2421#if EV_IDLE_ENABLE
1412 array_free (idle, [i]); 2422 array_free (idle, [i]);
1413#endif 2423#endif
1414 } 2424 }
1415 2425
1416 ev_free (anfds); anfdmax = 0; 2426 ev_free (anfds); anfds = 0; anfdmax = 0;
1417 2427
1418 /* have to use the microsoft-never-gets-it-right macro */ 2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
1419 array_free (fdchange, EMPTY); 2430 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY); 2431 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE 2432#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY); 2433 array_free (periodic, EMPTY);
1423#endif 2434#endif
1424#if EV_FORK_ENABLE 2435#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY); 2436 array_free (fork, EMPTY);
1426#endif 2437#endif
2438#if EV_CLEANUP_ENABLE
2439 array_free (cleanup, EMPTY);
2440#endif
1427 array_free (prepare, EMPTY); 2441 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY); 2442 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE 2443#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY); 2444 array_free (async, EMPTY);
1431#endif 2445#endif
1432 2446
1433 backend = 0; 2447 backend = 0;
2448
2449#if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451#endif
2452 ev_default_loop_ptr = 0;
2453#if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456#endif
1434} 2457}
1435 2458
1436#if EV_USE_INOTIFY 2459#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P); 2460inline_size void infy_fork (EV_P);
1438#endif 2461#endif
1439 2462
1440void inline_size 2463inline_size void
1441loop_fork (EV_P) 2464loop_fork (EV_P)
1442{ 2465{
1443#if EV_USE_PORT 2466#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif 2468#endif
1451#endif 2474#endif
1452#if EV_USE_INOTIFY 2475#if EV_USE_INOTIFY
1453 infy_fork (EV_A); 2476 infy_fork (EV_A);
1454#endif 2477#endif
1455 2478
1456 if (ev_is_active (&pipeev)) 2479 if (ev_is_active (&pipe_w))
1457 { 2480 {
1458 /* this "locks" the handlers against writing to the pipe */ 2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1464 2482
1465 ev_ref (EV_A); 2483 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev); 2484 ev_io_stop (EV_A_ &pipe_w);
1467 2485
1468#if EV_USE_EVENTFD 2486#if EV_USE_EVENTFD
1469 if (evfd >= 0) 2487 if (evfd >= 0)
1470 close (evfd); 2488 close (evfd);
1471#endif 2489#endif
1472 2490
1473 if (evpipe [0] >= 0) 2491 if (evpipe [0] >= 0)
1474 { 2492 {
1475 close (evpipe [0]); 2493 EV_WIN32_CLOSE_FD (evpipe [0]);
1476 close (evpipe [1]); 2494 EV_WIN32_CLOSE_FD (evpipe [1]);
1477 } 2495 }
1478 2496
2497#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1479 evpipe_init (EV_A); 2498 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */ 2499 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ); 2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501#endif
1482 } 2502 }
1483 2503
1484 postfork = 0; 2504 postfork = 0;
1485} 2505}
1486 2506
1487#if EV_MULTIPLICITY 2507#if EV_MULTIPLICITY
1488 2508
1489struct ev_loop * 2509struct ev_loop * ecb_cold
1490ev_loop_new (unsigned int flags) 2510ev_loop_new (unsigned int flags) EV_THROW
1491{ 2511{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493 2513
1494 memset (loop, 0, sizeof (struct ev_loop)); 2514 memset (EV_A, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags); 2515 loop_init (EV_A_ flags);
1497 2516
1498 if (ev_backend (EV_A)) 2517 if (ev_backend (EV_A))
1499 return loop; 2518 return EV_A;
1500 2519
2520 ev_free (EV_A);
1501 return 0; 2521 return 0;
1502} 2522}
1503 2523
1504void 2524#endif /* multiplicity */
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516 2525
1517#if EV_VERIFY 2526#if EV_VERIFY
1518static void 2527static void noinline ecb_cold
2528verify_watcher (EV_P_ W w)
2529{
2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2531
2532 if (w->pending)
2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2534}
2535
2536static void noinline ecb_cold
2537verify_heap (EV_P_ ANHE *heap, int N)
2538{
2539 int i;
2540
2541 for (i = HEAP0; i < N + HEAP0; ++i)
2542 {
2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2546
2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2548 }
2549}
2550
2551static void noinline ecb_cold
1519array_check (W **ws, int cnt) 2552array_verify (EV_P_ W *ws, int cnt)
1520{ 2553{
1521 while (cnt--) 2554 while (cnt--)
2555 {
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2557 verify_watcher (EV_A_ ws [cnt]);
2558 }
1523} 2559}
1524#endif 2560#endif
1525 2561
1526void 2562#if EV_FEATURE_API
1527ev_loop_verify (EV_P) 2563void ecb_cold
2564ev_verify (EV_P) EV_THROW
1528{ 2565{
1529#if EV_VERIFY 2566#if EV_VERIFY
1530 int i; 2567 int i, j;
2568 WL w, w2;
1531 2569
2570 assert (activecnt >= -1);
2571
2572 assert (fdchangemax >= fdchangecnt);
2573 for (i = 0; i < fdchangecnt; ++i)
2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2575
2576 assert (anfdmax >= 0);
2577 for (i = j = 0; i < anfdmax; ++i)
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (++j & 1)
2583 w2 = w2->next;
2584
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2587 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2588 }
2589
2590 assert (timermax >= timercnt);
1532 checkheap (timers, timercnt); 2591 verify_heap (EV_A_ timers, timercnt);
2592
1533#if EV_PERIODIC_ENABLE 2593#if EV_PERIODIC_ENABLE
2594 assert (periodicmax >= periodiccnt);
1534 checkheap (periodics, periodiccnt); 2595 verify_heap (EV_A_ periodics, periodiccnt);
1535#endif 2596#endif
1536 2597
2598 for (i = NUMPRI; i--; )
2599 {
2600 assert (pendingmax [i] >= pendingcnt [i]);
1537#if EV_IDLE_ENABLE 2601#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; ) 2602 assert (idleall >= 0);
2603 assert (idlemax [i] >= idlecnt [i]);
1539 array_check ((W **)idles [i], idlecnt [i]); 2604 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1540#endif 2605#endif
2606 }
2607
1541#if EV_FORK_ENABLE 2608#if EV_FORK_ENABLE
2609 assert (forkmax >= forkcnt);
1542 array_check ((W **)forks, forkcnt); 2610 array_verify (EV_A_ (W *)forks, forkcnt);
1543#endif 2611#endif
2612
2613#if EV_CLEANUP_ENABLE
2614 assert (cleanupmax >= cleanupcnt);
2615 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2616#endif
2617
1544#if EV_ASYNC_ENABLE 2618#if EV_ASYNC_ENABLE
2619 assert (asyncmax >= asynccnt);
1545 array_check ((W **)asyncs, asynccnt); 2620 array_verify (EV_A_ (W *)asyncs, asynccnt);
2621#endif
2622
2623#if EV_PREPARE_ENABLE
2624 assert (preparemax >= preparecnt);
2625 array_verify (EV_A_ (W *)prepares, preparecnt);
2626#endif
2627
2628#if EV_CHECK_ENABLE
2629 assert (checkmax >= checkcnt);
2630 array_verify (EV_A_ (W *)checks, checkcnt);
2631#endif
2632
2633# if 0
2634#if EV_CHILD_ENABLE
2635 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2636 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2637#endif
1546#endif 2638# endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif 2639#endif
1550} 2640}
1551 2641#endif
1552#endif /* multiplicity */
1553 2642
1554#if EV_MULTIPLICITY 2643#if EV_MULTIPLICITY
1555struct ev_loop * 2644struct ev_loop * ecb_cold
1556ev_default_loop_init (unsigned int flags)
1557#else 2645#else
1558int 2646int
2647#endif
1559ev_default_loop (unsigned int flags) 2648ev_default_loop (unsigned int flags) EV_THROW
1560#endif
1561{ 2649{
1562 if (!ev_default_loop_ptr) 2650 if (!ev_default_loop_ptr)
1563 { 2651 {
1564#if EV_MULTIPLICITY 2652#if EV_MULTIPLICITY
1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2653 EV_P = ev_default_loop_ptr = &default_loop_struct;
1566#else 2654#else
1567 ev_default_loop_ptr = 1; 2655 ev_default_loop_ptr = 1;
1568#endif 2656#endif
1569 2657
1570 loop_init (EV_A_ flags); 2658 loop_init (EV_A_ flags);
1571 2659
1572 if (ev_backend (EV_A)) 2660 if (ev_backend (EV_A))
1573 { 2661 {
1574#ifndef _WIN32 2662#if EV_CHILD_ENABLE
1575 ev_signal_init (&childev, childcb, SIGCHLD); 2663 ev_signal_init (&childev, childcb, SIGCHLD);
1576 ev_set_priority (&childev, EV_MAXPRI); 2664 ev_set_priority (&childev, EV_MAXPRI);
1577 ev_signal_start (EV_A_ &childev); 2665 ev_signal_start (EV_A_ &childev);
1578 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2666 ev_unref (EV_A); /* child watcher should not keep loop alive */
1579#endif 2667#endif
1584 2672
1585 return ev_default_loop_ptr; 2673 return ev_default_loop_ptr;
1586} 2674}
1587 2675
1588void 2676void
1589ev_default_destroy (void) 2677ev_loop_fork (EV_P) EV_THROW
1590{ 2678{
1591#if EV_MULTIPLICITY
1592 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif
1594
1595#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev);
1598#endif
1599
1600 loop_destroy (EV_A);
1601}
1602
1603void
1604ev_default_fork (void)
1605{
1606#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif
1609
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */ 2679 postfork = 1; /* must be in line with ev_default_fork */
1612} 2680}
1613 2681
1614/*****************************************************************************/ 2682/*****************************************************************************/
1615 2683
1616void 2684void
1617ev_invoke (EV_P_ void *w, int revents) 2685ev_invoke (EV_P_ void *w, int revents)
1618{ 2686{
1619 EV_CB_INVOKE ((W)w, revents); 2687 EV_CB_INVOKE ((W)w, revents);
1620} 2688}
1621 2689
1622void inline_speed 2690unsigned int
1623call_pending (EV_P) 2691ev_pending_count (EV_P) EV_THROW
1624{ 2692{
1625 int pri; 2693 int pri;
2694 unsigned int count = 0;
1626 2695
1627 for (pri = NUMPRI; pri--; ) 2696 for (pri = NUMPRI; pri--; )
2697 count += pendingcnt [pri];
2698
2699 return count;
2700}
2701
2702void noinline
2703ev_invoke_pending (EV_P)
2704{
2705 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1628 while (pendingcnt [pri]) 2706 while (pendingcnt [pendingpri])
1629 { 2707 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2708 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1631 2709
1632 if (expect_true (p->w))
1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1636 p->w->pending = 0; 2710 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 2711 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK; 2712 EV_FREQUENT_CHECK;
1639 }
1640 } 2713 }
1641} 2714}
1642 2715
1643#if EV_IDLE_ENABLE 2716#if EV_IDLE_ENABLE
1644void inline_size 2717/* make idle watchers pending. this handles the "call-idle */
2718/* only when higher priorities are idle" logic */
2719inline_size void
1645idle_reify (EV_P) 2720idle_reify (EV_P)
1646{ 2721{
1647 if (expect_false (idleall)) 2722 if (expect_false (idleall))
1648 { 2723 {
1649 int pri; 2724 int pri;
1661 } 2736 }
1662 } 2737 }
1663} 2738}
1664#endif 2739#endif
1665 2740
1666void inline_size 2741/* make timers pending */
2742inline_size void
1667timers_reify (EV_P) 2743timers_reify (EV_P)
1668{ 2744{
1669 EV_FREQUENT_CHECK; 2745 EV_FREQUENT_CHECK;
1670 2746
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2747 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 { 2748 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2749 do
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 { 2750 {
2751 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2752
2753 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2754
2755 /* first reschedule or stop timer */
2756 if (w->repeat)
2757 {
1680 ev_at (w) += w->repeat; 2758 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now) 2759 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now; 2760 ev_at (w) = mn_now;
1683 2761
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2762 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685 2763
1686 ANHE_at_cache (timers [HEAP0]); 2764 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0); 2765 downheap (timers, timercnt, HEAP0);
2766 }
2767 else
2768 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2769
2770 EV_FREQUENT_CHECK;
2771 feed_reverse (EV_A_ (W)w);
1688 } 2772 }
1689 else 2773 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691 2774
1692 EV_FREQUENT_CHECK; 2775 feed_reverse_done (EV_A_ EV_TIMER);
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 } 2776 }
1695} 2777}
1696 2778
1697#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1698void inline_size 2780
2781static void noinline
2782periodic_recalc (EV_P_ ev_periodic *w)
2783{
2784 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2785 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2786
2787 /* the above almost always errs on the low side */
2788 while (at <= ev_rt_now)
2789 {
2790 ev_tstamp nat = at + w->interval;
2791
2792 /* when resolution fails us, we use ev_rt_now */
2793 if (expect_false (nat == at))
2794 {
2795 at = ev_rt_now;
2796 break;
2797 }
2798
2799 at = nat;
2800 }
2801
2802 ev_at (w) = at;
2803}
2804
2805/* make periodics pending */
2806inline_size void
1699periodics_reify (EV_P) 2807periodics_reify (EV_P)
1700{ 2808{
1701 EV_FREQUENT_CHECK; 2809 EV_FREQUENT_CHECK;
1702 2810
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2811 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 2812 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2813 int feed_count = 0;
1706 2814
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2815 do
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 2816 {
2817 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->reschedule_cb)
2823 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 2825
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2826 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 2827
1716 ANHE_at_cache (periodics [HEAP0]); 2828 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 2829 downheap (periodics, periodiccnt, HEAP0);
2830 }
2831 else if (w->interval)
2832 {
2833 periodic_recalc (EV_A_ w);
2834 ANHE_at_cache (periodics [HEAP0]);
2835 downheap (periodics, periodiccnt, HEAP0);
2836 }
2837 else
2838 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2839
2840 EV_FREQUENT_CHECK;
2841 feed_reverse (EV_A_ (W)w);
1718 } 2842 }
1719 else if (w->interval) 2843 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727 2844
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2845 feed_reverse_done (EV_A_ EV_PERIODIC);
1743 } 2846 }
1744} 2847}
1745 2848
2849/* simply recalculate all periodics */
2850/* TODO: maybe ensure that at least one event happens when jumping forward? */
1746static void noinline 2851static void noinline ecb_cold
1747periodics_reschedule (EV_P) 2852periodics_reschedule (EV_P)
1748{ 2853{
1749 int i; 2854 int i;
1750 2855
1751 /* adjust periodics after time jump */ 2856 /* adjust periodics after time jump */
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2859 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755 2860
1756 if (w->reschedule_cb) 2861 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2862 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval) 2863 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2864 periodic_recalc (EV_A_ w);
1760 2865
1761 ANHE_at_cache (periodics [i]); 2866 ANHE_at_cache (periodics [i]);
1762 } 2867 }
1763 2868
1764 reheap (periodics, periodiccnt); 2869 reheap (periodics, periodiccnt);
1765} 2870}
1766#endif 2871#endif
1767 2872
1768void inline_speed 2873/* adjust all timers by a given offset */
2874static void noinline ecb_cold
2875timers_reschedule (EV_P_ ev_tstamp adjust)
2876{
2877 int i;
2878
2879 for (i = 0; i < timercnt; ++i)
2880 {
2881 ANHE *he = timers + i + HEAP0;
2882 ANHE_w (*he)->at += adjust;
2883 ANHE_at_cache (*he);
2884 }
2885}
2886
2887/* fetch new monotonic and realtime times from the kernel */
2888/* also detect if there was a timejump, and act accordingly */
2889inline_speed void
1769time_update (EV_P_ ev_tstamp max_block) 2890time_update (EV_P_ ev_tstamp max_block)
1770{ 2891{
1771 int i;
1772
1773#if EV_USE_MONOTONIC 2892#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic)) 2893 if (expect_true (have_monotonic))
1775 { 2894 {
2895 int i;
1776 ev_tstamp odiff = rtmn_diff; 2896 ev_tstamp odiff = rtmn_diff;
1777 2897
1778 mn_now = get_clock (); 2898 mn_now = get_clock ();
1779 2899
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2900 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1796 * doesn't hurt either as we only do this on time-jumps or 2916 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here. 2917 * in the unlikely event of having been preempted here.
1798 */ 2918 */
1799 for (i = 4; --i; ) 2919 for (i = 4; --i; )
1800 { 2920 {
2921 ev_tstamp diff;
1801 rtmn_diff = ev_rt_now - mn_now; 2922 rtmn_diff = ev_rt_now - mn_now;
1802 2923
2924 diff = odiff - rtmn_diff;
2925
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2926 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1804 return; /* all is well */ 2927 return; /* all is well */
1805 2928
1806 ev_rt_now = ev_time (); 2929 ev_rt_now = ev_time ();
1807 mn_now = get_clock (); 2930 mn_now = get_clock ();
1808 now_floor = mn_now; 2931 now_floor = mn_now;
1809 } 2932 }
1810 2933
2934 /* no timer adjustment, as the monotonic clock doesn't jump */
2935 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811# if EV_PERIODIC_ENABLE 2936# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1813# endif 2938# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 } 2939 }
1817 else 2940 else
1818#endif 2941#endif
1819 { 2942 {
1820 ev_rt_now = ev_time (); 2943 ev_rt_now = ev_time ();
1821 2944
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2945 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 { 2946 {
2947 /* adjust timers. this is easy, as the offset is the same for all of them */
2948 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1824#if EV_PERIODIC_ENABLE 2949#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A); 2950 periodics_reschedule (EV_A);
1826#endif 2951#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1834 } 2952 }
1835 2953
1836 mn_now = ev_rt_now; 2954 mn_now = ev_rt_now;
1837 } 2955 }
1838} 2956}
1839 2957
1840void 2958int
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850}
1851
1852static int loop_done;
1853
1854void
1855ev_loop (EV_P_ int flags) 2959ev_run (EV_P_ int flags)
1856{ 2960{
2961#if EV_FEATURE_API
2962 ++loop_depth;
2963#endif
2964
2965 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2966
1857 loop_done = EVUNLOOP_CANCEL; 2967 loop_done = EVBREAK_CANCEL;
1858 2968
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2969 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1860 2970
1861 do 2971 do
1862 { 2972 {
1863#if EV_VERIFY >= 2 2973#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A); 2974 ev_verify (EV_A);
1865#endif 2975#endif
1866 2976
1867#ifndef _WIN32 2977#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */ 2978 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid)) 2979 if (expect_false (getpid () != curpid))
1877 /* we might have forked, so queue fork handlers */ 2987 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1879 if (forkcnt) 2989 if (forkcnt)
1880 { 2990 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2991 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A); 2992 EV_INVOKE_PENDING;
1883 } 2993 }
1884#endif 2994#endif
1885 2995
2996#if EV_PREPARE_ENABLE
1886 /* queue prepare watchers (and execute them) */ 2997 /* queue prepare watchers (and execute them) */
1887 if (expect_false (preparecnt)) 2998 if (expect_false (preparecnt))
1888 { 2999 {
1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3000 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1890 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1891 } 3002 }
3003#endif
1892 3004
1893 if (expect_false (!activecnt)) 3005 if (expect_false (loop_done))
1894 break; 3006 break;
1895 3007
1896 /* we might have forked, so reify kernel state if necessary */ 3008 /* we might have forked, so reify kernel state if necessary */
1897 if (expect_false (postfork)) 3009 if (expect_false (postfork))
1898 loop_fork (EV_A); 3010 loop_fork (EV_A);
1903 /* calculate blocking time */ 3015 /* calculate blocking time */
1904 { 3016 {
1905 ev_tstamp waittime = 0.; 3017 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.; 3018 ev_tstamp sleeptime = 0.;
1907 3019
3020 /* remember old timestamp for io_blocktime calculation */
3021 ev_tstamp prev_mn_now = mn_now;
3022
3023 /* update time to cancel out callback processing overhead */
3024 time_update (EV_A_ 1e100);
3025
3026 /* from now on, we want a pipe-wake-up */
3027 pipe_write_wanted = 1;
3028
3029 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3030
1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3031 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1909 { 3032 {
1910 /* update time to cancel out callback processing overhead */
1911 time_update (EV_A_ 1e100);
1912
1913 waittime = MAX_BLOCKTIME; 3033 waittime = MAX_BLOCKTIME;
1914 3034
1915 if (timercnt) 3035 if (timercnt)
1916 { 3036 {
1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3037 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1918 if (waittime > to) waittime = to; 3038 if (waittime > to) waittime = to;
1919 } 3039 }
1920 3040
1921#if EV_PERIODIC_ENABLE 3041#if EV_PERIODIC_ENABLE
1922 if (periodiccnt) 3042 if (periodiccnt)
1923 { 3043 {
1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1925 if (waittime > to) waittime = to; 3045 if (waittime > to) waittime = to;
1926 } 3046 }
1927#endif 3047#endif
1928 3048
3049 /* don't let timeouts decrease the waittime below timeout_blocktime */
1929 if (expect_false (waittime < timeout_blocktime)) 3050 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime; 3051 waittime = timeout_blocktime;
1931 3052
1932 sleeptime = waittime - backend_fudge; 3053 /* at this point, we NEED to wait, so we have to ensure */
3054 /* to pass a minimum nonzero value to the backend */
3055 if (expect_false (waittime < backend_mintime))
3056 waittime = backend_mintime;
1933 3057
3058 /* extra check because io_blocktime is commonly 0 */
1934 if (expect_true (sleeptime > io_blocktime)) 3059 if (expect_false (io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 { 3060 {
3061 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3062
3063 if (sleeptime > waittime - backend_mintime)
3064 sleeptime = waittime - backend_mintime;
3065
3066 if (expect_true (sleeptime > 0.))
3067 {
1939 ev_sleep (sleeptime); 3068 ev_sleep (sleeptime);
1940 waittime -= sleeptime; 3069 waittime -= sleeptime;
3070 }
1941 } 3071 }
1942 } 3072 }
1943 3073
3074#if EV_FEATURE_API
1944 ++loop_count; 3075 ++loop_count;
3076#endif
3077 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1945 backend_poll (EV_A_ waittime); 3078 backend_poll (EV_A_ waittime);
3079 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3080
3081 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3082
3083 if (pipe_write_skipped)
3084 {
3085 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088
1946 3089
1947 /* update ev_rt_now, do magic */ 3090 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime); 3091 time_update (EV_A_ waittime + sleeptime);
1949 } 3092 }
1950 3093
1957#if EV_IDLE_ENABLE 3100#if EV_IDLE_ENABLE
1958 /* queue idle watchers unless other events are pending */ 3101 /* queue idle watchers unless other events are pending */
1959 idle_reify (EV_A); 3102 idle_reify (EV_A);
1960#endif 3103#endif
1961 3104
3105#if EV_CHECK_ENABLE
1962 /* queue check watchers, to be executed first */ 3106 /* queue check watchers, to be executed first */
1963 if (expect_false (checkcnt)) 3107 if (expect_false (checkcnt))
1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3108 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3109#endif
1965 3110
1966 call_pending (EV_A); 3111 EV_INVOKE_PENDING;
1967 } 3112 }
1968 while (expect_true ( 3113 while (expect_true (
1969 activecnt 3114 activecnt
1970 && !loop_done 3115 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3116 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1972 )); 3117 ));
1973 3118
1974 if (loop_done == EVUNLOOP_ONE) 3119 if (loop_done == EVBREAK_ONE)
1975 loop_done = EVUNLOOP_CANCEL; 3120 loop_done = EVBREAK_CANCEL;
3121
3122#if EV_FEATURE_API
3123 --loop_depth;
3124#endif
3125
3126 return activecnt;
1976} 3127}
1977 3128
1978void 3129void
1979ev_unloop (EV_P_ int how) 3130ev_break (EV_P_ int how) EV_THROW
1980{ 3131{
1981 loop_done = how; 3132 loop_done = how;
1982} 3133}
1983 3134
3135void
3136ev_ref (EV_P) EV_THROW
3137{
3138 ++activecnt;
3139}
3140
3141void
3142ev_unref (EV_P) EV_THROW
3143{
3144 --activecnt;
3145}
3146
3147void
3148ev_now_update (EV_P) EV_THROW
3149{
3150 time_update (EV_A_ 1e100);
3151}
3152
3153void
3154ev_suspend (EV_P) EV_THROW
3155{
3156 ev_now_update (EV_A);
3157}
3158
3159void
3160ev_resume (EV_P) EV_THROW
3161{
3162 ev_tstamp mn_prev = mn_now;
3163
3164 ev_now_update (EV_A);
3165 timers_reschedule (EV_A_ mn_now - mn_prev);
3166#if EV_PERIODIC_ENABLE
3167 /* TODO: really do this? */
3168 periodics_reschedule (EV_A);
3169#endif
3170}
3171
1984/*****************************************************************************/ 3172/*****************************************************************************/
3173/* singly-linked list management, used when the expected list length is short */
1985 3174
1986void inline_size 3175inline_size void
1987wlist_add (WL *head, WL elem) 3176wlist_add (WL *head, WL elem)
1988{ 3177{
1989 elem->next = *head; 3178 elem->next = *head;
1990 *head = elem; 3179 *head = elem;
1991} 3180}
1992 3181
1993void inline_size 3182inline_size void
1994wlist_del (WL *head, WL elem) 3183wlist_del (WL *head, WL elem)
1995{ 3184{
1996 while (*head) 3185 while (*head)
1997 { 3186 {
1998 if (*head == elem) 3187 if (expect_true (*head == elem))
1999 { 3188 {
2000 *head = elem->next; 3189 *head = elem->next;
2001 return; 3190 break;
2002 } 3191 }
2003 3192
2004 head = &(*head)->next; 3193 head = &(*head)->next;
2005 } 3194 }
2006} 3195}
2007 3196
2008void inline_speed 3197/* internal, faster, version of ev_clear_pending */
3198inline_speed void
2009clear_pending (EV_P_ W w) 3199clear_pending (EV_P_ W w)
2010{ 3200{
2011 if (w->pending) 3201 if (w->pending)
2012 { 3202 {
2013 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3203 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2014 w->pending = 0; 3204 w->pending = 0;
2015 } 3205 }
2016} 3206}
2017 3207
2018int 3208int
2019ev_clear_pending (EV_P_ void *w) 3209ev_clear_pending (EV_P_ void *w) EV_THROW
2020{ 3210{
2021 W w_ = (W)w; 3211 W w_ = (W)w;
2022 int pending = w_->pending; 3212 int pending = w_->pending;
2023 3213
2024 if (expect_true (pending)) 3214 if (expect_true (pending))
2025 { 3215 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3216 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3217 p->w = (W)&pending_w;
2027 w_->pending = 0; 3218 w_->pending = 0;
2028 p->w = 0;
2029 return p->events; 3219 return p->events;
2030 } 3220 }
2031 else 3221 else
2032 return 0; 3222 return 0;
2033} 3223}
2034 3224
2035void inline_size 3225inline_size void
2036pri_adjust (EV_P_ W w) 3226pri_adjust (EV_P_ W w)
2037{ 3227{
2038 int pri = w->priority; 3228 int pri = ev_priority (w);
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3229 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3230 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri; 3231 ev_set_priority (w, pri);
2042} 3232}
2043 3233
2044void inline_speed 3234inline_speed void
2045ev_start (EV_P_ W w, int active) 3235ev_start (EV_P_ W w, int active)
2046{ 3236{
2047 pri_adjust (EV_A_ w); 3237 pri_adjust (EV_A_ w);
2048 w->active = active; 3238 w->active = active;
2049 ev_ref (EV_A); 3239 ev_ref (EV_A);
2050} 3240}
2051 3241
2052void inline_size 3242inline_size void
2053ev_stop (EV_P_ W w) 3243ev_stop (EV_P_ W w)
2054{ 3244{
2055 ev_unref (EV_A); 3245 ev_unref (EV_A);
2056 w->active = 0; 3246 w->active = 0;
2057} 3247}
2058 3248
2059/*****************************************************************************/ 3249/*****************************************************************************/
2060 3250
2061void noinline 3251void noinline
2062ev_io_start (EV_P_ ev_io *w) 3252ev_io_start (EV_P_ ev_io *w) EV_THROW
2063{ 3253{
2064 int fd = w->fd; 3254 int fd = w->fd;
2065 3255
2066 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2067 return; 3257 return;
2068 3258
2069 assert (("ev_io_start called with negative fd", fd >= 0)); 3259 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3260 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2070 3261
2071 EV_FREQUENT_CHECK; 3262 EV_FREQUENT_CHECK;
2072 3263
2073 ev_start (EV_A_ (W)w, 1); 3264 ev_start (EV_A_ (W)w, 1);
2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2075 wlist_add (&anfds[fd].head, (WL)w); 3266 wlist_add (&anfds[fd].head, (WL)w);
2076 3267
3268 /* common bug, apparently */
3269 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3270
2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3271 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2078 w->events &= ~EV_IOFDSET; 3272 w->events &= ~EV__IOFDSET;
2079 3273
2080 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2081} 3275}
2082 3276
2083void noinline 3277void noinline
2084ev_io_stop (EV_P_ ev_io *w) 3278ev_io_stop (EV_P_ ev_io *w) EV_THROW
2085{ 3279{
2086 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2088 return; 3282 return;
2089 3283
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3284 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091 3285
2092 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2093 3287
2094 wlist_del (&anfds[w->fd].head, (WL)w); 3288 wlist_del (&anfds[w->fd].head, (WL)w);
2095 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
2096 3290
2097 fd_change (EV_A_ w->fd, 1); 3291 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2098 3292
2099 EV_FREQUENT_CHECK; 3293 EV_FREQUENT_CHECK;
2100} 3294}
2101 3295
2102void noinline 3296void noinline
2103ev_timer_start (EV_P_ ev_timer *w) 3297ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2104{ 3298{
2105 if (expect_false (ev_is_active (w))) 3299 if (expect_false (ev_is_active (w)))
2106 return; 3300 return;
2107 3301
2108 ev_at (w) += mn_now; 3302 ev_at (w) += mn_now;
2109 3303
2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3304 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2111 3305
2112 EV_FREQUENT_CHECK; 3306 EV_FREQUENT_CHECK;
2113 3307
2114 ++timercnt; 3308 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3309 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2118 ANHE_at_cache (timers [ev_active (w)]); 3312 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w)); 3313 upheap (timers, ev_active (w));
2120 3314
2121 EV_FREQUENT_CHECK; 3315 EV_FREQUENT_CHECK;
2122 3316
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3317 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124} 3318}
2125 3319
2126void noinline 3320void noinline
2127ev_timer_stop (EV_P_ ev_timer *w) 3321ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2128{ 3322{
2129 clear_pending (EV_A_ (W)w); 3323 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w))) 3324 if (expect_false (!ev_is_active (w)))
2131 return; 3325 return;
2132 3326
2133 EV_FREQUENT_CHECK; 3327 EV_FREQUENT_CHECK;
2134 3328
2135 { 3329 {
2136 int active = ev_active (w); 3330 int active = ev_active (w);
2137 3331
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3332 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139 3333
2140 --timercnt; 3334 --timercnt;
2141 3335
2142 if (expect_true (active < timercnt + HEAP0)) 3336 if (expect_true (active < timercnt + HEAP0))
2143 { 3337 {
2144 timers [active] = timers [timercnt + HEAP0]; 3338 timers [active] = timers [timercnt + HEAP0];
2145 adjustheap (timers, timercnt, active); 3339 adjustheap (timers, timercnt, active);
2146 } 3340 }
2147 } 3341 }
2148 3342
2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now; 3343 ev_at (w) -= mn_now;
2152 3344
2153 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2154} 3348}
2155 3349
2156void noinline 3350void noinline
2157ev_timer_again (EV_P_ ev_timer *w) 3351ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2158{ 3352{
2159 EV_FREQUENT_CHECK; 3353 EV_FREQUENT_CHECK;
3354
3355 clear_pending (EV_A_ (W)w);
2160 3356
2161 if (ev_is_active (w)) 3357 if (ev_is_active (w))
2162 { 3358 {
2163 if (w->repeat) 3359 if (w->repeat)
2164 { 3360 {
2176 } 3372 }
2177 3373
2178 EV_FREQUENT_CHECK; 3374 EV_FREQUENT_CHECK;
2179} 3375}
2180 3376
3377ev_tstamp
3378ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3379{
3380 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3381}
3382
2181#if EV_PERIODIC_ENABLE 3383#if EV_PERIODIC_ENABLE
2182void noinline 3384void noinline
2183ev_periodic_start (EV_P_ ev_periodic *w) 3385ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2184{ 3386{
2185 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2186 return; 3388 return;
2187 3389
2188 if (w->reschedule_cb) 3390 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval) 3392 else if (w->interval)
2191 { 3393 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2193 /* this formula differs from the one in periodic_reify because we do not always round up */ 3395 periodic_recalc (EV_A_ w);
2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 } 3396 }
2196 else 3397 else
2197 ev_at (w) = w->offset; 3398 ev_at (w) = w->offset;
2198 3399
2199 EV_FREQUENT_CHECK; 3400 EV_FREQUENT_CHECK;
2205 ANHE_at_cache (periodics [ev_active (w)]); 3406 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w)); 3407 upheap (periodics, ev_active (w));
2207 3408
2208 EV_FREQUENT_CHECK; 3409 EV_FREQUENT_CHECK;
2209 3410
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211} 3412}
2212 3413
2213void noinline 3414void noinline
2214ev_periodic_stop (EV_P_ ev_periodic *w) 3415ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2215{ 3416{
2216 clear_pending (EV_A_ (W)w); 3417 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3418 if (expect_false (!ev_is_active (w)))
2218 return; 3419 return;
2219 3420
2220 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2221 3422
2222 { 3423 {
2223 int active = ev_active (w); 3424 int active = ev_active (w);
2224 3425
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226 3427
2227 --periodiccnt; 3428 --periodiccnt;
2228 3429
2229 if (expect_true (active < periodiccnt + HEAP0)) 3430 if (expect_true (active < periodiccnt + HEAP0))
2230 { 3431 {
2231 periodics [active] = periodics [periodiccnt + HEAP0]; 3432 periodics [active] = periodics [periodiccnt + HEAP0];
2232 adjustheap (periodics, periodiccnt, active); 3433 adjustheap (periodics, periodiccnt, active);
2233 } 3434 }
2234 } 3435 }
2235 3436
2236 EV_FREQUENT_CHECK;
2237
2238 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2239} 3440}
2240 3441
2241void noinline 3442void noinline
2242ev_periodic_again (EV_P_ ev_periodic *w) 3443ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2243{ 3444{
2244 /* TODO: use adjustheap and recalculation */ 3445 /* TODO: use adjustheap and recalculation */
2245 ev_periodic_stop (EV_A_ w); 3446 ev_periodic_stop (EV_A_ w);
2246 ev_periodic_start (EV_A_ w); 3447 ev_periodic_start (EV_A_ w);
2247} 3448}
2249 3450
2250#ifndef SA_RESTART 3451#ifndef SA_RESTART
2251# define SA_RESTART 0 3452# define SA_RESTART 0
2252#endif 3453#endif
2253 3454
3455#if EV_SIGNAL_ENABLE
3456
2254void noinline 3457void noinline
2255ev_signal_start (EV_P_ ev_signal *w) 3458ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2256{ 3459{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
2260 if (expect_false (ev_is_active (w))) 3460 if (expect_false (ev_is_active (w)))
2261 return; 3461 return;
2262 3462
2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3463 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2264 3464
2265 evpipe_init (EV_A); 3465#if EV_MULTIPLICITY
3466 assert (("libev: a signal must not be attached to two different loops",
3467 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2266 3468
2267 EV_FREQUENT_CHECK; 3469 signals [w->signum - 1].loop = EV_A;
3470#endif
2268 3471
3472 EV_FREQUENT_CHECK;
3473
3474#if EV_USE_SIGNALFD
3475 if (sigfd == -2)
2269 { 3476 {
2270#ifndef _WIN32 3477 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2271 sigset_t full, prev; 3478 if (sigfd < 0 && errno == EINVAL)
2272 sigfillset (&full); 3479 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275 3480
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3481 if (sigfd >= 0)
3482 {
3483 fd_intern (sigfd); /* doing it twice will not hurt */
2277 3484
2278#ifndef _WIN32 3485 sigemptyset (&sigfd_set);
2279 sigprocmask (SIG_SETMASK, &prev, 0); 3486
2280#endif 3487 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3488 ev_set_priority (&sigfd_w, EV_MAXPRI);
3489 ev_io_start (EV_A_ &sigfd_w);
3490 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3491 }
2281 } 3492 }
3493
3494 if (sigfd >= 0)
3495 {
3496 /* TODO: check .head */
3497 sigaddset (&sigfd_set, w->signum);
3498 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3499
3500 signalfd (sigfd, &sigfd_set, 0);
3501 }
3502#endif
2282 3503
2283 ev_start (EV_A_ (W)w, 1); 3504 ev_start (EV_A_ (W)w, 1);
2284 wlist_add (&signals [w->signum - 1].head, (WL)w); 3505 wlist_add (&signals [w->signum - 1].head, (WL)w);
2285 3506
2286 if (!((WL)w)->next) 3507 if (!((WL)w)->next)
3508# if EV_USE_SIGNALFD
3509 if (sigfd < 0) /*TODO*/
3510# endif
2287 { 3511 {
2288#if _WIN32 3512# ifdef _WIN32
3513 evpipe_init (EV_A);
3514
2289 signal (w->signum, ev_sighandler); 3515 signal (w->signum, ev_sighandler);
2290#else 3516# else
2291 struct sigaction sa; 3517 struct sigaction sa;
3518
3519 evpipe_init (EV_A);
3520
2292 sa.sa_handler = ev_sighandler; 3521 sa.sa_handler = ev_sighandler;
2293 sigfillset (&sa.sa_mask); 3522 sigfillset (&sa.sa_mask);
2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2295 sigaction (w->signum, &sa, 0); 3524 sigaction (w->signum, &sa, 0);
3525
3526 if (origflags & EVFLAG_NOSIGMASK)
3527 {
3528 sigemptyset (&sa.sa_mask);
3529 sigaddset (&sa.sa_mask, w->signum);
3530 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3531 }
2296#endif 3532#endif
2297 } 3533 }
2298 3534
2299 EV_FREQUENT_CHECK; 3535 EV_FREQUENT_CHECK;
2300} 3536}
2301 3537
2302void noinline 3538void noinline
2303ev_signal_stop (EV_P_ ev_signal *w) 3539ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2304{ 3540{
2305 clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2307 return; 3543 return;
2308 3544
2310 3546
2311 wlist_del (&signals [w->signum - 1].head, (WL)w); 3547 wlist_del (&signals [w->signum - 1].head, (WL)w);
2312 ev_stop (EV_A_ (W)w); 3548 ev_stop (EV_A_ (W)w);
2313 3549
2314 if (!signals [w->signum - 1].head) 3550 if (!signals [w->signum - 1].head)
3551 {
3552#if EV_MULTIPLICITY
3553 signals [w->signum - 1].loop = 0; /* unattach from signal */
3554#endif
3555#if EV_USE_SIGNALFD
3556 if (sigfd >= 0)
3557 {
3558 sigset_t ss;
3559
3560 sigemptyset (&ss);
3561 sigaddset (&ss, w->signum);
3562 sigdelset (&sigfd_set, w->signum);
3563
3564 signalfd (sigfd, &sigfd_set, 0);
3565 sigprocmask (SIG_UNBLOCK, &ss, 0);
3566 }
3567 else
3568#endif
2315 signal (w->signum, SIG_DFL); 3569 signal (w->signum, SIG_DFL);
3570 }
2316 3571
2317 EV_FREQUENT_CHECK; 3572 EV_FREQUENT_CHECK;
2318} 3573}
3574
3575#endif
3576
3577#if EV_CHILD_ENABLE
2319 3578
2320void 3579void
2321ev_child_start (EV_P_ ev_child *w) 3580ev_child_start (EV_P_ ev_child *w) EV_THROW
2322{ 3581{
2323#if EV_MULTIPLICITY 3582#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3583 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif 3584#endif
2326 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2327 return; 3586 return;
2328 3587
2329 EV_FREQUENT_CHECK; 3588 EV_FREQUENT_CHECK;
2330 3589
2331 ev_start (EV_A_ (W)w, 1); 3590 ev_start (EV_A_ (W)w, 1);
2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3591 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2333 3592
2334 EV_FREQUENT_CHECK; 3593 EV_FREQUENT_CHECK;
2335} 3594}
2336 3595
2337void 3596void
2338ev_child_stop (EV_P_ ev_child *w) 3597ev_child_stop (EV_P_ ev_child *w) EV_THROW
2339{ 3598{
2340 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2341 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2342 return; 3601 return;
2343 3602
2344 EV_FREQUENT_CHECK; 3603 EV_FREQUENT_CHECK;
2345 3604
2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3605 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2347 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2348 3607
2349 EV_FREQUENT_CHECK; 3608 EV_FREQUENT_CHECK;
2350} 3609}
3610
3611#endif
2351 3612
2352#if EV_STAT_ENABLE 3613#if EV_STAT_ENABLE
2353 3614
2354# ifdef _WIN32 3615# ifdef _WIN32
2355# undef lstat 3616# undef lstat
2356# define lstat(a,b) _stati64 (a,b) 3617# define lstat(a,b) _stati64 (a,b)
2357# endif 3618# endif
2358 3619
2359#define DEF_STAT_INTERVAL 5.0074891 3620#define DEF_STAT_INTERVAL 5.0074891
3621#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2360#define MIN_STAT_INTERVAL 0.1074891 3622#define MIN_STAT_INTERVAL 0.1074891
2361 3623
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3624static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363 3625
2364#if EV_USE_INOTIFY 3626#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192 3627
3628/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3629# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2366 3630
2367static void noinline 3631static void noinline
2368infy_add (EV_P_ ev_stat *w) 3632infy_add (EV_P_ ev_stat *w)
2369{ 3633{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3634 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371 3635
2372 if (w->wd < 0) 3636 if (w->wd >= 0)
3637 {
3638 struct statfs sfs;
3639
3640 /* now local changes will be tracked by inotify, but remote changes won't */
3641 /* unless the filesystem is known to be local, we therefore still poll */
3642 /* also do poll on <2.6.25, but with normal frequency */
3643
3644 if (!fs_2625)
3645 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3646 else if (!statfs (w->path, &sfs)
3647 && (sfs.f_type == 0x1373 /* devfs */
3648 || sfs.f_type == 0xEF53 /* ext2/3 */
3649 || sfs.f_type == 0x3153464a /* jfs */
3650 || sfs.f_type == 0x52654973 /* reiser3 */
3651 || sfs.f_type == 0x01021994 /* tempfs */
3652 || sfs.f_type == 0x58465342 /* xfs */))
3653 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3654 else
3655 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2373 { 3656 }
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3657 else
3658 {
3659 /* can't use inotify, continue to stat */
3660 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2375 3661
2376 /* monitor some parent directory for speedup hints */ 3662 /* if path is not there, monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3663 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2378 /* but an efficiency issue only */ 3664 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3665 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 { 3666 {
2381 char path [4096]; 3667 char path [4096];
2382 strcpy (path, w->path); 3668 strcpy (path, w->path);
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3672 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3673 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388 3674
2389 char *pend = strrchr (path, '/'); 3675 char *pend = strrchr (path, '/');
2390 3676
2391 if (!pend) 3677 if (!pend || pend == path)
2392 break; /* whoops, no '/', complain to your admin */ 3678 break;
2393 3679
2394 *pend = 0; 3680 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask); 3681 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 } 3682 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3683 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 } 3684 }
2399 } 3685 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402 3686
2403 if (w->wd >= 0) 3687 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3688 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3689
3690 /* now re-arm timer, if required */
3691 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3692 ev_timer_again (EV_A_ &w->timer);
3693 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2405} 3694}
2406 3695
2407static void noinline 3696static void noinline
2408infy_del (EV_P_ ev_stat *w) 3697infy_del (EV_P_ ev_stat *w)
2409{ 3698{
2412 3701
2413 if (wd < 0) 3702 if (wd < 0)
2414 return; 3703 return;
2415 3704
2416 w->wd = -2; 3705 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3706 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w); 3707 wlist_del (&fs_hash [slot].head, (WL)w);
2419 3708
2420 /* remove this watcher, if others are watching it, they will rearm */ 3709 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd); 3710 inotify_rm_watch (fs_fd, wd);
2422} 3711}
2423 3712
2424static void noinline 3713static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3714infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{ 3715{
2427 if (slot < 0) 3716 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */ 3717 /* overflow, need to check for all hash slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3718 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2430 infy_wd (EV_A_ slot, wd, ev); 3719 infy_wd (EV_A_ slot, wd, ev);
2431 else 3720 else
2432 { 3721 {
2433 WL w_; 3722 WL w_;
2434 3723
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3724 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2436 { 3725 {
2437 ev_stat *w = (ev_stat *)w_; 3726 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */ 3727 w_ = w_->next; /* lets us remove this watcher and all before it */
2439 3728
2440 if (w->wd == wd || wd == -1) 3729 if (w->wd == wd || wd == -1)
2441 { 3730 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3731 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 { 3732 {
3733 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2444 w->wd = -1; 3734 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */ 3735 infy_add (EV_A_ w); /* re-add, no matter what */
2446 } 3736 }
2447 3737
2448 stat_timer_cb (EV_A_ &w->timer, 0); 3738 stat_timer_cb (EV_A_ &w->timer, 0);
2453 3743
2454static void 3744static void
2455infy_cb (EV_P_ ev_io *w, int revents) 3745infy_cb (EV_P_ ev_io *w, int revents)
2456{ 3746{
2457 char buf [EV_INOTIFY_BUFSIZE]; 3747 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs; 3748 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf)); 3749 int len = read (fs_fd, buf, sizeof (buf));
2461 3750
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3751 for (ofs = 0; ofs < len; )
3752 {
3753 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3754 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3755 ofs += sizeof (struct inotify_event) + ev->len;
3756 }
2464} 3757}
2465 3758
2466void inline_size 3759inline_size void ecb_cold
3760ev_check_2625 (EV_P)
3761{
3762 /* kernels < 2.6.25 are borked
3763 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3764 */
3765 if (ev_linux_version () < 0x020619)
3766 return;
3767
3768 fs_2625 = 1;
3769}
3770
3771inline_size int
3772infy_newfd (void)
3773{
3774#if defined IN_CLOEXEC && defined IN_NONBLOCK
3775 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3776 if (fd >= 0)
3777 return fd;
3778#endif
3779 return inotify_init ();
3780}
3781
3782inline_size void
2467infy_init (EV_P) 3783infy_init (EV_P)
2468{ 3784{
2469 if (fs_fd != -2) 3785 if (fs_fd != -2)
2470 return; 3786 return;
2471 3787
3788 fs_fd = -1;
3789
3790 ev_check_2625 (EV_A);
3791
2472 fs_fd = inotify_init (); 3792 fs_fd = infy_newfd ();
2473 3793
2474 if (fs_fd >= 0) 3794 if (fs_fd >= 0)
2475 { 3795 {
3796 fd_intern (fs_fd);
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3797 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI); 3798 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w); 3799 ev_io_start (EV_A_ &fs_w);
3800 ev_unref (EV_A);
2479 } 3801 }
2480} 3802}
2481 3803
2482void inline_size 3804inline_size void
2483infy_fork (EV_P) 3805infy_fork (EV_P)
2484{ 3806{
2485 int slot; 3807 int slot;
2486 3808
2487 if (fs_fd < 0) 3809 if (fs_fd < 0)
2488 return; 3810 return;
2489 3811
3812 ev_ref (EV_A);
3813 ev_io_stop (EV_A_ &fs_w);
2490 close (fs_fd); 3814 close (fs_fd);
2491 fs_fd = inotify_init (); 3815 fs_fd = infy_newfd ();
2492 3816
3817 if (fs_fd >= 0)
3818 {
3819 fd_intern (fs_fd);
3820 ev_io_set (&fs_w, fs_fd, EV_READ);
3821 ev_io_start (EV_A_ &fs_w);
3822 ev_unref (EV_A);
3823 }
3824
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3825 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2494 { 3826 {
2495 WL w_ = fs_hash [slot].head; 3827 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0; 3828 fs_hash [slot].head = 0;
2497 3829
2498 while (w_) 3830 while (w_)
2503 w->wd = -1; 3835 w->wd = -1;
2504 3836
2505 if (fs_fd >= 0) 3837 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */ 3838 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else 3839 else
3840 {
3841 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3842 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2508 ev_timer_start (EV_A_ &w->timer); 3843 ev_timer_again (EV_A_ &w->timer);
3844 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3845 }
2509 } 3846 }
2510
2511 } 3847 }
2512} 3848}
2513 3849
3850#endif
3851
3852#ifdef _WIN32
3853# define EV_LSTAT(p,b) _stati64 (p, b)
3854#else
3855# define EV_LSTAT(p,b) lstat (p, b)
2514#endif 3856#endif
2515 3857
2516void 3858void
2517ev_stat_stat (EV_P_ ev_stat *w) 3859ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2518{ 3860{
2519 if (lstat (w->path, &w->attr) < 0) 3861 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0; 3862 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink) 3863 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1; 3864 w->attr.st_nlink = 1;
2525static void noinline 3867static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3868stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{ 3869{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3870 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529 3871
2530 /* we copy this here each the time so that */ 3872 ev_statdata prev = w->attr;
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w); 3873 ev_stat_stat (EV_A_ w);
2534 3874
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3875 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if ( 3876 if (
2537 w->prev.st_dev != w->attr.st_dev 3877 prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino 3878 || prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode 3879 || prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink 3880 || prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid 3881 || prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid 3882 || prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev 3883 || prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size 3884 || prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime 3885 || prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime 3886 || prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime 3887 || prev.st_ctime != w->attr.st_ctime
2548 ) { 3888 ) {
3889 /* we only update w->prev on actual differences */
3890 /* in case we test more often than invoke the callback, */
3891 /* to ensure that prev is always different to attr */
3892 w->prev = prev;
3893
2549 #if EV_USE_INOTIFY 3894 #if EV_USE_INOTIFY
3895 if (fs_fd >= 0)
3896 {
2550 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w); 3898 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */ 3899 ev_stat_stat (EV_A_ w); /* avoid race... */
3900 }
2553 #endif 3901 #endif
2554 3902
2555 ev_feed_event (EV_A_ w, EV_STAT); 3903 ev_feed_event (EV_A_ w, EV_STAT);
2556 } 3904 }
2557} 3905}
2558 3906
2559void 3907void
2560ev_stat_start (EV_P_ ev_stat *w) 3908ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2561{ 3909{
2562 if (expect_false (ev_is_active (w))) 3910 if (expect_false (ev_is_active (w)))
2563 return; 3911 return;
2564 3912
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w); 3913 ev_stat_stat (EV_A_ w);
2570 3914
3915 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2571 if (w->interval < MIN_STAT_INTERVAL) 3916 w->interval = MIN_STAT_INTERVAL;
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573 3917
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3918 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2575 ev_set_priority (&w->timer, ev_priority (w)); 3919 ev_set_priority (&w->timer, ev_priority (w));
2576 3920
2577#if EV_USE_INOTIFY 3921#if EV_USE_INOTIFY
2578 infy_init (EV_A); 3922 infy_init (EV_A);
2579 3923
2580 if (fs_fd >= 0) 3924 if (fs_fd >= 0)
2581 infy_add (EV_A_ w); 3925 infy_add (EV_A_ w);
2582 else 3926 else
2583#endif 3927#endif
3928 {
2584 ev_timer_start (EV_A_ &w->timer); 3929 ev_timer_again (EV_A_ &w->timer);
3930 ev_unref (EV_A);
3931 }
2585 3932
2586 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
2587 3934
2588 EV_FREQUENT_CHECK; 3935 EV_FREQUENT_CHECK;
2589} 3936}
2590 3937
2591void 3938void
2592ev_stat_stop (EV_P_ ev_stat *w) 3939ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2593{ 3940{
2594 clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
2596 return; 3943 return;
2597 3944
2598 EV_FREQUENT_CHECK; 3945 EV_FREQUENT_CHECK;
2599 3946
2600#if EV_USE_INOTIFY 3947#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w); 3948 infy_del (EV_A_ w);
2602#endif 3949#endif
3950
3951 if (ev_is_active (&w->timer))
3952 {
3953 ev_ref (EV_A);
2603 ev_timer_stop (EV_A_ &w->timer); 3954 ev_timer_stop (EV_A_ &w->timer);
3955 }
2604 3956
2605 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2606 3958
2607 EV_FREQUENT_CHECK; 3959 EV_FREQUENT_CHECK;
2608} 3960}
2609#endif 3961#endif
2610 3962
2611#if EV_IDLE_ENABLE 3963#if EV_IDLE_ENABLE
2612void 3964void
2613ev_idle_start (EV_P_ ev_idle *w) 3965ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2614{ 3966{
2615 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2616 return; 3968 return;
2617 3969
2618 pri_adjust (EV_A_ (W)w); 3970 pri_adjust (EV_A_ (W)w);
2631 3983
2632 EV_FREQUENT_CHECK; 3984 EV_FREQUENT_CHECK;
2633} 3985}
2634 3986
2635void 3987void
2636ev_idle_stop (EV_P_ ev_idle *w) 3988ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2637{ 3989{
2638 clear_pending (EV_A_ (W)w); 3990 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w))) 3991 if (expect_false (!ev_is_active (w)))
2640 return; 3992 return;
2641 3993
2653 4005
2654 EV_FREQUENT_CHECK; 4006 EV_FREQUENT_CHECK;
2655} 4007}
2656#endif 4008#endif
2657 4009
4010#if EV_PREPARE_ENABLE
2658void 4011void
2659ev_prepare_start (EV_P_ ev_prepare *w) 4012ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2660{ 4013{
2661 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
2662 return; 4015 return;
2663 4016
2664 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2669 4022
2670 EV_FREQUENT_CHECK; 4023 EV_FREQUENT_CHECK;
2671} 4024}
2672 4025
2673void 4026void
2674ev_prepare_stop (EV_P_ ev_prepare *w) 4027ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2675{ 4028{
2676 clear_pending (EV_A_ (W)w); 4029 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w))) 4030 if (expect_false (!ev_is_active (w)))
2678 return; 4031 return;
2679 4032
2688 4041
2689 ev_stop (EV_A_ (W)w); 4042 ev_stop (EV_A_ (W)w);
2690 4043
2691 EV_FREQUENT_CHECK; 4044 EV_FREQUENT_CHECK;
2692} 4045}
4046#endif
2693 4047
4048#if EV_CHECK_ENABLE
2694void 4049void
2695ev_check_start (EV_P_ ev_check *w) 4050ev_check_start (EV_P_ ev_check *w) EV_THROW
2696{ 4051{
2697 if (expect_false (ev_is_active (w))) 4052 if (expect_false (ev_is_active (w)))
2698 return; 4053 return;
2699 4054
2700 EV_FREQUENT_CHECK; 4055 EV_FREQUENT_CHECK;
2705 4060
2706 EV_FREQUENT_CHECK; 4061 EV_FREQUENT_CHECK;
2707} 4062}
2708 4063
2709void 4064void
2710ev_check_stop (EV_P_ ev_check *w) 4065ev_check_stop (EV_P_ ev_check *w) EV_THROW
2711{ 4066{
2712 clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w))) 4068 if (expect_false (!ev_is_active (w)))
2714 return; 4069 return;
2715 4070
2724 4079
2725 ev_stop (EV_A_ (W)w); 4080 ev_stop (EV_A_ (W)w);
2726 4081
2727 EV_FREQUENT_CHECK; 4082 EV_FREQUENT_CHECK;
2728} 4083}
4084#endif
2729 4085
2730#if EV_EMBED_ENABLE 4086#if EV_EMBED_ENABLE
2731void noinline 4087void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w) 4088ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2733{ 4089{
2734 ev_loop (w->other, EVLOOP_NONBLOCK); 4090 ev_run (w->other, EVRUN_NOWAIT);
2735} 4091}
2736 4092
2737static void 4093static void
2738embed_io_cb (EV_P_ ev_io *io, int revents) 4094embed_io_cb (EV_P_ ev_io *io, int revents)
2739{ 4095{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4096 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741 4097
2742 if (ev_cb (w)) 4098 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4099 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else 4100 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK); 4101 ev_run (w->other, EVRUN_NOWAIT);
2746} 4102}
2747 4103
2748static void 4104static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4105embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{ 4106{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4107 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752 4108
2753 { 4109 {
2754 struct ev_loop *loop = w->other; 4110 EV_P = w->other;
2755 4111
2756 while (fdchangecnt) 4112 while (fdchangecnt)
2757 { 4113 {
2758 fd_reify (EV_A); 4114 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4115 ev_run (EV_A_ EVRUN_NOWAIT);
2760 } 4116 }
2761 } 4117 }
4118}
4119
4120static void
4121embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4122{
4123 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4124
4125 ev_embed_stop (EV_A_ w);
4126
4127 {
4128 EV_P = w->other;
4129
4130 ev_loop_fork (EV_A);
4131 ev_run (EV_A_ EVRUN_NOWAIT);
4132 }
4133
4134 ev_embed_start (EV_A_ w);
2762} 4135}
2763 4136
2764#if 0 4137#if 0
2765static void 4138static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4139embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2768 ev_idle_stop (EV_A_ idle); 4141 ev_idle_stop (EV_A_ idle);
2769} 4142}
2770#endif 4143#endif
2771 4144
2772void 4145void
2773ev_embed_start (EV_P_ ev_embed *w) 4146ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2774{ 4147{
2775 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2776 return; 4149 return;
2777 4150
2778 { 4151 {
2779 struct ev_loop *loop = w->other; 4152 EV_P = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4153 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4154 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 } 4155 }
2783 4156
2784 EV_FREQUENT_CHECK; 4157 EV_FREQUENT_CHECK;
2785 4158
2788 4161
2789 ev_prepare_init (&w->prepare, embed_prepare_cb); 4162 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI); 4163 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare); 4164 ev_prepare_start (EV_A_ &w->prepare);
2792 4165
4166 ev_fork_init (&w->fork, embed_fork_cb);
4167 ev_fork_start (EV_A_ &w->fork);
4168
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4169 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794 4170
2795 ev_start (EV_A_ (W)w, 1); 4171 ev_start (EV_A_ (W)w, 1);
2796 4172
2797 EV_FREQUENT_CHECK; 4173 EV_FREQUENT_CHECK;
2798} 4174}
2799 4175
2800void 4176void
2801ev_embed_stop (EV_P_ ev_embed *w) 4177ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2802{ 4178{
2803 clear_pending (EV_A_ (W)w); 4179 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4180 if (expect_false (!ev_is_active (w)))
2805 return; 4181 return;
2806 4182
2807 EV_FREQUENT_CHECK; 4183 EV_FREQUENT_CHECK;
2808 4184
2809 ev_io_stop (EV_A_ &w->io); 4185 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare); 4186 ev_prepare_stop (EV_A_ &w->prepare);
4187 ev_fork_stop (EV_A_ &w->fork);
2811 4188
2812 ev_stop (EV_A_ (W)w); 4189 ev_stop (EV_A_ (W)w);
2813 4190
2814 EV_FREQUENT_CHECK; 4191 EV_FREQUENT_CHECK;
2815} 4192}
2816#endif 4193#endif
2817 4194
2818#if EV_FORK_ENABLE 4195#if EV_FORK_ENABLE
2819void 4196void
2820ev_fork_start (EV_P_ ev_fork *w) 4197ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2821{ 4198{
2822 if (expect_false (ev_is_active (w))) 4199 if (expect_false (ev_is_active (w)))
2823 return; 4200 return;
2824 4201
2825 EV_FREQUENT_CHECK; 4202 EV_FREQUENT_CHECK;
2830 4207
2831 EV_FREQUENT_CHECK; 4208 EV_FREQUENT_CHECK;
2832} 4209}
2833 4210
2834void 4211void
2835ev_fork_stop (EV_P_ ev_fork *w) 4212ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2836{ 4213{
2837 clear_pending (EV_A_ (W)w); 4214 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4215 if (expect_false (!ev_is_active (w)))
2839 return; 4216 return;
2840 4217
2851 4228
2852 EV_FREQUENT_CHECK; 4229 EV_FREQUENT_CHECK;
2853} 4230}
2854#endif 4231#endif
2855 4232
4233#if EV_CLEANUP_ENABLE
4234void
4235ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4236{
4237 if (expect_false (ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_start (EV_A_ (W)w, ++cleanupcnt);
4243 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4244 cleanups [cleanupcnt - 1] = w;
4245
4246 /* cleanup watchers should never keep a refcount on the loop */
4247 ev_unref (EV_A);
4248 EV_FREQUENT_CHECK;
4249}
4250
4251void
4252ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4253{
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259 ev_ref (EV_A);
4260
4261 {
4262 int active = ev_active (w);
4263
4264 cleanups [active - 1] = cleanups [--cleanupcnt];
4265 ev_active (cleanups [active - 1]) = active;
4266 }
4267
4268 ev_stop (EV_A_ (W)w);
4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
2856#if EV_ASYNC_ENABLE 4274#if EV_ASYNC_ENABLE
2857void 4275void
2858ev_async_start (EV_P_ ev_async *w) 4276ev_async_start (EV_P_ ev_async *w) EV_THROW
2859{ 4277{
2860 if (expect_false (ev_is_active (w))) 4278 if (expect_false (ev_is_active (w)))
2861 return; 4279 return;
4280
4281 w->sent = 0;
2862 4282
2863 evpipe_init (EV_A); 4283 evpipe_init (EV_A);
2864 4284
2865 EV_FREQUENT_CHECK; 4285 EV_FREQUENT_CHECK;
2866 4286
2870 4290
2871 EV_FREQUENT_CHECK; 4291 EV_FREQUENT_CHECK;
2872} 4292}
2873 4293
2874void 4294void
2875ev_async_stop (EV_P_ ev_async *w) 4295ev_async_stop (EV_P_ ev_async *w) EV_THROW
2876{ 4296{
2877 clear_pending (EV_A_ (W)w); 4297 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w))) 4298 if (expect_false (!ev_is_active (w)))
2879 return; 4299 return;
2880 4300
2891 4311
2892 EV_FREQUENT_CHECK; 4312 EV_FREQUENT_CHECK;
2893} 4313}
2894 4314
2895void 4315void
2896ev_async_send (EV_P_ ev_async *w) 4316ev_async_send (EV_P_ ev_async *w) EV_THROW
2897{ 4317{
2898 w->sent = 1; 4318 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync); 4319 evpipe_write (EV_A_ &async_pending);
2900} 4320}
2901#endif 4321#endif
2902 4322
2903/*****************************************************************************/ 4323/*****************************************************************************/
2904 4324
2914once_cb (EV_P_ struct ev_once *once, int revents) 4334once_cb (EV_P_ struct ev_once *once, int revents)
2915{ 4335{
2916 void (*cb)(int revents, void *arg) = once->cb; 4336 void (*cb)(int revents, void *arg) = once->cb;
2917 void *arg = once->arg; 4337 void *arg = once->arg;
2918 4338
2919 ev_io_stop (EV_A_ &once->io); 4339 ev_io_stop (EV_A_ &once->io);
2920 ev_timer_stop (EV_A_ &once->to); 4340 ev_timer_stop (EV_A_ &once->to);
2921 ev_free (once); 4341 ev_free (once);
2922 4342
2923 cb (revents, arg); 4343 cb (revents, arg);
2924} 4344}
2925 4345
2926static void 4346static void
2927once_cb_io (EV_P_ ev_io *w, int revents) 4347once_cb_io (EV_P_ ev_io *w, int revents)
2928{ 4348{
2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4349 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4350
4351 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2930} 4352}
2931 4353
2932static void 4354static void
2933once_cb_to (EV_P_ ev_timer *w, int revents) 4355once_cb_to (EV_P_ ev_timer *w, int revents)
2934{ 4356{
2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4357 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4358
4359 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2936} 4360}
2937 4361
2938void 4362void
2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2940{ 4364{
2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4365 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2942 4366
2943 if (expect_false (!once)) 4367 if (expect_false (!once))
2944 { 4368 {
2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4369 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2946 return; 4370 return;
2947 } 4371 }
2948 4372
2949 once->cb = cb; 4373 once->cb = cb;
2950 once->arg = arg; 4374 once->arg = arg;
2962 ev_timer_set (&once->to, timeout, 0.); 4386 ev_timer_set (&once->to, timeout, 0.);
2963 ev_timer_start (EV_A_ &once->to); 4387 ev_timer_start (EV_A_ &once->to);
2964 } 4388 }
2965} 4389}
2966 4390
4391/*****************************************************************************/
4392
4393#if EV_WALK_ENABLE
4394void ecb_cold
4395ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4396{
4397 int i, j;
4398 ev_watcher_list *wl, *wn;
4399
4400 if (types & (EV_IO | EV_EMBED))
4401 for (i = 0; i < anfdmax; ++i)
4402 for (wl = anfds [i].head; wl; )
4403 {
4404 wn = wl->next;
4405
4406#if EV_EMBED_ENABLE
4407 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4408 {
4409 if (types & EV_EMBED)
4410 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4411 }
4412 else
4413#endif
4414#if EV_USE_INOTIFY
4415 if (ev_cb ((ev_io *)wl) == infy_cb)
4416 ;
4417 else
4418#endif
4419 if ((ev_io *)wl != &pipe_w)
4420 if (types & EV_IO)
4421 cb (EV_A_ EV_IO, wl);
4422
4423 wl = wn;
4424 }
4425
4426 if (types & (EV_TIMER | EV_STAT))
4427 for (i = timercnt + HEAP0; i-- > HEAP0; )
4428#if EV_STAT_ENABLE
4429 /*TODO: timer is not always active*/
4430 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4431 {
4432 if (types & EV_STAT)
4433 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4434 }
4435 else
4436#endif
4437 if (types & EV_TIMER)
4438 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4439
4440#if EV_PERIODIC_ENABLE
4441 if (types & EV_PERIODIC)
4442 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4443 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4444#endif
4445
4446#if EV_IDLE_ENABLE
4447 if (types & EV_IDLE)
4448 for (j = NUMPRI; j--; )
4449 for (i = idlecnt [j]; i--; )
4450 cb (EV_A_ EV_IDLE, idles [j][i]);
4451#endif
4452
4453#if EV_FORK_ENABLE
4454 if (types & EV_FORK)
4455 for (i = forkcnt; i--; )
4456 if (ev_cb (forks [i]) != embed_fork_cb)
4457 cb (EV_A_ EV_FORK, forks [i]);
4458#endif
4459
4460#if EV_ASYNC_ENABLE
4461 if (types & EV_ASYNC)
4462 for (i = asynccnt; i--; )
4463 cb (EV_A_ EV_ASYNC, asyncs [i]);
4464#endif
4465
4466#if EV_PREPARE_ENABLE
4467 if (types & EV_PREPARE)
4468 for (i = preparecnt; i--; )
4469# if EV_EMBED_ENABLE
4470 if (ev_cb (prepares [i]) != embed_prepare_cb)
4471# endif
4472 cb (EV_A_ EV_PREPARE, prepares [i]);
4473#endif
4474
4475#if EV_CHECK_ENABLE
4476 if (types & EV_CHECK)
4477 for (i = checkcnt; i--; )
4478 cb (EV_A_ EV_CHECK, checks [i]);
4479#endif
4480
4481#if EV_SIGNAL_ENABLE
4482 if (types & EV_SIGNAL)
4483 for (i = 0; i < EV_NSIG - 1; ++i)
4484 for (wl = signals [i].head; wl; )
4485 {
4486 wn = wl->next;
4487 cb (EV_A_ EV_SIGNAL, wl);
4488 wl = wn;
4489 }
4490#endif
4491
4492#if EV_CHILD_ENABLE
4493 if (types & EV_CHILD)
4494 for (i = (EV_PID_HASHSIZE); i--; )
4495 for (wl = childs [i]; wl; )
4496 {
4497 wn = wl->next;
4498 cb (EV_A_ EV_CHILD, wl);
4499 wl = wn;
4500 }
4501#endif
4502/* EV_STAT 0x00001000 /* stat data changed */
4503/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4504}
4505#endif
4506
2967#if EV_MULTIPLICITY 4507#if EV_MULTIPLICITY
2968 #include "ev_wrap.h" 4508 #include "ev_wrap.h"
2969#endif 4509#endif
2970 4510
2971#ifdef __cplusplus
2972}
2973#endif
2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines