ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC vs.
Revision 1.450 by root, Mon Oct 8 15:43:35 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
237# endif 341# endif
238#endif 342#endif
239 343
240#if 0 /* debugging */ 344#if 0 /* debugging */
241# define EV_VERIFY 3 345# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
244#endif 348#endif
245 349
246#ifndef EV_VERIFY 350#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 352#endif
249 353
250#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 356#endif
253 357
254#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
256#endif 374#endif
257 375
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
259 383
260#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
263#endif 387#endif
271# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
273#endif 397#endif
274 398
275#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
277# include <sys/select.h> 402# include <sys/select.h>
278# endif 403# endif
279#endif 404#endif
280 405
281#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
282# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
283#endif 413# endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif 414#endif
288 415
289#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 418# include <stdint.h>
292# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
293extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
294# endif 421# endif
295int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 423# ifdef O_CLOEXEC
297} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
298# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
299#endif 452#endif
300 453
301/**/ 454/**/
302 455
303#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 458#else
306# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
307#endif 460#endif
308 461
309/* 462/*
310 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 465 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 468
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010002
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
323#if __GNUC__ >= 4 519 #if __GNUC__
324# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
325# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
326#else 535#else
327# define expect(expr,value) (expr) 536 #include <inttypes.h>
328# define noinline 537 #if UINTMAX_MAX > 0xffffffffU
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 538 #define ECB_PTRSIZE 8
330# define inline 539 #else
540 #define ECB_PTRSIZE 4
541 #endif
331# endif 542#endif
543
544/* many compilers define _GNUC_ to some versions but then only implement
545 * what their idiot authors think are the "more important" extensions,
546 * causing enormous grief in return for some better fake benchmark numbers.
547 * or so.
548 * we try to detect these and simply assume they are not gcc - if they have
549 * an issue with that they should have done it right in the first place.
550 */
551#ifndef ECB_GCC_VERSION
552 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
553 #define ECB_GCC_VERSION(major,minor) 0
554 #else
555 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
332#endif 556 #endif
557#endif
333 558
559#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
560#define ECB_C99 (__STDC_VERSION__ >= 199901L)
561#define ECB_C11 (__STDC_VERSION__ >= 201112L)
562#define ECB_CPP (__cplusplus+0)
563#define ECB_CPP11 (__cplusplus >= 201103L)
564
565#if ECB_CPP
566 #define ECB_EXTERN_C extern "C"
567 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
568 #define ECB_EXTERN_C_END }
569#else
570 #define ECB_EXTERN_C extern
571 #define ECB_EXTERN_C_BEG
572 #define ECB_EXTERN_C_END
573#endif
574
575/*****************************************************************************/
576
577/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
578/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
579
580#if ECB_NO_THREADS
581 #define ECB_NO_SMP 1
582#endif
583
584#if ECB_NO_SMP
585 #define ECB_MEMORY_FENCE do { } while (0)
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
590 #if __i386 || __i386__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
592 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
593 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
594 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
595 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
596 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
597 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
598 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
600 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
601 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
603 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
604 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
606 #elif __sparc || __sparc__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
610 #elif defined __s390__ || defined __s390x__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
612 #elif defined __mips__
613 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
614 #elif defined __alpha__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
616 #elif defined __hppa__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
618 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
619 #elif defined __ia64__
620 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
621 #endif
622 #endif
623#endif
624
625#ifndef ECB_MEMORY_FENCE
626 #if ECB_GCC_VERSION(4,7)
627 /* see comment below (stdatomic.h) about the C11 memory model. */
628 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
629
630 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
631 * without risking compile time errors with other compilers. We *could*
632 * define our own ecb_clang_has_feature, but I just can't be bothered to work
633 * around this shit time and again.
634 * #elif defined __clang && __has_feature (cxx_atomic)
635 * // see comment below (stdatomic.h) about the C11 memory model.
636 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
637 */
638
639 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
640 #define ECB_MEMORY_FENCE __sync_synchronize ()
641 #elif _MSC_VER >= 1400 /* VC++ 2005 */
642 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
643 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
644 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
645 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
646 #elif defined _WIN32
647 #include <WinNT.h>
648 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
649 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
650 #include <mbarrier.h>
651 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
652 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
653 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
654 #elif __xlC__
655 #define ECB_MEMORY_FENCE __sync ()
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
661 /* we assume that these memory fences work on all variables/all memory accesses, */
662 /* not just C11 atomics and atomic accesses */
663 #include <stdatomic.h>
664 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
665 /* any fence other than seq_cst, which isn't very efficient for us. */
666 /* Why that is, we don't know - either the C11 memory model is quite useless */
667 /* for most usages, or gcc and clang have a bug */
668 /* I *currently* lean towards the latter, and inefficiently implement */
669 /* all three of ecb's fences as a seq_cst fence */
670 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
671 #endif
672#endif
673
674#ifndef ECB_MEMORY_FENCE
675 #if !ECB_AVOID_PTHREADS
676 /*
677 * if you get undefined symbol references to pthread_mutex_lock,
678 * or failure to find pthread.h, then you should implement
679 * the ECB_MEMORY_FENCE operations for your cpu/compiler
680 * OR provide pthread.h and link against the posix thread library
681 * of your system.
682 */
683 #include <pthread.h>
684 #define ECB_NEEDS_PTHREADS 1
685 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
686
687 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
688 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
689 #endif
690#endif
691
692#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
693 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
694#endif
695
696#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
697 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
698#endif
699
700/*****************************************************************************/
701
702#if __cplusplus
703 #define ecb_inline static inline
704#elif ECB_GCC_VERSION(2,5)
705 #define ecb_inline static __inline__
706#elif ECB_C99
707 #define ecb_inline static inline
708#else
709 #define ecb_inline static
710#endif
711
712#if ECB_GCC_VERSION(3,3)
713 #define ecb_restrict __restrict__
714#elif ECB_C99
715 #define ecb_restrict restrict
716#else
717 #define ecb_restrict
718#endif
719
720typedef int ecb_bool;
721
722#define ECB_CONCAT_(a, b) a ## b
723#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
724#define ECB_STRINGIFY_(a) # a
725#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
726
727#define ecb_function_ ecb_inline
728
729#if ECB_GCC_VERSION(3,1)
730 #define ecb_attribute(attrlist) __attribute__(attrlist)
731 #define ecb_is_constant(expr) __builtin_constant_p (expr)
732 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
733 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
734#else
735 #define ecb_attribute(attrlist)
736 #define ecb_is_constant(expr) 0
737 #define ecb_expect(expr,value) (expr)
738 #define ecb_prefetch(addr,rw,locality)
739#endif
740
741/* no emulation for ecb_decltype */
742#if ECB_GCC_VERSION(4,5)
743 #define ecb_decltype(x) __decltype(x)
744#elif ECB_GCC_VERSION(3,0)
745 #define ecb_decltype(x) __typeof(x)
746#endif
747
748#define ecb_noinline ecb_attribute ((__noinline__))
749#define ecb_unused ecb_attribute ((__unused__))
750#define ecb_const ecb_attribute ((__const__))
751#define ecb_pure ecb_attribute ((__pure__))
752
753#if ECB_C11
754 #define ecb_noreturn _Noreturn
755#else
756 #define ecb_noreturn ecb_attribute ((__noreturn__))
757#endif
758
759#if ECB_GCC_VERSION(4,3)
760 #define ecb_artificial ecb_attribute ((__artificial__))
761 #define ecb_hot ecb_attribute ((__hot__))
762 #define ecb_cold ecb_attribute ((__cold__))
763#else
764 #define ecb_artificial
765 #define ecb_hot
766 #define ecb_cold
767#endif
768
769/* put around conditional expressions if you are very sure that the */
770/* expression is mostly true or mostly false. note that these return */
771/* booleans, not the expression. */
334#define expect_false(expr) expect ((expr) != 0, 0) 772#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 773#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
774/* for compatibility to the rest of the world */
775#define ecb_likely(expr) ecb_expect_true (expr)
776#define ecb_unlikely(expr) ecb_expect_false (expr)
777
778/* count trailing zero bits and count # of one bits */
779#if ECB_GCC_VERSION(3,4)
780 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
781 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
782 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
783 #define ecb_ctz32(x) __builtin_ctz (x)
784 #define ecb_ctz64(x) __builtin_ctzll (x)
785 #define ecb_popcount32(x) __builtin_popcount (x)
786 /* no popcountll */
787#else
788 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
789 ecb_function_ int
790 ecb_ctz32 (uint32_t x)
791 {
792 int r = 0;
793
794 x &= ~x + 1; /* this isolates the lowest bit */
795
796#if ECB_branchless_on_i386
797 r += !!(x & 0xaaaaaaaa) << 0;
798 r += !!(x & 0xcccccccc) << 1;
799 r += !!(x & 0xf0f0f0f0) << 2;
800 r += !!(x & 0xff00ff00) << 3;
801 r += !!(x & 0xffff0000) << 4;
802#else
803 if (x & 0xaaaaaaaa) r += 1;
804 if (x & 0xcccccccc) r += 2;
805 if (x & 0xf0f0f0f0) r += 4;
806 if (x & 0xff00ff00) r += 8;
807 if (x & 0xffff0000) r += 16;
808#endif
809
810 return r;
811 }
812
813 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
814 ecb_function_ int
815 ecb_ctz64 (uint64_t x)
816 {
817 int shift = x & 0xffffffffU ? 0 : 32;
818 return ecb_ctz32 (x >> shift) + shift;
819 }
820
821 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
822 ecb_function_ int
823 ecb_popcount32 (uint32_t x)
824 {
825 x -= (x >> 1) & 0x55555555;
826 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
827 x = ((x >> 4) + x) & 0x0f0f0f0f;
828 x *= 0x01010101;
829
830 return x >> 24;
831 }
832
833 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
834 ecb_function_ int ecb_ld32 (uint32_t x)
835 {
836 int r = 0;
837
838 if (x >> 16) { x >>= 16; r += 16; }
839 if (x >> 8) { x >>= 8; r += 8; }
840 if (x >> 4) { x >>= 4; r += 4; }
841 if (x >> 2) { x >>= 2; r += 2; }
842 if (x >> 1) { r += 1; }
843
844 return r;
845 }
846
847 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
848 ecb_function_ int ecb_ld64 (uint64_t x)
849 {
850 int r = 0;
851
852 if (x >> 32) { x >>= 32; r += 32; }
853
854 return r + ecb_ld32 (x);
855 }
856#endif
857
858ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
859ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
860ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
861ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
862
863ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
864ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
865{
866 return ( (x * 0x0802U & 0x22110U)
867 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
868}
869
870ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
871ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
872{
873 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
874 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
875 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
876 x = ( x >> 8 ) | ( x << 8);
877
878 return x;
879}
880
881ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
882ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
883{
884 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
885 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
886 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
887 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
888 x = ( x >> 16 ) | ( x << 16);
889
890 return x;
891}
892
893/* popcount64 is only available on 64 bit cpus as gcc builtin */
894/* so for this version we are lazy */
895ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
896ecb_function_ int
897ecb_popcount64 (uint64_t x)
898{
899 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
900}
901
902ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
903ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
904ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
905ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
906ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
907ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
908ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
909ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
910
911ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
912ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
913ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
914ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
915ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
916ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
917ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
918ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
919
920#if ECB_GCC_VERSION(4,3)
921 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
922 #define ecb_bswap32(x) __builtin_bswap32 (x)
923 #define ecb_bswap64(x) __builtin_bswap64 (x)
924#else
925 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
926 ecb_function_ uint16_t
927 ecb_bswap16 (uint16_t x)
928 {
929 return ecb_rotl16 (x, 8);
930 }
931
932 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
933 ecb_function_ uint32_t
934 ecb_bswap32 (uint32_t x)
935 {
936 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
937 }
938
939 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
940 ecb_function_ uint64_t
941 ecb_bswap64 (uint64_t x)
942 {
943 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
944 }
945#endif
946
947#if ECB_GCC_VERSION(4,5)
948 #define ecb_unreachable() __builtin_unreachable ()
949#else
950 /* this seems to work fine, but gcc always emits a warning for it :/ */
951 ecb_inline void ecb_unreachable (void) ecb_noreturn;
952 ecb_inline void ecb_unreachable (void) { }
953#endif
954
955/* try to tell the compiler that some condition is definitely true */
956#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
957
958ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
959ecb_inline unsigned char
960ecb_byteorder_helper (void)
961{
962 /* the union code still generates code under pressure in gcc, */
963 /* but less than using pointers, and always seems to */
964 /* successfully return a constant. */
965 /* the reason why we have this horrible preprocessor mess */
966 /* is to avoid it in all cases, at least on common architectures */
967 /* or when using a recent enough gcc version (>= 4.6) */
968#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
969 return 0x44;
970#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
971 return 0x44;
972#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
973 return 0x11;
974#else
975 union
976 {
977 uint32_t i;
978 uint8_t c;
979 } u = { 0x11223344 };
980 return u.c;
981#endif
982}
983
984ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
985ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
986ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
987ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
988
989#if ECB_GCC_VERSION(3,0) || ECB_C99
990 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
991#else
992 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
993#endif
994
995#if __cplusplus
996 template<typename T>
997 static inline T ecb_div_rd (T val, T div)
998 {
999 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1000 }
1001 template<typename T>
1002 static inline T ecb_div_ru (T val, T div)
1003 {
1004 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1005 }
1006#else
1007 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1008 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1009#endif
1010
1011#if ecb_cplusplus_does_not_suck
1012 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1013 template<typename T, int N>
1014 static inline int ecb_array_length (const T (&arr)[N])
1015 {
1016 return N;
1017 }
1018#else
1019 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1020#endif
1021
1022/*******************************************************************************/
1023/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1024
1025/* basically, everything uses "ieee pure-endian" floating point numbers */
1026/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1027#if 0 \
1028 || __i386 || __i386__ \
1029 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1030 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1031 || defined __arm__ && defined __ARM_EABI__ \
1032 || defined __s390__ || defined __s390x__ \
1033 || defined __mips__ \
1034 || defined __alpha__ \
1035 || defined __hppa__ \
1036 || defined __ia64__ \
1037 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1038 #define ECB_STDFP 1
1039 #include <string.h> /* for memcpy */
1040#else
1041 #define ECB_STDFP 0
1042 #include <math.h> /* for frexp*, ldexp* */
1043#endif
1044
1045#ifndef ECB_NO_LIBM
1046
1047 /* convert a float to ieee single/binary32 */
1048 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1049 ecb_function_ uint32_t
1050 ecb_float_to_binary32 (float x)
1051 {
1052 uint32_t r;
1053
1054 #if ECB_STDFP
1055 memcpy (&r, &x, 4);
1056 #else
1057 /* slow emulation, works for anything but -0 */
1058 uint32_t m;
1059 int e;
1060
1061 if (x == 0e0f ) return 0x00000000U;
1062 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1063 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1064 if (x != x ) return 0x7fbfffffU;
1065
1066 m = frexpf (x, &e) * 0x1000000U;
1067
1068 r = m & 0x80000000U;
1069
1070 if (r)
1071 m = -m;
1072
1073 if (e <= -126)
1074 {
1075 m &= 0xffffffU;
1076 m >>= (-125 - e);
1077 e = -126;
1078 }
1079
1080 r |= (e + 126) << 23;
1081 r |= m & 0x7fffffU;
1082 #endif
1083
1084 return r;
1085 }
1086
1087 /* converts an ieee single/binary32 to a float */
1088 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1089 ecb_function_ float
1090 ecb_binary32_to_float (uint32_t x)
1091 {
1092 float r;
1093
1094 #if ECB_STDFP
1095 memcpy (&r, &x, 4);
1096 #else
1097 /* emulation, only works for normals and subnormals and +0 */
1098 int neg = x >> 31;
1099 int e = (x >> 23) & 0xffU;
1100
1101 x &= 0x7fffffU;
1102
1103 if (e)
1104 x |= 0x800000U;
1105 else
1106 e = 1;
1107
1108 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1109 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1110
1111 r = neg ? -r : r;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* convert a double to ieee double/binary64 */
1118 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1119 ecb_function_ uint64_t
1120 ecb_double_to_binary64 (double x)
1121 {
1122 uint64_t r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 8);
1126 #else
1127 /* slow emulation, works for anything but -0 */
1128 uint64_t m;
1129 int e;
1130
1131 if (x == 0e0 ) return 0x0000000000000000U;
1132 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1133 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1134 if (x != x ) return 0X7ff7ffffffffffffU;
1135
1136 m = frexp (x, &e) * 0x20000000000000U;
1137
1138 r = m & 0x8000000000000000;;
1139
1140 if (r)
1141 m = -m;
1142
1143 if (e <= -1022)
1144 {
1145 m &= 0x1fffffffffffffU;
1146 m >>= (-1021 - e);
1147 e = -1022;
1148 }
1149
1150 r |= ((uint64_t)(e + 1022)) << 52;
1151 r |= m & 0xfffffffffffffU;
1152 #endif
1153
1154 return r;
1155 }
1156
1157 /* converts an ieee double/binary64 to a double */
1158 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1159 ecb_function_ double
1160 ecb_binary64_to_double (uint64_t x)
1161 {
1162 double r;
1163
1164 #if ECB_STDFP
1165 memcpy (&r, &x, 8);
1166 #else
1167 /* emulation, only works for normals and subnormals and +0 */
1168 int neg = x >> 63;
1169 int e = (x >> 52) & 0x7ffU;
1170
1171 x &= 0xfffffffffffffU;
1172
1173 if (e)
1174 x |= 0x10000000000000U;
1175 else
1176 e = 1;
1177
1178 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1179 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1180
1181 r = neg ? -r : r;
1182 #endif
1183
1184 return r;
1185 }
1186
1187#endif
1188
1189#endif
1190
1191/* ECB.H END */
1192
1193#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1194/* if your architecture doesn't need memory fences, e.g. because it is
1195 * single-cpu/core, or if you use libev in a project that doesn't use libev
1196 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1197 * libev, in which cases the memory fences become nops.
1198 * alternatively, you can remove this #error and link against libpthread,
1199 * which will then provide the memory fences.
1200 */
1201# error "memory fences not defined for your architecture, please report"
1202#endif
1203
1204#ifndef ECB_MEMORY_FENCE
1205# define ECB_MEMORY_FENCE do { } while (0)
1206# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1207# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1208#endif
1209
1210#define expect_false(cond) ecb_expect_false (cond)
1211#define expect_true(cond) ecb_expect_true (cond)
1212#define noinline ecb_noinline
1213
336#define inline_size static inline 1214#define inline_size ecb_inline
337 1215
338#if EV_MINIMAL 1216#if EV_FEATURE_CODE
1217# define inline_speed ecb_inline
1218#else
339# define inline_speed static noinline 1219# define inline_speed static noinline
1220#endif
1221
1222#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1223
1224#if EV_MINPRI == EV_MAXPRI
1225# define ABSPRI(w) (((W)w), 0)
340#else 1226#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1227# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1228#endif
346 1229
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1230#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 1231#define EMPTY2(a,b) /* used to suppress some warnings */
349 1232
350typedef ev_watcher *W; 1233typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 1235typedef ev_watcher_time *WT;
353 1236
354#define ev_active(w) ((W)(w))->active 1237#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 1238#define ev_at(w) ((WT)(w))->at
356 1239
1240#if EV_USE_REALTIME
1241/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1242/* giving it a reasonably high chance of working on typical architectures */
1243static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1244#endif
1245
357#if EV_USE_MONOTONIC 1246#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1247static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1248#endif
1249
1250#ifndef EV_FD_TO_WIN32_HANDLE
1251# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1252#endif
1253#ifndef EV_WIN32_HANDLE_TO_FD
1254# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1255#endif
1256#ifndef EV_WIN32_CLOSE_FD
1257# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1258#endif
362 1259
363#ifdef _WIN32 1260#ifdef _WIN32
364# include "ev_win32.c" 1261# include "ev_win32.c"
365#endif 1262#endif
366 1263
367/*****************************************************************************/ 1264/*****************************************************************************/
368 1265
1266/* define a suitable floor function (only used by periodics atm) */
1267
1268#if EV_USE_FLOOR
1269# include <math.h>
1270# define ev_floor(v) floor (v)
1271#else
1272
1273#include <float.h>
1274
1275/* a floor() replacement function, should be independent of ev_tstamp type */
1276static ev_tstamp noinline
1277ev_floor (ev_tstamp v)
1278{
1279 /* the choice of shift factor is not terribly important */
1280#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1281 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1282#else
1283 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1284#endif
1285
1286 /* argument too large for an unsigned long? */
1287 if (expect_false (v >= shift))
1288 {
1289 ev_tstamp f;
1290
1291 if (v == v - 1.)
1292 return v; /* very large number */
1293
1294 f = shift * ev_floor (v * (1. / shift));
1295 return f + ev_floor (v - f);
1296 }
1297
1298 /* special treatment for negative args? */
1299 if (expect_false (v < 0.))
1300 {
1301 ev_tstamp f = -ev_floor (-v);
1302
1303 return f - (f == v ? 0 : 1);
1304 }
1305
1306 /* fits into an unsigned long */
1307 return (unsigned long)v;
1308}
1309
1310#endif
1311
1312/*****************************************************************************/
1313
1314#ifdef __linux
1315# include <sys/utsname.h>
1316#endif
1317
1318static unsigned int noinline ecb_cold
1319ev_linux_version (void)
1320{
1321#ifdef __linux
1322 unsigned int v = 0;
1323 struct utsname buf;
1324 int i;
1325 char *p = buf.release;
1326
1327 if (uname (&buf))
1328 return 0;
1329
1330 for (i = 3+1; --i; )
1331 {
1332 unsigned int c = 0;
1333
1334 for (;;)
1335 {
1336 if (*p >= '0' && *p <= '9')
1337 c = c * 10 + *p++ - '0';
1338 else
1339 {
1340 p += *p == '.';
1341 break;
1342 }
1343 }
1344
1345 v = (v << 8) | c;
1346 }
1347
1348 return v;
1349#else
1350 return 0;
1351#endif
1352}
1353
1354/*****************************************************************************/
1355
1356#if EV_AVOID_STDIO
1357static void noinline ecb_cold
1358ev_printerr (const char *msg)
1359{
1360 write (STDERR_FILENO, msg, strlen (msg));
1361}
1362#endif
1363
369static void (*syserr_cb)(const char *msg); 1364static void (*syserr_cb)(const char *msg) EV_THROW;
370 1365
371void 1366void ecb_cold
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1367ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
373{ 1368{
374 syserr_cb = cb; 1369 syserr_cb = cb;
375} 1370}
376 1371
377static void noinline 1372static void noinline ecb_cold
378syserr (const char *msg) 1373ev_syserr (const char *msg)
379{ 1374{
380 if (!msg) 1375 if (!msg)
381 msg = "(libev) system error"; 1376 msg = "(libev) system error";
382 1377
383 if (syserr_cb) 1378 if (syserr_cb)
384 syserr_cb (msg); 1379 syserr_cb (msg);
385 else 1380 else
386 { 1381 {
1382#if EV_AVOID_STDIO
1383 ev_printerr (msg);
1384 ev_printerr (": ");
1385 ev_printerr (strerror (errno));
1386 ev_printerr ("\n");
1387#else
387 perror (msg); 1388 perror (msg);
1389#endif
388 abort (); 1390 abort ();
389 } 1391 }
390} 1392}
391 1393
392static void * 1394static void *
393ev_realloc_emul (void *ptr, long size) 1395ev_realloc_emul (void *ptr, long size) EV_THROW
394{ 1396{
395 /* some systems, notably openbsd and darwin, fail to properly 1397 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 1398 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 1399 * the single unix specification, so work around them here.
1400 * recently, also (at least) fedora and debian started breaking it,
1401 * despite documenting it otherwise.
398 */ 1402 */
399 1403
400 if (size) 1404 if (size)
401 return realloc (ptr, size); 1405 return realloc (ptr, size);
402 1406
403 free (ptr); 1407 free (ptr);
404 return 0; 1408 return 0;
405} 1409}
406 1410
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1411static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
408 1412
409void 1413void ecb_cold
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 1414ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
411{ 1415{
412 alloc = cb; 1416 alloc = cb;
413} 1417}
414 1418
415inline_speed void * 1419inline_speed void *
417{ 1421{
418 ptr = alloc (ptr, size); 1422 ptr = alloc (ptr, size);
419 1423
420 if (!ptr && size) 1424 if (!ptr && size)
421 { 1425 {
1426#if EV_AVOID_STDIO
1427 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1428#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1429 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1430#endif
423 abort (); 1431 abort ();
424 } 1432 }
425 1433
426 return ptr; 1434 return ptr;
427} 1435}
429#define ev_malloc(size) ev_realloc (0, (size)) 1437#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 1438#define ev_free(ptr) ev_realloc ((ptr), 0)
431 1439
432/*****************************************************************************/ 1440/*****************************************************************************/
433 1441
1442/* set in reify when reification needed */
1443#define EV_ANFD_REIFY 1
1444
1445/* file descriptor info structure */
434typedef struct 1446typedef struct
435{ 1447{
436 WL head; 1448 WL head;
437 unsigned char events; 1449 unsigned char events; /* the events watched for */
1450 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1451 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 1452 unsigned char unused;
1453#if EV_USE_EPOLL
1454 unsigned int egen; /* generation counter to counter epoll bugs */
1455#endif
439#if EV_SELECT_IS_WINSOCKET 1456#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 1457 SOCKET handle;
441#endif 1458#endif
1459#if EV_USE_IOCP
1460 OVERLAPPED or, ow;
1461#endif
442} ANFD; 1462} ANFD;
443 1463
1464/* stores the pending event set for a given watcher */
444typedef struct 1465typedef struct
445{ 1466{
446 W w; 1467 W w;
447 int events; 1468 int events; /* the pending event set for the given watcher */
448} ANPENDING; 1469} ANPENDING;
449 1470
450#if EV_USE_INOTIFY 1471#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 1472/* hash table entry per inotify-id */
452typedef struct 1473typedef struct
455} ANFS; 1476} ANFS;
456#endif 1477#endif
457 1478
458/* Heap Entry */ 1479/* Heap Entry */
459#if EV_HEAP_CACHE_AT 1480#if EV_HEAP_CACHE_AT
1481 /* a heap element */
460 typedef struct { 1482 typedef struct {
461 ev_tstamp at; 1483 ev_tstamp at;
462 WT w; 1484 WT w;
463 } ANHE; 1485 } ANHE;
464 1486
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1487 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1488 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1489 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 1490#else
1491 /* a heap element */
469 typedef WT ANHE; 1492 typedef WT ANHE;
470 1493
471 #define ANHE_w(he) (he) 1494 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 1495 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 1496 #define ANHE_at_cache(he)
484 #undef VAR 1507 #undef VAR
485 }; 1508 };
486 #include "ev_wrap.h" 1509 #include "ev_wrap.h"
487 1510
488 static struct ev_loop default_loop_struct; 1511 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 1512 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 1513
491#else 1514#else
492 1515
493 ev_tstamp ev_rt_now; 1516 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 1517 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 1518 #include "ev_vars.h"
496 #undef VAR 1519 #undef VAR
497 1520
498 static int ev_default_loop_ptr; 1521 static int ev_default_loop_ptr;
499 1522
500#endif 1523#endif
501 1524
1525#if EV_FEATURE_API
1526# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1527# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1528# define EV_INVOKE_PENDING invoke_cb (EV_A)
1529#else
1530# define EV_RELEASE_CB (void)0
1531# define EV_ACQUIRE_CB (void)0
1532# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1533#endif
1534
1535#define EVBREAK_RECURSE 0x80
1536
502/*****************************************************************************/ 1537/*****************************************************************************/
503 1538
1539#ifndef EV_HAVE_EV_TIME
504ev_tstamp 1540ev_tstamp
505ev_time (void) 1541ev_time (void) EV_THROW
506{ 1542{
507#if EV_USE_REALTIME 1543#if EV_USE_REALTIME
1544 if (expect_true (have_realtime))
1545 {
508 struct timespec ts; 1546 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 1547 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 1548 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 1549 }
1550#endif
1551
512 struct timeval tv; 1552 struct timeval tv;
513 gettimeofday (&tv, 0); 1553 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 1554 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 1555}
1556#endif
517 1557
518ev_tstamp inline_size 1558inline_size ev_tstamp
519get_clock (void) 1559get_clock (void)
520{ 1560{
521#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 1562 if (expect_true (have_monotonic))
523 { 1563 {
530 return ev_time (); 1570 return ev_time ();
531} 1571}
532 1572
533#if EV_MULTIPLICITY 1573#if EV_MULTIPLICITY
534ev_tstamp 1574ev_tstamp
535ev_now (EV_P) 1575ev_now (EV_P) EV_THROW
536{ 1576{
537 return ev_rt_now; 1577 return ev_rt_now;
538} 1578}
539#endif 1579#endif
540 1580
541void 1581void
542ev_sleep (ev_tstamp delay) 1582ev_sleep (ev_tstamp delay) EV_THROW
543{ 1583{
544 if (delay > 0.) 1584 if (delay > 0.)
545 { 1585 {
546#if EV_USE_NANOSLEEP 1586#if EV_USE_NANOSLEEP
547 struct timespec ts; 1587 struct timespec ts;
548 1588
549 ts.tv_sec = (time_t)delay; 1589 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 1590 nanosleep (&ts, 0);
553#elif defined(_WIN32) 1591#elif defined _WIN32
554 Sleep ((unsigned long)(delay * 1e3)); 1592 Sleep ((unsigned long)(delay * 1e3));
555#else 1593#else
556 struct timeval tv; 1594 struct timeval tv;
557 1595
558 tv.tv_sec = (time_t)delay; 1596 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1597 /* something not guaranteed by newer posix versions, but guaranteed */
560 1598 /* by older ones */
1599 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 1600 select (0, 0, 0, 0, &tv);
562#endif 1601#endif
563 } 1602 }
564} 1603}
565 1604
566/*****************************************************************************/ 1605/*****************************************************************************/
567 1606
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1607#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 1608
570int inline_size 1609/* find a suitable new size for the given array, */
1610/* hopefully by rounding to a nice-to-malloc size */
1611inline_size int
571array_nextsize (int elem, int cur, int cnt) 1612array_nextsize (int elem, int cur, int cnt)
572{ 1613{
573 int ncur = cur + 1; 1614 int ncur = cur + 1;
574 1615
575 do 1616 do
576 ncur <<= 1; 1617 ncur <<= 1;
577 while (cnt > ncur); 1618 while (cnt > ncur);
578 1619
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1620 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1621 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 1622 {
582 ncur *= elem; 1623 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1624 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 1625 ncur = ncur - sizeof (void *) * 4;
586 } 1627 }
587 1628
588 return ncur; 1629 return ncur;
589} 1630}
590 1631
591static noinline void * 1632static void * noinline ecb_cold
592array_realloc (int elem, void *base, int *cur, int cnt) 1633array_realloc (int elem, void *base, int *cur, int cnt)
593{ 1634{
594 *cur = array_nextsize (elem, *cur, cnt); 1635 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 1636 return ev_realloc (base, elem * *cur);
596} 1637}
1638
1639#define array_init_zero(base,count) \
1640 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 1641
598#define array_needsize(type,base,cur,cnt,init) \ 1642#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 1643 if (expect_false ((cnt) > (cur))) \
600 { \ 1644 { \
601 int ocur_ = (cur); \ 1645 int ecb_unused ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 1646 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 1647 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 1648 init ((base) + (ocur_), (cur) - ocur_); \
605 } 1649 }
606 1650
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1657 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 1658 }
615#endif 1659#endif
616 1660
617#define array_free(stem, idx) \ 1661#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1662 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 1663
620/*****************************************************************************/ 1664/*****************************************************************************/
621 1665
1666/* dummy callback for pending events */
1667static void noinline
1668pendingcb (EV_P_ ev_prepare *w, int revents)
1669{
1670}
1671
622void noinline 1672void noinline
623ev_feed_event (EV_P_ void *w, int revents) 1673ev_feed_event (EV_P_ void *w, int revents) EV_THROW
624{ 1674{
625 W w_ = (W)w; 1675 W w_ = (W)w;
626 int pri = ABSPRI (w_); 1676 int pri = ABSPRI (w_);
627 1677
628 if (expect_false (w_->pending)) 1678 if (expect_false (w_->pending))
632 w_->pending = ++pendingcnt [pri]; 1682 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1683 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_; 1684 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 1685 pendings [pri][w_->pending - 1].events = revents;
636 } 1686 }
637}
638 1687
639void inline_speed 1688 pendingpri = NUMPRI - 1;
1689}
1690
1691inline_speed void
1692feed_reverse (EV_P_ W w)
1693{
1694 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1695 rfeeds [rfeedcnt++] = w;
1696}
1697
1698inline_size void
1699feed_reverse_done (EV_P_ int revents)
1700{
1701 do
1702 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1703 while (rfeedcnt);
1704}
1705
1706inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 1707queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 1708{
642 int i; 1709 int i;
643 1710
644 for (i = 0; i < eventcnt; ++i) 1711 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 1712 ev_feed_event (EV_A_ events [i], type);
646} 1713}
647 1714
648/*****************************************************************************/ 1715/*****************************************************************************/
649 1716
650void inline_size 1717inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 1718fd_event_nocheck (EV_P_ int fd, int revents)
665{ 1719{
666 ANFD *anfd = anfds + fd; 1720 ANFD *anfd = anfds + fd;
667 ev_io *w; 1721 ev_io *w;
668 1722
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1723 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 1727 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 1728 ev_feed_event (EV_A_ (W)w, ev);
675 } 1729 }
676} 1730}
677 1731
1732/* do not submit kernel events for fds that have reify set */
1733/* because that means they changed while we were polling for new events */
1734inline_speed void
1735fd_event (EV_P_ int fd, int revents)
1736{
1737 ANFD *anfd = anfds + fd;
1738
1739 if (expect_true (!anfd->reify))
1740 fd_event_nocheck (EV_A_ fd, revents);
1741}
1742
678void 1743void
679ev_feed_fd_event (EV_P_ int fd, int revents) 1744ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
680{ 1745{
681 if (fd >= 0 && fd < anfdmax) 1746 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 1747 fd_event_nocheck (EV_A_ fd, revents);
683} 1748}
684 1749
685void inline_size 1750/* make sure the external fd watch events are in-sync */
1751/* with the kernel/libev internal state */
1752inline_size void
686fd_reify (EV_P) 1753fd_reify (EV_P)
687{ 1754{
688 int i; 1755 int i;
1756
1757#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1758 for (i = 0; i < fdchangecnt; ++i)
1759 {
1760 int fd = fdchanges [i];
1761 ANFD *anfd = anfds + fd;
1762
1763 if (anfd->reify & EV__IOFDSET && anfd->head)
1764 {
1765 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1766
1767 if (handle != anfd->handle)
1768 {
1769 unsigned long arg;
1770
1771 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1772
1773 /* handle changed, but fd didn't - we need to do it in two steps */
1774 backend_modify (EV_A_ fd, anfd->events, 0);
1775 anfd->events = 0;
1776 anfd->handle = handle;
1777 }
1778 }
1779 }
1780#endif
689 1781
690 for (i = 0; i < fdchangecnt; ++i) 1782 for (i = 0; i < fdchangecnt; ++i)
691 { 1783 {
692 int fd = fdchanges [i]; 1784 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 1785 ANFD *anfd = anfds + fd;
694 ev_io *w; 1786 ev_io *w;
695 1787
696 unsigned char events = 0; 1788 unsigned char o_events = anfd->events;
1789 unsigned char o_reify = anfd->reify;
697 1790
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1791 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 1792
701#if EV_SELECT_IS_WINSOCKET 1793 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 1794 {
704 unsigned long argp; 1795 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 1796
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1797 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 1798 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 1799
709 #endif 1800 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1801 o_reify = EV__IOFDSET; /* actually |= */
711 } 1802 }
712#endif
713 1803
714 { 1804 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 1805 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 1806 }
725 1807
726 fdchangecnt = 0; 1808 fdchangecnt = 0;
727} 1809}
728 1810
729void inline_size 1811/* something about the given fd changed */
1812inline_size void
730fd_change (EV_P_ int fd, int flags) 1813fd_change (EV_P_ int fd, int flags)
731{ 1814{
732 unsigned char reify = anfds [fd].reify; 1815 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1816 anfds [fd].reify |= flags;
734 1817
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1821 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1822 fdchanges [fdchangecnt - 1] = fd;
740 } 1823 }
741} 1824}
742 1825
743void inline_speed 1826/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1827inline_speed void ecb_cold
744fd_kill (EV_P_ int fd) 1828fd_kill (EV_P_ int fd)
745{ 1829{
746 ev_io *w; 1830 ev_io *w;
747 1831
748 while ((w = (ev_io *)anfds [fd].head)) 1832 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1834 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1835 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1836 }
753} 1837}
754 1838
755int inline_size 1839/* check whether the given fd is actually valid, for error recovery */
1840inline_size int ecb_cold
756fd_valid (int fd) 1841fd_valid (int fd)
757{ 1842{
758#ifdef _WIN32 1843#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1844 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1845#else
761 return fcntl (fd, F_GETFD) != -1; 1846 return fcntl (fd, F_GETFD) != -1;
762#endif 1847#endif
763} 1848}
764 1849
765/* called on EBADF to verify fds */ 1850/* called on EBADF to verify fds */
766static void noinline 1851static void noinline ecb_cold
767fd_ebadf (EV_P) 1852fd_ebadf (EV_P)
768{ 1853{
769 int fd; 1854 int fd;
770 1855
771 for (fd = 0; fd < anfdmax; ++fd) 1856 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1857 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1858 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1859 fd_kill (EV_A_ fd);
775} 1860}
776 1861
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1862/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1863static void noinline ecb_cold
779fd_enomem (EV_P) 1864fd_enomem (EV_P)
780{ 1865{
781 int fd; 1866 int fd;
782 1867
783 for (fd = anfdmax; fd--; ) 1868 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1869 if (anfds [fd].events)
785 { 1870 {
786 fd_kill (EV_A_ fd); 1871 fd_kill (EV_A_ fd);
787 return; 1872 break;
788 } 1873 }
789} 1874}
790 1875
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1876/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1877static void noinline
796 1881
797 for (fd = 0; fd < anfdmax; ++fd) 1882 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1883 if (anfds [fd].events)
799 { 1884 {
800 anfds [fd].events = 0; 1885 anfds [fd].events = 0;
1886 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1887 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1888 }
803} 1889}
804 1890
1891/* used to prepare libev internal fd's */
1892/* this is not fork-safe */
1893inline_speed void
1894fd_intern (int fd)
1895{
1896#ifdef _WIN32
1897 unsigned long arg = 1;
1898 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1899#else
1900 fcntl (fd, F_SETFD, FD_CLOEXEC);
1901 fcntl (fd, F_SETFL, O_NONBLOCK);
1902#endif
1903}
1904
805/*****************************************************************************/ 1905/*****************************************************************************/
806 1906
807/* 1907/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1908 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1909 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1910 * the branching factor of the d-tree.
811 */ 1911 */
812 1912
813/* 1913/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1922#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1923#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1924#define UPHEAP_DONE(p,k) ((p) == (k))
825 1925
826/* away from the root */ 1926/* away from the root */
827void inline_speed 1927inline_speed void
828downheap (ANHE *heap, int N, int k) 1928downheap (ANHE *heap, int N, int k)
829{ 1929{
830 ANHE he = heap [k]; 1930 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1931 ANHE *E = heap + N + HEAP0;
832 1932
872#define HEAP0 1 1972#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1973#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1974#define UPHEAP_DONE(p,k) (!(p))
875 1975
876/* away from the root */ 1976/* away from the root */
877void inline_speed 1977inline_speed void
878downheap (ANHE *heap, int N, int k) 1978downheap (ANHE *heap, int N, int k)
879{ 1979{
880 ANHE he = heap [k]; 1980 ANHE he = heap [k];
881 1981
882 for (;;) 1982 for (;;)
883 { 1983 {
884 int c = k << 1; 1984 int c = k << 1;
885 1985
886 if (c > N + HEAP0 - 1) 1986 if (c >= N + HEAP0)
887 break; 1987 break;
888 1988
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1989 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1990 ? 1 : 0;
891 1991
902 ev_active (ANHE_w (he)) = k; 2002 ev_active (ANHE_w (he)) = k;
903} 2003}
904#endif 2004#endif
905 2005
906/* towards the root */ 2006/* towards the root */
907void inline_speed 2007inline_speed void
908upheap (ANHE *heap, int k) 2008upheap (ANHE *heap, int k)
909{ 2009{
910 ANHE he = heap [k]; 2010 ANHE he = heap [k];
911 2011
912 for (;;) 2012 for (;;)
923 2023
924 heap [k] = he; 2024 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 2025 ev_active (ANHE_w (he)) = k;
926} 2026}
927 2027
928void inline_size 2028/* move an element suitably so it is in a correct place */
2029inline_size void
929adjustheap (ANHE *heap, int N, int k) 2030adjustheap (ANHE *heap, int N, int k)
930{ 2031{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2032 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 2033 upheap (heap, k);
933 else 2034 else
934 downheap (heap, N, k); 2035 downheap (heap, N, k);
935} 2036}
936 2037
937/* rebuild the heap: this function is used only once and executed rarely */ 2038/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 2039inline_size void
939reheap (ANHE *heap, int N) 2040reheap (ANHE *heap, int N)
940{ 2041{
941 int i; 2042 int i;
2043
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2044 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 2045 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i) 2046 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0); 2047 upheap (heap, i + HEAP0);
946} 2048}
947 2049
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/ 2050/*****************************************************************************/
964 2051
2052/* associate signal watchers to a signal signal */
965typedef struct 2053typedef struct
966{ 2054{
2055 EV_ATOMIC_T pending;
2056#if EV_MULTIPLICITY
2057 EV_P;
2058#endif
967 WL head; 2059 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG; 2060} ANSIG;
970 2061
971static ANSIG *signals; 2062static ANSIG signals [EV_NSIG - 1];
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975
976void inline_size
977signals_init (ANSIG *base, int count)
978{
979 while (count--)
980 {
981 base->head = 0;
982 base->gotsig = 0;
983
984 ++base;
985 }
986}
987 2063
988/*****************************************************************************/ 2064/*****************************************************************************/
989 2065
990void inline_speed 2066#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001 2067
1002static void noinline 2068static void noinline ecb_cold
1003evpipe_init (EV_P) 2069evpipe_init (EV_P)
1004{ 2070{
1005 if (!ev_is_active (&pipeev)) 2071 if (!ev_is_active (&pipe_w))
2072 {
2073 int fds [2];
2074
2075# if EV_USE_EVENTFD
2076 fds [0] = -1;
2077 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2078 if (fds [1] < 0 && errno == EINVAL)
2079 fds [1] = eventfd (0, 0);
2080
2081 if (fds [1] < 0)
2082# endif
2083 {
2084 while (pipe (fds))
2085 ev_syserr ("(libev) error creating signal/async pipe");
2086
2087 fd_intern (fds [0]);
2088 }
2089
2090 fd_intern (fds [1]);
2091
2092 evpipe [0] = fds [0];
2093
2094 if (evpipe [1] < 0)
2095 evpipe [1] = fds [1]; /* first call, set write fd */
2096 else
2097 {
2098 /* on subsequent calls, do not change evpipe [1] */
2099 /* so that evpipe_write can always rely on its value. */
2100 /* this branch does not do anything sensible on windows, */
2101 /* so must not be executed on windows */
2102
2103 dup2 (fds [1], evpipe [1]);
2104 close (fds [1]);
2105 }
2106
2107 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2108 ev_io_start (EV_A_ &pipe_w);
2109 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 { 2110 }
2111}
2112
2113inline_speed void
2114evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2115{
2116 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2117
2118 if (expect_true (*flag))
2119 return;
2120
2121 *flag = 1;
2122 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2123
2124 pipe_write_skipped = 1;
2125
2126 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2127
2128 if (pipe_write_wanted)
2129 {
2130 int old_errno;
2131
2132 pipe_write_skipped = 0;
2133 ECB_MEMORY_FENCE_RELEASE;
2134
2135 old_errno = errno; /* save errno because write will clobber it */
2136
1007#if EV_USE_EVENTFD 2137#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0) 2138 if (evpipe [0] < 0)
1009 { 2139 {
1010 evpipe [0] = -1; 2140 uint64_t counter = 1;
1011 fd_intern (evfd); 2141 write (evpipe [1], &counter, sizeof (uint64_t));
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 } 2142 }
1014 else 2143 else
1015#endif 2144#endif
1016 { 2145 {
1017 while (pipe (evpipe)) 2146#ifdef _WIN32
1018 syserr ("(libev) error creating signal/async pipe"); 2147 WSABUF buf;
1019 2148 DWORD sent;
1020 fd_intern (evpipe [0]); 2149 buf.buf = &buf;
1021 fd_intern (evpipe [1]); 2150 buf.len = 1;
1022 ev_io_set (&pipeev, evpipe [0], EV_READ); 2151 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2152#else
2153 write (evpipe [1], &(evpipe [1]), 1);
2154#endif
1023 } 2155 }
1024 2156
1025 ev_io_start (EV_A_ &pipeev); 2157 errno = old_errno;
1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 { 2158 }
1035 int old_errno = errno; /* save errno because write might clobber it */ 2159}
1036 2160
1037 *flag = 1; 2161/* called whenever the libev signal pipe */
2162/* got some events (signal, async) */
2163static void
2164pipecb (EV_P_ ev_io *iow, int revents)
2165{
2166 int i;
1038 2167
2168 if (revents & EV_READ)
2169 {
1039#if EV_USE_EVENTFD 2170#if EV_USE_EVENTFD
1040 if (evfd >= 0) 2171 if (evpipe [0] < 0)
1041 { 2172 {
1042 uint64_t counter = 1; 2173 uint64_t counter;
1043 write (evfd, &counter, sizeof (uint64_t)); 2174 read (evpipe [1], &counter, sizeof (uint64_t));
1044 } 2175 }
1045 else 2176 else
1046#endif 2177#endif
1047 write (evpipe [1], &old_errno, 1); 2178 {
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy; 2179 char dummy[4];
2180#ifdef _WIN32
2181 WSABUF buf;
2182 DWORD recvd;
2183 DWORD flags = 0;
2184 buf.buf = dummy;
2185 buf.len = sizeof (dummy);
2186 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2187#else
1066 read (evpipe [0], &dummy, 1); 2188 read (evpipe [0], &dummy, sizeof (dummy));
2189#endif
2190 }
2191 }
2192
2193 pipe_write_skipped = 0;
2194
2195 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2196
2197#if EV_SIGNAL_ENABLE
2198 if (sig_pending)
1067 } 2199 {
2200 sig_pending = 0;
1068 2201
1069 if (gotsig && ev_is_default_loop (EV_A)) 2202 ECB_MEMORY_FENCE;
1070 {
1071 int signum;
1072 gotsig = 0;
1073 2203
1074 for (signum = signalmax; signum--; ) 2204 for (i = EV_NSIG - 1; i--; )
1075 if (signals [signum].gotsig) 2205 if (expect_false (signals [i].pending))
1076 ev_feed_signal_event (EV_A_ signum + 1); 2206 ev_feed_signal_event (EV_A_ i + 1);
1077 } 2207 }
2208#endif
1078 2209
1079#if EV_ASYNC_ENABLE 2210#if EV_ASYNC_ENABLE
1080 if (gotasync) 2211 if (async_pending)
1081 { 2212 {
1082 int i; 2213 async_pending = 0;
1083 gotasync = 0; 2214
2215 ECB_MEMORY_FENCE;
1084 2216
1085 for (i = asynccnt; i--; ) 2217 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent) 2218 if (asyncs [i]->sent)
1087 { 2219 {
1088 asyncs [i]->sent = 0; 2220 asyncs [i]->sent = 0;
2221 ECB_MEMORY_FENCE_RELEASE;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 } 2223 }
1091 } 2224 }
1092#endif 2225#endif
1093} 2226}
1094 2227
1095/*****************************************************************************/ 2228/*****************************************************************************/
1096 2229
2230void
2231ev_feed_signal (int signum) EV_THROW
2232{
2233#if EV_MULTIPLICITY
2234 ECB_MEMORY_FENCE_ACQUIRE;
2235 EV_P = signals [signum - 1].loop;
2236
2237 if (!EV_A)
2238 return;
2239#endif
2240
2241 signals [signum - 1].pending = 1;
2242 evpipe_write (EV_A_ &sig_pending);
2243}
2244
1097static void 2245static void
1098ev_sighandler (int signum) 2246ev_sighandler (int signum)
1099{ 2247{
2248#ifdef _WIN32
2249 signal (signum, ev_sighandler);
2250#endif
2251
2252 ev_feed_signal (signum);
2253}
2254
2255void noinline
2256ev_feed_signal_event (EV_P_ int signum) EV_THROW
2257{
2258 WL w;
2259
2260 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2261 return;
2262
2263 --signum;
2264
1100#if EV_MULTIPLICITY 2265#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct; 2266 /* it is permissible to try to feed a signal to the wrong loop */
1102#endif 2267 /* or, likely more useful, feeding a signal nobody is waiting for */
1103 2268
1104#if _WIN32 2269 if (expect_false (signals [signum].loop != EV_A))
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return; 2270 return;
2271#endif
1125 2272
1126 signals [signum].gotsig = 0; 2273 signals [signum].pending = 0;
2274 ECB_MEMORY_FENCE_RELEASE;
1127 2275
1128 for (w = signals [signum].head; w; w = w->next) 2276 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2277 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130} 2278}
1131 2279
2280#if EV_USE_SIGNALFD
2281static void
2282sigfdcb (EV_P_ ev_io *iow, int revents)
2283{
2284 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2285
2286 for (;;)
2287 {
2288 ssize_t res = read (sigfd, si, sizeof (si));
2289
2290 /* not ISO-C, as res might be -1, but works with SuS */
2291 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2292 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2293
2294 if (res < (ssize_t)sizeof (si))
2295 break;
2296 }
2297}
2298#endif
2299
2300#endif
2301
1132/*****************************************************************************/ 2302/*****************************************************************************/
1133 2303
2304#if EV_CHILD_ENABLE
1134static WL childs [EV_PID_HASHSIZE]; 2305static WL childs [EV_PID_HASHSIZE];
1135
1136#ifndef _WIN32
1137 2306
1138static ev_signal childev; 2307static ev_signal childev;
1139 2308
1140#ifndef WIFCONTINUED 2309#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0 2310# define WIFCONTINUED(status) 0
1142#endif 2311#endif
1143 2312
1144void inline_speed 2313/* handle a single child status event */
2314inline_speed void
1145child_reap (EV_P_ int chain, int pid, int status) 2315child_reap (EV_P_ int chain, int pid, int status)
1146{ 2316{
1147 ev_child *w; 2317 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2318 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149 2319
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2320 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 { 2321 {
1152 if ((w->pid == pid || !w->pid) 2322 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1))) 2323 && (!traced || (w->flags & 1)))
1154 { 2324 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2325 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1162 2332
1163#ifndef WCONTINUED 2333#ifndef WCONTINUED
1164# define WCONTINUED 0 2334# define WCONTINUED 0
1165#endif 2335#endif
1166 2336
2337/* called on sigchld etc., calls waitpid */
1167static void 2338static void
1168childcb (EV_P_ ev_signal *sw, int revents) 2339childcb (EV_P_ ev_signal *sw, int revents)
1169{ 2340{
1170 int pid, status; 2341 int pid, status;
1171 2342
1179 /* make sure we are called again until all children have been reaped */ 2350 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */ 2351 /* we need to do it this way so that the callback gets called before we continue */
1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2352 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1182 2353
1183 child_reap (EV_A_ pid, pid, status); 2354 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1) 2355 if ((EV_PID_HASHSIZE) > 1)
1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2356 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1186} 2357}
1187 2358
1188#endif 2359#endif
1189 2360
1190/*****************************************************************************/ 2361/*****************************************************************************/
1191 2362
2363#if EV_USE_IOCP
2364# include "ev_iocp.c"
2365#endif
1192#if EV_USE_PORT 2366#if EV_USE_PORT
1193# include "ev_port.c" 2367# include "ev_port.c"
1194#endif 2368#endif
1195#if EV_USE_KQUEUE 2369#if EV_USE_KQUEUE
1196# include "ev_kqueue.c" 2370# include "ev_kqueue.c"
1203#endif 2377#endif
1204#if EV_USE_SELECT 2378#if EV_USE_SELECT
1205# include "ev_select.c" 2379# include "ev_select.c"
1206#endif 2380#endif
1207 2381
1208int 2382int ecb_cold
1209ev_version_major (void) 2383ev_version_major (void) EV_THROW
1210{ 2384{
1211 return EV_VERSION_MAJOR; 2385 return EV_VERSION_MAJOR;
1212} 2386}
1213 2387
1214int 2388int ecb_cold
1215ev_version_minor (void) 2389ev_version_minor (void) EV_THROW
1216{ 2390{
1217 return EV_VERSION_MINOR; 2391 return EV_VERSION_MINOR;
1218} 2392}
1219 2393
1220/* return true if we are running with elevated privileges and should ignore env variables */ 2394/* return true if we are running with elevated privileges and should ignore env variables */
1221int inline_size 2395int inline_size ecb_cold
1222enable_secure (void) 2396enable_secure (void)
1223{ 2397{
1224#ifdef _WIN32 2398#ifdef _WIN32
1225 return 0; 2399 return 0;
1226#else 2400#else
1227 return getuid () != geteuid () 2401 return getuid () != geteuid ()
1228 || getgid () != getegid (); 2402 || getgid () != getegid ();
1229#endif 2403#endif
1230} 2404}
1231 2405
1232unsigned int 2406unsigned int ecb_cold
1233ev_supported_backends (void) 2407ev_supported_backends (void) EV_THROW
1234{ 2408{
1235 unsigned int flags = 0; 2409 unsigned int flags = 0;
1236 2410
1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2411 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2412 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2415 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242 2416
1243 return flags; 2417 return flags;
1244} 2418}
1245 2419
1246unsigned int 2420unsigned int ecb_cold
1247ev_recommended_backends (void) 2421ev_recommended_backends (void) EV_THROW
1248{ 2422{
1249 unsigned int flags = ev_supported_backends (); 2423 unsigned int flags = ev_supported_backends ();
1250 2424
1251#ifndef __NetBSD__ 2425#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */ 2426 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */ 2427 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE; 2428 flags &= ~EVBACKEND_KQUEUE;
1255#endif 2429#endif
1256#ifdef __APPLE__ 2430#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation 2431 /* only select works correctly on that "unix-certified" platform */
1258 flags &= ~EVBACKEND_POLL; 2432 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2433 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2434#endif
2435#ifdef __FreeBSD__
2436 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1259#endif 2437#endif
1260 2438
1261 return flags; 2439 return flags;
1262} 2440}
1263 2441
2442unsigned int ecb_cold
2443ev_embeddable_backends (void) EV_THROW
2444{
2445 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2446
2447 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2448 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2449 flags &= ~EVBACKEND_EPOLL;
2450
2451 return flags;
2452}
2453
1264unsigned int 2454unsigned int
1265ev_embeddable_backends (void) 2455ev_backend (EV_P) EV_THROW
1266{ 2456{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2457 return backend;
1268
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
1274} 2458}
1275 2459
2460#if EV_FEATURE_API
1276unsigned int 2461unsigned int
1277ev_backend (EV_P) 2462ev_iteration (EV_P) EV_THROW
1278{ 2463{
1279 return backend; 2464 return loop_count;
1280} 2465}
1281 2466
1282unsigned int 2467unsigned int
1283ev_loop_count (EV_P) 2468ev_depth (EV_P) EV_THROW
1284{ 2469{
1285 return loop_count; 2470 return loop_depth;
1286} 2471}
1287 2472
1288void 2473void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2474ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2475{
1291 io_blocktime = interval; 2476 io_blocktime = interval;
1292} 2477}
1293 2478
1294void 2479void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2480ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1296{ 2481{
1297 timeout_blocktime = interval; 2482 timeout_blocktime = interval;
1298} 2483}
1299 2484
2485void
2486ev_set_userdata (EV_P_ void *data) EV_THROW
2487{
2488 userdata = data;
2489}
2490
2491void *
2492ev_userdata (EV_P) EV_THROW
2493{
2494 return userdata;
2495}
2496
2497void
2498ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2499{
2500 invoke_cb = invoke_pending_cb;
2501}
2502
2503void
2504ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2505{
2506 release_cb = release;
2507 acquire_cb = acquire;
2508}
2509#endif
2510
2511/* initialise a loop structure, must be zero-initialised */
1300static void noinline 2512static void noinline ecb_cold
1301loop_init (EV_P_ unsigned int flags) 2513loop_init (EV_P_ unsigned int flags) EV_THROW
1302{ 2514{
1303 if (!backend) 2515 if (!backend)
1304 { 2516 {
2517 origflags = flags;
2518
2519#if EV_USE_REALTIME
2520 if (!have_realtime)
2521 {
2522 struct timespec ts;
2523
2524 if (!clock_gettime (CLOCK_REALTIME, &ts))
2525 have_realtime = 1;
2526 }
2527#endif
2528
1305#if EV_USE_MONOTONIC 2529#if EV_USE_MONOTONIC
2530 if (!have_monotonic)
1306 { 2531 {
1307 struct timespec ts; 2532 struct timespec ts;
2533
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2534 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1; 2535 have_monotonic = 1;
1310 } 2536 }
1311#endif
1312
1313 ev_rt_now = ev_time ();
1314 mn_now = get_clock ();
1315 now_floor = mn_now;
1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif 2537#endif
1326 2538
1327 /* pid check not overridable via env */ 2539 /* pid check not overridable via env */
1328#ifndef _WIN32 2540#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK) 2541 if (flags & EVFLAG_FORKCHECK)
1333 if (!(flags & EVFLAG_NOENV) 2545 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure () 2546 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS")) 2547 && getenv ("LIBEV_FLAGS"))
1336 flags = atoi (getenv ("LIBEV_FLAGS")); 2548 flags = atoi (getenv ("LIBEV_FLAGS"));
1337 2549
1338 if (!(flags & 0x0000ffffU)) 2550 ev_rt_now = ev_time ();
2551 mn_now = get_clock ();
2552 now_floor = mn_now;
2553 rtmn_diff = ev_rt_now - mn_now;
2554#if EV_FEATURE_API
2555 invoke_cb = ev_invoke_pending;
2556#endif
2557
2558 io_blocktime = 0.;
2559 timeout_blocktime = 0.;
2560 backend = 0;
2561 backend_fd = -1;
2562 sig_pending = 0;
2563#if EV_ASYNC_ENABLE
2564 async_pending = 0;
2565#endif
2566 pipe_write_skipped = 0;
2567 pipe_write_wanted = 0;
2568 evpipe [0] = -1;
2569 evpipe [1] = -1;
2570#if EV_USE_INOTIFY
2571 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2572#endif
2573#if EV_USE_SIGNALFD
2574 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2575#endif
2576
2577 if (!(flags & EVBACKEND_MASK))
1339 flags |= ev_recommended_backends (); 2578 flags |= ev_recommended_backends ();
1340 2579
2580#if EV_USE_IOCP
2581 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2582#endif
1341#if EV_USE_PORT 2583#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2584 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1343#endif 2585#endif
1344#if EV_USE_KQUEUE 2586#if EV_USE_KQUEUE
1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2587 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1352#endif 2594#endif
1353#if EV_USE_SELECT 2595#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2596 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif 2597#endif
1356 2598
2599 ev_prepare_init (&pending_w, pendingcb);
2600
2601#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1357 ev_init (&pipeev, pipecb); 2602 ev_init (&pipe_w, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI); 2603 ev_set_priority (&pipe_w, EV_MAXPRI);
2604#endif
1359 } 2605 }
1360} 2606}
1361 2607
1362static void noinline 2608/* free up a loop structure */
2609void ecb_cold
1363loop_destroy (EV_P) 2610ev_loop_destroy (EV_P)
1364{ 2611{
1365 int i; 2612 int i;
1366 2613
2614#if EV_MULTIPLICITY
2615 /* mimic free (0) */
2616 if (!EV_A)
2617 return;
2618#endif
2619
2620#if EV_CLEANUP_ENABLE
2621 /* queue cleanup watchers (and execute them) */
2622 if (expect_false (cleanupcnt))
2623 {
2624 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2625 EV_INVOKE_PENDING;
2626 }
2627#endif
2628
2629#if EV_CHILD_ENABLE
2630 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2631 {
2632 ev_ref (EV_A); /* child watcher */
2633 ev_signal_stop (EV_A_ &childev);
2634 }
2635#endif
2636
1367 if (ev_is_active (&pipeev)) 2637 if (ev_is_active (&pipe_w))
1368 { 2638 {
1369 ev_ref (EV_A); /* signal watcher */ 2639 /*ev_ref (EV_A);*/
1370 ev_io_stop (EV_A_ &pipeev); 2640 /*ev_io_stop (EV_A_ &pipe_w);*/
1371 2641
2642 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2643 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2644 }
2645
1372#if EV_USE_EVENTFD 2646#if EV_USE_SIGNALFD
1373 if (evfd >= 0) 2647 if (ev_is_active (&sigfd_w))
1374 close (evfd); 2648 close (sigfd);
1375#endif 2649#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383 2650
1384#if EV_USE_INOTIFY 2651#if EV_USE_INOTIFY
1385 if (fs_fd >= 0) 2652 if (fs_fd >= 0)
1386 close (fs_fd); 2653 close (fs_fd);
1387#endif 2654#endif
1388 2655
1389 if (backend_fd >= 0) 2656 if (backend_fd >= 0)
1390 close (backend_fd); 2657 close (backend_fd);
1391 2658
2659#if EV_USE_IOCP
2660 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2661#endif
1392#if EV_USE_PORT 2662#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2663 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1394#endif 2664#endif
1395#if EV_USE_KQUEUE 2665#if EV_USE_KQUEUE
1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2666 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1411#if EV_IDLE_ENABLE 2681#if EV_IDLE_ENABLE
1412 array_free (idle, [i]); 2682 array_free (idle, [i]);
1413#endif 2683#endif
1414 } 2684 }
1415 2685
1416 ev_free (anfds); anfdmax = 0; 2686 ev_free (anfds); anfds = 0; anfdmax = 0;
1417 2687
1418 /* have to use the microsoft-never-gets-it-right macro */ 2688 /* have to use the microsoft-never-gets-it-right macro */
2689 array_free (rfeed, EMPTY);
1419 array_free (fdchange, EMPTY); 2690 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY); 2691 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY); 2693 array_free (periodic, EMPTY);
1423#endif 2694#endif
1424#if EV_FORK_ENABLE 2695#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY); 2696 array_free (fork, EMPTY);
1426#endif 2697#endif
2698#if EV_CLEANUP_ENABLE
2699 array_free (cleanup, EMPTY);
2700#endif
1427 array_free (prepare, EMPTY); 2701 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY); 2702 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE 2703#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY); 2704 array_free (async, EMPTY);
1431#endif 2705#endif
1432 2706
1433 backend = 0; 2707 backend = 0;
2708
2709#if EV_MULTIPLICITY
2710 if (ev_is_default_loop (EV_A))
2711#endif
2712 ev_default_loop_ptr = 0;
2713#if EV_MULTIPLICITY
2714 else
2715 ev_free (EV_A);
2716#endif
1434} 2717}
1435 2718
1436#if EV_USE_INOTIFY 2719#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P); 2720inline_size void infy_fork (EV_P);
1438#endif 2721#endif
1439 2722
1440void inline_size 2723inline_size void
1441loop_fork (EV_P) 2724loop_fork (EV_P)
1442{ 2725{
1443#if EV_USE_PORT 2726#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif 2728#endif
1451#endif 2734#endif
1452#if EV_USE_INOTIFY 2735#if EV_USE_INOTIFY
1453 infy_fork (EV_A); 2736 infy_fork (EV_A);
1454#endif 2737#endif
1455 2738
2739#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1456 if (ev_is_active (&pipeev)) 2740 if (ev_is_active (&pipe_w))
1457 { 2741 {
1458 /* this "locks" the handlers against writing to the pipe */ 2742 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1464 2743
1465 ev_ref (EV_A); 2744 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev); 2745 ev_io_stop (EV_A_ &pipe_w);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472 2746
1473 if (evpipe [0] >= 0) 2747 if (evpipe [0] >= 0)
1474 { 2748 EV_WIN32_CLOSE_FD (evpipe [0]);
1475 close (evpipe [0]);
1476 close (evpipe [1]);
1477 }
1478 2749
1479 evpipe_init (EV_A); 2750 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */ 2751 /* iterate over everything, in case we missed something before */
1481 pipecb (EV_A_ &pipeev, EV_READ); 2752 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1482 } 2753 }
2754#endif
1483 2755
1484 postfork = 0; 2756 postfork = 0;
1485} 2757}
1486 2758
1487#if EV_MULTIPLICITY 2759#if EV_MULTIPLICITY
1488 2760
1489struct ev_loop * 2761struct ev_loop * ecb_cold
1490ev_loop_new (unsigned int flags) 2762ev_loop_new (unsigned int flags) EV_THROW
1491{ 2763{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2764 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493 2765
1494 memset (loop, 0, sizeof (struct ev_loop)); 2766 memset (EV_A, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags); 2767 loop_init (EV_A_ flags);
1497 2768
1498 if (ev_backend (EV_A)) 2769 if (ev_backend (EV_A))
1499 return loop; 2770 return EV_A;
1500 2771
2772 ev_free (EV_A);
1501 return 0; 2773 return 0;
1502} 2774}
1503 2775
1504void 2776#endif /* multiplicity */
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516 2777
1517#if EV_VERIFY 2778#if EV_VERIFY
1518static void 2779static void noinline ecb_cold
2780verify_watcher (EV_P_ W w)
2781{
2782 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2783
2784 if (w->pending)
2785 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2786}
2787
2788static void noinline ecb_cold
2789verify_heap (EV_P_ ANHE *heap, int N)
2790{
2791 int i;
2792
2793 for (i = HEAP0; i < N + HEAP0; ++i)
2794 {
2795 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2796 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2797 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2798
2799 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2800 }
2801}
2802
2803static void noinline ecb_cold
1519array_check (W **ws, int cnt) 2804array_verify (EV_P_ W *ws, int cnt)
1520{ 2805{
1521 while (cnt--) 2806 while (cnt--)
2807 {
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2808 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2809 verify_watcher (EV_A_ ws [cnt]);
2810 }
1523} 2811}
1524#endif 2812#endif
1525 2813
1526void 2814#if EV_FEATURE_API
1527ev_loop_verify (EV_P) 2815void ecb_cold
2816ev_verify (EV_P) EV_THROW
1528{ 2817{
1529#if EV_VERIFY 2818#if EV_VERIFY
1530 int i; 2819 int i;
2820 WL w, w2;
1531 2821
2822 assert (activecnt >= -1);
2823
2824 assert (fdchangemax >= fdchangecnt);
2825 for (i = 0; i < fdchangecnt; ++i)
2826 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2827
2828 assert (anfdmax >= 0);
2829 for (i = 0; i < anfdmax; ++i)
2830 {
2831 int j = 0;
2832
2833 for (w = w2 = anfds [i].head; w; w = w->next)
2834 {
2835 verify_watcher (EV_A_ (W)w);
2836
2837 if (j++ & 1)
2838 {
2839 assert (("libev: io watcher list contains a loop", w != w2));
2840 w2 = w2->next;
2841 }
2842
2843 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2844 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2845 }
2846 }
2847
2848 assert (timermax >= timercnt);
1532 checkheap (timers, timercnt); 2849 verify_heap (EV_A_ timers, timercnt);
2850
1533#if EV_PERIODIC_ENABLE 2851#if EV_PERIODIC_ENABLE
2852 assert (periodicmax >= periodiccnt);
1534 checkheap (periodics, periodiccnt); 2853 verify_heap (EV_A_ periodics, periodiccnt);
1535#endif 2854#endif
1536 2855
2856 for (i = NUMPRI; i--; )
2857 {
2858 assert (pendingmax [i] >= pendingcnt [i]);
1537#if EV_IDLE_ENABLE 2859#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; ) 2860 assert (idleall >= 0);
2861 assert (idlemax [i] >= idlecnt [i]);
1539 array_check ((W **)idles [i], idlecnt [i]); 2862 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1540#endif 2863#endif
2864 }
2865
1541#if EV_FORK_ENABLE 2866#if EV_FORK_ENABLE
2867 assert (forkmax >= forkcnt);
1542 array_check ((W **)forks, forkcnt); 2868 array_verify (EV_A_ (W *)forks, forkcnt);
1543#endif 2869#endif
2870
2871#if EV_CLEANUP_ENABLE
2872 assert (cleanupmax >= cleanupcnt);
2873 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2874#endif
2875
1544#if EV_ASYNC_ENABLE 2876#if EV_ASYNC_ENABLE
2877 assert (asyncmax >= asynccnt);
1545 array_check ((W **)asyncs, asynccnt); 2878 array_verify (EV_A_ (W *)asyncs, asynccnt);
2879#endif
2880
2881#if EV_PREPARE_ENABLE
2882 assert (preparemax >= preparecnt);
2883 array_verify (EV_A_ (W *)prepares, preparecnt);
2884#endif
2885
2886#if EV_CHECK_ENABLE
2887 assert (checkmax >= checkcnt);
2888 array_verify (EV_A_ (W *)checks, checkcnt);
2889#endif
2890
2891# if 0
2892#if EV_CHILD_ENABLE
2893 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2894 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2895#endif
1546#endif 2896# endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif 2897#endif
1550} 2898}
1551 2899#endif
1552#endif /* multiplicity */
1553 2900
1554#if EV_MULTIPLICITY 2901#if EV_MULTIPLICITY
1555struct ev_loop * 2902struct ev_loop * ecb_cold
1556ev_default_loop_init (unsigned int flags)
1557#else 2903#else
1558int 2904int
2905#endif
1559ev_default_loop (unsigned int flags) 2906ev_default_loop (unsigned int flags) EV_THROW
1560#endif
1561{ 2907{
1562 if (!ev_default_loop_ptr) 2908 if (!ev_default_loop_ptr)
1563 { 2909 {
1564#if EV_MULTIPLICITY 2910#if EV_MULTIPLICITY
1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2911 EV_P = ev_default_loop_ptr = &default_loop_struct;
1566#else 2912#else
1567 ev_default_loop_ptr = 1; 2913 ev_default_loop_ptr = 1;
1568#endif 2914#endif
1569 2915
1570 loop_init (EV_A_ flags); 2916 loop_init (EV_A_ flags);
1571 2917
1572 if (ev_backend (EV_A)) 2918 if (ev_backend (EV_A))
1573 { 2919 {
1574#ifndef _WIN32 2920#if EV_CHILD_ENABLE
1575 ev_signal_init (&childev, childcb, SIGCHLD); 2921 ev_signal_init (&childev, childcb, SIGCHLD);
1576 ev_set_priority (&childev, EV_MAXPRI); 2922 ev_set_priority (&childev, EV_MAXPRI);
1577 ev_signal_start (EV_A_ &childev); 2923 ev_signal_start (EV_A_ &childev);
1578 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2924 ev_unref (EV_A); /* child watcher should not keep loop alive */
1579#endif 2925#endif
1584 2930
1585 return ev_default_loop_ptr; 2931 return ev_default_loop_ptr;
1586} 2932}
1587 2933
1588void 2934void
1589ev_default_destroy (void) 2935ev_loop_fork (EV_P) EV_THROW
1590{ 2936{
1591#if EV_MULTIPLICITY 2937 postfork = 1;
1592 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif
1594
1595#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev);
1598#endif
1599
1600 loop_destroy (EV_A);
1601}
1602
1603void
1604ev_default_fork (void)
1605{
1606#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif
1609
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */
1612} 2938}
1613 2939
1614/*****************************************************************************/ 2940/*****************************************************************************/
1615 2941
1616void 2942void
1617ev_invoke (EV_P_ void *w, int revents) 2943ev_invoke (EV_P_ void *w, int revents)
1618{ 2944{
1619 EV_CB_INVOKE ((W)w, revents); 2945 EV_CB_INVOKE ((W)w, revents);
1620} 2946}
1621 2947
1622void inline_speed 2948unsigned int
1623call_pending (EV_P) 2949ev_pending_count (EV_P) EV_THROW
1624{ 2950{
1625 int pri; 2951 int pri;
2952 unsigned int count = 0;
1626 2953
1627 for (pri = NUMPRI; pri--; ) 2954 for (pri = NUMPRI; pri--; )
2955 count += pendingcnt [pri];
2956
2957 return count;
2958}
2959
2960void noinline
2961ev_invoke_pending (EV_P)
2962{
2963 pendingpri = NUMPRI;
2964
2965 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2966 {
2967 --pendingpri;
2968
1628 while (pendingcnt [pri]) 2969 while (pendingcnt [pendingpri])
1629 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1631
1632 if (expect_true (p->w))
1633 { 2970 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2971 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1635 2972
1636 p->w->pending = 0; 2973 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 2974 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK; 2975 EV_FREQUENT_CHECK;
1639 } 2976 }
1640 } 2977 }
1641} 2978}
1642 2979
1643#if EV_IDLE_ENABLE 2980#if EV_IDLE_ENABLE
1644void inline_size 2981/* make idle watchers pending. this handles the "call-idle */
2982/* only when higher priorities are idle" logic */
2983inline_size void
1645idle_reify (EV_P) 2984idle_reify (EV_P)
1646{ 2985{
1647 if (expect_false (idleall)) 2986 if (expect_false (idleall))
1648 { 2987 {
1649 int pri; 2988 int pri;
1661 } 3000 }
1662 } 3001 }
1663} 3002}
1664#endif 3003#endif
1665 3004
1666void inline_size 3005/* make timers pending */
3006inline_size void
1667timers_reify (EV_P) 3007timers_reify (EV_P)
1668{ 3008{
1669 EV_FREQUENT_CHECK; 3009 EV_FREQUENT_CHECK;
1670 3010
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3011 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 { 3012 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3013 do
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 { 3014 {
3015 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3016
3017 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3018
3019 /* first reschedule or stop timer */
3020 if (w->repeat)
3021 {
1680 ev_at (w) += w->repeat; 3022 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now) 3023 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now; 3024 ev_at (w) = mn_now;
1683 3025
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3026 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685 3027
1686 ANHE_at_cache (timers [HEAP0]); 3028 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0); 3029 downheap (timers, timercnt, HEAP0);
3030 }
3031 else
3032 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3033
3034 EV_FREQUENT_CHECK;
3035 feed_reverse (EV_A_ (W)w);
1688 } 3036 }
1689 else 3037 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691 3038
1692 EV_FREQUENT_CHECK; 3039 feed_reverse_done (EV_A_ EV_TIMER);
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 } 3040 }
1695} 3041}
1696 3042
1697#if EV_PERIODIC_ENABLE 3043#if EV_PERIODIC_ENABLE
1698void inline_size 3044
3045static void noinline
3046periodic_recalc (EV_P_ ev_periodic *w)
3047{
3048 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3049 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3050
3051 /* the above almost always errs on the low side */
3052 while (at <= ev_rt_now)
3053 {
3054 ev_tstamp nat = at + w->interval;
3055
3056 /* when resolution fails us, we use ev_rt_now */
3057 if (expect_false (nat == at))
3058 {
3059 at = ev_rt_now;
3060 break;
3061 }
3062
3063 at = nat;
3064 }
3065
3066 ev_at (w) = at;
3067}
3068
3069/* make periodics pending */
3070inline_size void
1699periodics_reify (EV_P) 3071periodics_reify (EV_P)
1700{ 3072{
1701 EV_FREQUENT_CHECK; 3073 EV_FREQUENT_CHECK;
1702 3074
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3075 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 3076 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3077 do
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 3078 {
3079 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3080
3081 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3082
3083 /* first reschedule or stop timer */
3084 if (w->reschedule_cb)
3085 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3086 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 3087
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3088 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 3089
1716 ANHE_at_cache (periodics [HEAP0]); 3090 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 3091 downheap (periodics, periodiccnt, HEAP0);
3092 }
3093 else if (w->interval)
3094 {
3095 periodic_recalc (EV_A_ w);
3096 ANHE_at_cache (periodics [HEAP0]);
3097 downheap (periodics, periodiccnt, HEAP0);
3098 }
3099 else
3100 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3101
3102 EV_FREQUENT_CHECK;
3103 feed_reverse (EV_A_ (W)w);
1718 } 3104 }
1719 else if (w->interval) 3105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727 3106
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3107 feed_reverse_done (EV_A_ EV_PERIODIC);
1743 } 3108 }
1744} 3109}
1745 3110
3111/* simply recalculate all periodics */
3112/* TODO: maybe ensure that at least one event happens when jumping forward? */
1746static void noinline 3113static void noinline ecb_cold
1747periodics_reschedule (EV_P) 3114periodics_reschedule (EV_P)
1748{ 3115{
1749 int i; 3116 int i;
1750 3117
1751 /* adjust periodics after time jump */ 3118 /* adjust periodics after time jump */
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755 3122
1756 if (w->reschedule_cb) 3123 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3124 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval) 3125 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3126 periodic_recalc (EV_A_ w);
1760 3127
1761 ANHE_at_cache (periodics [i]); 3128 ANHE_at_cache (periodics [i]);
1762 } 3129 }
1763 3130
1764 reheap (periodics, periodiccnt); 3131 reheap (periodics, periodiccnt);
1765} 3132}
1766#endif 3133#endif
1767 3134
1768void inline_speed 3135/* adjust all timers by a given offset */
3136static void noinline ecb_cold
3137timers_reschedule (EV_P_ ev_tstamp adjust)
3138{
3139 int i;
3140
3141 for (i = 0; i < timercnt; ++i)
3142 {
3143 ANHE *he = timers + i + HEAP0;
3144 ANHE_w (*he)->at += adjust;
3145 ANHE_at_cache (*he);
3146 }
3147}
3148
3149/* fetch new monotonic and realtime times from the kernel */
3150/* also detect if there was a timejump, and act accordingly */
3151inline_speed void
1769time_update (EV_P_ ev_tstamp max_block) 3152time_update (EV_P_ ev_tstamp max_block)
1770{ 3153{
1771 int i;
1772
1773#if EV_USE_MONOTONIC 3154#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic)) 3155 if (expect_true (have_monotonic))
1775 { 3156 {
3157 int i;
1776 ev_tstamp odiff = rtmn_diff; 3158 ev_tstamp odiff = rtmn_diff;
1777 3159
1778 mn_now = get_clock (); 3160 mn_now = get_clock ();
1779 3161
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3162 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1796 * doesn't hurt either as we only do this on time-jumps or 3178 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here. 3179 * in the unlikely event of having been preempted here.
1798 */ 3180 */
1799 for (i = 4; --i; ) 3181 for (i = 4; --i; )
1800 { 3182 {
3183 ev_tstamp diff;
1801 rtmn_diff = ev_rt_now - mn_now; 3184 rtmn_diff = ev_rt_now - mn_now;
1802 3185
3186 diff = odiff - rtmn_diff;
3187
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3188 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1804 return; /* all is well */ 3189 return; /* all is well */
1805 3190
1806 ev_rt_now = ev_time (); 3191 ev_rt_now = ev_time ();
1807 mn_now = get_clock (); 3192 mn_now = get_clock ();
1808 now_floor = mn_now; 3193 now_floor = mn_now;
1809 } 3194 }
1810 3195
3196 /* no timer adjustment, as the monotonic clock doesn't jump */
3197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811# if EV_PERIODIC_ENABLE 3198# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A); 3199 periodics_reschedule (EV_A);
1813# endif 3200# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 } 3201 }
1817 else 3202 else
1818#endif 3203#endif
1819 { 3204 {
1820 ev_rt_now = ev_time (); 3205 ev_rt_now = ev_time ();
1821 3206
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3207 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 { 3208 {
3209 /* adjust timers. this is easy, as the offset is the same for all of them */
3210 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1824#if EV_PERIODIC_ENABLE 3211#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A); 3212 periodics_reschedule (EV_A);
1826#endif 3213#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1834 } 3214 }
1835 3215
1836 mn_now = ev_rt_now; 3216 mn_now = ev_rt_now;
1837 } 3217 }
1838} 3218}
1839 3219
1840void 3220int
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850}
1851
1852static int loop_done;
1853
1854void
1855ev_loop (EV_P_ int flags) 3221ev_run (EV_P_ int flags)
1856{ 3222{
3223#if EV_FEATURE_API
3224 ++loop_depth;
3225#endif
3226
3227 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3228
1857 loop_done = EVUNLOOP_CANCEL; 3229 loop_done = EVBREAK_CANCEL;
1858 3230
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3231 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1860 3232
1861 do 3233 do
1862 { 3234 {
1863#if EV_VERIFY >= 2 3235#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A); 3236 ev_verify (EV_A);
1865#endif 3237#endif
1866 3238
1867#ifndef _WIN32 3239#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */ 3240 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid)) 3241 if (expect_false (getpid () != curpid))
1877 /* we might have forked, so queue fork handlers */ 3249 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork)) 3250 if (expect_false (postfork))
1879 if (forkcnt) 3251 if (forkcnt)
1880 { 3252 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3253 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A); 3254 EV_INVOKE_PENDING;
1883 } 3255 }
1884#endif 3256#endif
1885 3257
3258#if EV_PREPARE_ENABLE
1886 /* queue prepare watchers (and execute them) */ 3259 /* queue prepare watchers (and execute them) */
1887 if (expect_false (preparecnt)) 3260 if (expect_false (preparecnt))
1888 { 3261 {
1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1890 call_pending (EV_A); 3263 EV_INVOKE_PENDING;
1891 } 3264 }
3265#endif
1892 3266
1893 if (expect_false (!activecnt)) 3267 if (expect_false (loop_done))
1894 break; 3268 break;
1895 3269
1896 /* we might have forked, so reify kernel state if necessary */ 3270 /* we might have forked, so reify kernel state if necessary */
1897 if (expect_false (postfork)) 3271 if (expect_false (postfork))
1898 loop_fork (EV_A); 3272 loop_fork (EV_A);
1903 /* calculate blocking time */ 3277 /* calculate blocking time */
1904 { 3278 {
1905 ev_tstamp waittime = 0.; 3279 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.; 3280 ev_tstamp sleeptime = 0.;
1907 3281
3282 /* remember old timestamp for io_blocktime calculation */
3283 ev_tstamp prev_mn_now = mn_now;
3284
3285 /* update time to cancel out callback processing overhead */
3286 time_update (EV_A_ 1e100);
3287
3288 /* from now on, we want a pipe-wake-up */
3289 pipe_write_wanted = 1;
3290
3291 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3292
1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3293 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1909 { 3294 {
1910 /* update time to cancel out callback processing overhead */
1911 time_update (EV_A_ 1e100);
1912
1913 waittime = MAX_BLOCKTIME; 3295 waittime = MAX_BLOCKTIME;
1914 3296
1915 if (timercnt) 3297 if (timercnt)
1916 { 3298 {
1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3299 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1918 if (waittime > to) waittime = to; 3300 if (waittime > to) waittime = to;
1919 } 3301 }
1920 3302
1921#if EV_PERIODIC_ENABLE 3303#if EV_PERIODIC_ENABLE
1922 if (periodiccnt) 3304 if (periodiccnt)
1923 { 3305 {
1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3306 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1925 if (waittime > to) waittime = to; 3307 if (waittime > to) waittime = to;
1926 } 3308 }
1927#endif 3309#endif
1928 3310
3311 /* don't let timeouts decrease the waittime below timeout_blocktime */
1929 if (expect_false (waittime < timeout_blocktime)) 3312 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime; 3313 waittime = timeout_blocktime;
1931 3314
1932 sleeptime = waittime - backend_fudge; 3315 /* at this point, we NEED to wait, so we have to ensure */
3316 /* to pass a minimum nonzero value to the backend */
3317 if (expect_false (waittime < backend_mintime))
3318 waittime = backend_mintime;
1933 3319
3320 /* extra check because io_blocktime is commonly 0 */
1934 if (expect_true (sleeptime > io_blocktime)) 3321 if (expect_false (io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 { 3322 {
3323 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3324
3325 if (sleeptime > waittime - backend_mintime)
3326 sleeptime = waittime - backend_mintime;
3327
3328 if (expect_true (sleeptime > 0.))
3329 {
1939 ev_sleep (sleeptime); 3330 ev_sleep (sleeptime);
1940 waittime -= sleeptime; 3331 waittime -= sleeptime;
3332 }
1941 } 3333 }
1942 } 3334 }
1943 3335
3336#if EV_FEATURE_API
1944 ++loop_count; 3337 ++loop_count;
3338#endif
3339 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1945 backend_poll (EV_A_ waittime); 3340 backend_poll (EV_A_ waittime);
3341 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3342
3343 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3344
3345 ECB_MEMORY_FENCE_ACQUIRE;
3346 if (pipe_write_skipped)
3347 {
3348 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3349 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3350 }
3351
1946 3352
1947 /* update ev_rt_now, do magic */ 3353 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime); 3354 time_update (EV_A_ waittime + sleeptime);
1949 } 3355 }
1950 3356
1957#if EV_IDLE_ENABLE 3363#if EV_IDLE_ENABLE
1958 /* queue idle watchers unless other events are pending */ 3364 /* queue idle watchers unless other events are pending */
1959 idle_reify (EV_A); 3365 idle_reify (EV_A);
1960#endif 3366#endif
1961 3367
3368#if EV_CHECK_ENABLE
1962 /* queue check watchers, to be executed first */ 3369 /* queue check watchers, to be executed first */
1963 if (expect_false (checkcnt)) 3370 if (expect_false (checkcnt))
1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3371 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3372#endif
1965 3373
1966 call_pending (EV_A); 3374 EV_INVOKE_PENDING;
1967 } 3375 }
1968 while (expect_true ( 3376 while (expect_true (
1969 activecnt 3377 activecnt
1970 && !loop_done 3378 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3379 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1972 )); 3380 ));
1973 3381
1974 if (loop_done == EVUNLOOP_ONE) 3382 if (loop_done == EVBREAK_ONE)
1975 loop_done = EVUNLOOP_CANCEL; 3383 loop_done = EVBREAK_CANCEL;
3384
3385#if EV_FEATURE_API
3386 --loop_depth;
3387#endif
3388
3389 return activecnt;
1976} 3390}
1977 3391
1978void 3392void
1979ev_unloop (EV_P_ int how) 3393ev_break (EV_P_ int how) EV_THROW
1980{ 3394{
1981 loop_done = how; 3395 loop_done = how;
1982} 3396}
1983 3397
3398void
3399ev_ref (EV_P) EV_THROW
3400{
3401 ++activecnt;
3402}
3403
3404void
3405ev_unref (EV_P) EV_THROW
3406{
3407 --activecnt;
3408}
3409
3410void
3411ev_now_update (EV_P) EV_THROW
3412{
3413 time_update (EV_A_ 1e100);
3414}
3415
3416void
3417ev_suspend (EV_P) EV_THROW
3418{
3419 ev_now_update (EV_A);
3420}
3421
3422void
3423ev_resume (EV_P) EV_THROW
3424{
3425 ev_tstamp mn_prev = mn_now;
3426
3427 ev_now_update (EV_A);
3428 timers_reschedule (EV_A_ mn_now - mn_prev);
3429#if EV_PERIODIC_ENABLE
3430 /* TODO: really do this? */
3431 periodics_reschedule (EV_A);
3432#endif
3433}
3434
1984/*****************************************************************************/ 3435/*****************************************************************************/
3436/* singly-linked list management, used when the expected list length is short */
1985 3437
1986void inline_size 3438inline_size void
1987wlist_add (WL *head, WL elem) 3439wlist_add (WL *head, WL elem)
1988{ 3440{
1989 elem->next = *head; 3441 elem->next = *head;
1990 *head = elem; 3442 *head = elem;
1991} 3443}
1992 3444
1993void inline_size 3445inline_size void
1994wlist_del (WL *head, WL elem) 3446wlist_del (WL *head, WL elem)
1995{ 3447{
1996 while (*head) 3448 while (*head)
1997 { 3449 {
1998 if (*head == elem) 3450 if (expect_true (*head == elem))
1999 { 3451 {
2000 *head = elem->next; 3452 *head = elem->next;
2001 return; 3453 break;
2002 } 3454 }
2003 3455
2004 head = &(*head)->next; 3456 head = &(*head)->next;
2005 } 3457 }
2006} 3458}
2007 3459
2008void inline_speed 3460/* internal, faster, version of ev_clear_pending */
3461inline_speed void
2009clear_pending (EV_P_ W w) 3462clear_pending (EV_P_ W w)
2010{ 3463{
2011 if (w->pending) 3464 if (w->pending)
2012 { 3465 {
2013 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3466 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2014 w->pending = 0; 3467 w->pending = 0;
2015 } 3468 }
2016} 3469}
2017 3470
2018int 3471int
2019ev_clear_pending (EV_P_ void *w) 3472ev_clear_pending (EV_P_ void *w) EV_THROW
2020{ 3473{
2021 W w_ = (W)w; 3474 W w_ = (W)w;
2022 int pending = w_->pending; 3475 int pending = w_->pending;
2023 3476
2024 if (expect_true (pending)) 3477 if (expect_true (pending))
2025 { 3478 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3479 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3480 p->w = (W)&pending_w;
2027 w_->pending = 0; 3481 w_->pending = 0;
2028 p->w = 0;
2029 return p->events; 3482 return p->events;
2030 } 3483 }
2031 else 3484 else
2032 return 0; 3485 return 0;
2033} 3486}
2034 3487
2035void inline_size 3488inline_size void
2036pri_adjust (EV_P_ W w) 3489pri_adjust (EV_P_ W w)
2037{ 3490{
2038 int pri = w->priority; 3491 int pri = ev_priority (w);
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3492 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3493 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri; 3494 ev_set_priority (w, pri);
2042} 3495}
2043 3496
2044void inline_speed 3497inline_speed void
2045ev_start (EV_P_ W w, int active) 3498ev_start (EV_P_ W w, int active)
2046{ 3499{
2047 pri_adjust (EV_A_ w); 3500 pri_adjust (EV_A_ w);
2048 w->active = active; 3501 w->active = active;
2049 ev_ref (EV_A); 3502 ev_ref (EV_A);
2050} 3503}
2051 3504
2052void inline_size 3505inline_size void
2053ev_stop (EV_P_ W w) 3506ev_stop (EV_P_ W w)
2054{ 3507{
2055 ev_unref (EV_A); 3508 ev_unref (EV_A);
2056 w->active = 0; 3509 w->active = 0;
2057} 3510}
2058 3511
2059/*****************************************************************************/ 3512/*****************************************************************************/
2060 3513
2061void noinline 3514void noinline
2062ev_io_start (EV_P_ ev_io *w) 3515ev_io_start (EV_P_ ev_io *w) EV_THROW
2063{ 3516{
2064 int fd = w->fd; 3517 int fd = w->fd;
2065 3518
2066 if (expect_false (ev_is_active (w))) 3519 if (expect_false (ev_is_active (w)))
2067 return; 3520 return;
2068 3521
2069 assert (("ev_io_start called with negative fd", fd >= 0)); 3522 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3523 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2070 3524
2071 EV_FREQUENT_CHECK; 3525 EV_FREQUENT_CHECK;
2072 3526
2073 ev_start (EV_A_ (W)w, 1); 3527 ev_start (EV_A_ (W)w, 1);
2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3528 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2075 wlist_add (&anfds[fd].head, (WL)w); 3529 wlist_add (&anfds[fd].head, (WL)w);
2076 3530
3531 /* common bug, apparently */
3532 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3533
2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2078 w->events &= ~EV_IOFDSET; 3535 w->events &= ~EV__IOFDSET;
2079 3536
2080 EV_FREQUENT_CHECK; 3537 EV_FREQUENT_CHECK;
2081} 3538}
2082 3539
2083void noinline 3540void noinline
2084ev_io_stop (EV_P_ ev_io *w) 3541ev_io_stop (EV_P_ ev_io *w) EV_THROW
2085{ 3542{
2086 clear_pending (EV_A_ (W)w); 3543 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 3544 if (expect_false (!ev_is_active (w)))
2088 return; 3545 return;
2089 3546
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091 3548
2092 EV_FREQUENT_CHECK; 3549 EV_FREQUENT_CHECK;
2093 3550
2094 wlist_del (&anfds[w->fd].head, (WL)w); 3551 wlist_del (&anfds[w->fd].head, (WL)w);
2095 ev_stop (EV_A_ (W)w); 3552 ev_stop (EV_A_ (W)w);
2096 3553
2097 fd_change (EV_A_ w->fd, 1); 3554 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2098 3555
2099 EV_FREQUENT_CHECK; 3556 EV_FREQUENT_CHECK;
2100} 3557}
2101 3558
2102void noinline 3559void noinline
2103ev_timer_start (EV_P_ ev_timer *w) 3560ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2104{ 3561{
2105 if (expect_false (ev_is_active (w))) 3562 if (expect_false (ev_is_active (w)))
2106 return; 3563 return;
2107 3564
2108 ev_at (w) += mn_now; 3565 ev_at (w) += mn_now;
2109 3566
2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2111 3568
2112 EV_FREQUENT_CHECK; 3569 EV_FREQUENT_CHECK;
2113 3570
2114 ++timercnt; 3571 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2118 ANHE_at_cache (timers [ev_active (w)]); 3575 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w)); 3576 upheap (timers, ev_active (w));
2120 3577
2121 EV_FREQUENT_CHECK; 3578 EV_FREQUENT_CHECK;
2122 3579
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124} 3581}
2125 3582
2126void noinline 3583void noinline
2127ev_timer_stop (EV_P_ ev_timer *w) 3584ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2128{ 3585{
2129 clear_pending (EV_A_ (W)w); 3586 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w))) 3587 if (expect_false (!ev_is_active (w)))
2131 return; 3588 return;
2132 3589
2133 EV_FREQUENT_CHECK; 3590 EV_FREQUENT_CHECK;
2134 3591
2135 { 3592 {
2136 int active = ev_active (w); 3593 int active = ev_active (w);
2137 3594
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139 3596
2140 --timercnt; 3597 --timercnt;
2141 3598
2142 if (expect_true (active < timercnt + HEAP0)) 3599 if (expect_true (active < timercnt + HEAP0))
2143 { 3600 {
2144 timers [active] = timers [timercnt + HEAP0]; 3601 timers [active] = timers [timercnt + HEAP0];
2145 adjustheap (timers, timercnt, active); 3602 adjustheap (timers, timercnt, active);
2146 } 3603 }
2147 } 3604 }
2148 3605
2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now; 3606 ev_at (w) -= mn_now;
2152 3607
2153 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
2154} 3611}
2155 3612
2156void noinline 3613void noinline
2157ev_timer_again (EV_P_ ev_timer *w) 3614ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2158{ 3615{
2159 EV_FREQUENT_CHECK; 3616 EV_FREQUENT_CHECK;
3617
3618 clear_pending (EV_A_ (W)w);
2160 3619
2161 if (ev_is_active (w)) 3620 if (ev_is_active (w))
2162 { 3621 {
2163 if (w->repeat) 3622 if (w->repeat)
2164 { 3623 {
2176 } 3635 }
2177 3636
2178 EV_FREQUENT_CHECK; 3637 EV_FREQUENT_CHECK;
2179} 3638}
2180 3639
3640ev_tstamp
3641ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3642{
3643 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3644}
3645
2181#if EV_PERIODIC_ENABLE 3646#if EV_PERIODIC_ENABLE
2182void noinline 3647void noinline
2183ev_periodic_start (EV_P_ ev_periodic *w) 3648ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2184{ 3649{
2185 if (expect_false (ev_is_active (w))) 3650 if (expect_false (ev_is_active (w)))
2186 return; 3651 return;
2187 3652
2188 if (w->reschedule_cb) 3653 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3654 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval) 3655 else if (w->interval)
2191 { 3656 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3657 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2193 /* this formula differs from the one in periodic_reify because we do not always round up */ 3658 periodic_recalc (EV_A_ w);
2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 } 3659 }
2196 else 3660 else
2197 ev_at (w) = w->offset; 3661 ev_at (w) = w->offset;
2198 3662
2199 EV_FREQUENT_CHECK; 3663 EV_FREQUENT_CHECK;
2205 ANHE_at_cache (periodics [ev_active (w)]); 3669 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w)); 3670 upheap (periodics, ev_active (w));
2207 3671
2208 EV_FREQUENT_CHECK; 3672 EV_FREQUENT_CHECK;
2209 3673
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3674 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211} 3675}
2212 3676
2213void noinline 3677void noinline
2214ev_periodic_stop (EV_P_ ev_periodic *w) 3678ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2215{ 3679{
2216 clear_pending (EV_A_ (W)w); 3680 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3681 if (expect_false (!ev_is_active (w)))
2218 return; 3682 return;
2219 3683
2220 EV_FREQUENT_CHECK; 3684 EV_FREQUENT_CHECK;
2221 3685
2222 { 3686 {
2223 int active = ev_active (w); 3687 int active = ev_active (w);
2224 3688
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3689 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226 3690
2227 --periodiccnt; 3691 --periodiccnt;
2228 3692
2229 if (expect_true (active < periodiccnt + HEAP0)) 3693 if (expect_true (active < periodiccnt + HEAP0))
2230 { 3694 {
2231 periodics [active] = periodics [periodiccnt + HEAP0]; 3695 periodics [active] = periodics [periodiccnt + HEAP0];
2232 adjustheap (periodics, periodiccnt, active); 3696 adjustheap (periodics, periodiccnt, active);
2233 } 3697 }
2234 } 3698 }
2235 3699
2236 EV_FREQUENT_CHECK;
2237
2238 ev_stop (EV_A_ (W)w); 3700 ev_stop (EV_A_ (W)w);
3701
3702 EV_FREQUENT_CHECK;
2239} 3703}
2240 3704
2241void noinline 3705void noinline
2242ev_periodic_again (EV_P_ ev_periodic *w) 3706ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2243{ 3707{
2244 /* TODO: use adjustheap and recalculation */ 3708 /* TODO: use adjustheap and recalculation */
2245 ev_periodic_stop (EV_A_ w); 3709 ev_periodic_stop (EV_A_ w);
2246 ev_periodic_start (EV_A_ w); 3710 ev_periodic_start (EV_A_ w);
2247} 3711}
2249 3713
2250#ifndef SA_RESTART 3714#ifndef SA_RESTART
2251# define SA_RESTART 0 3715# define SA_RESTART 0
2252#endif 3716#endif
2253 3717
3718#if EV_SIGNAL_ENABLE
3719
2254void noinline 3720void noinline
2255ev_signal_start (EV_P_ ev_signal *w) 3721ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2256{ 3722{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
2260 if (expect_false (ev_is_active (w))) 3723 if (expect_false (ev_is_active (w)))
2261 return; 3724 return;
2262 3725
2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3726 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2264 3727
2265 evpipe_init (EV_A); 3728#if EV_MULTIPLICITY
3729 assert (("libev: a signal must not be attached to two different loops",
3730 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2266 3731
2267 EV_FREQUENT_CHECK; 3732 signals [w->signum - 1].loop = EV_A;
3733 ECB_MEMORY_FENCE_RELEASE;
3734#endif
2268 3735
3736 EV_FREQUENT_CHECK;
3737
3738#if EV_USE_SIGNALFD
3739 if (sigfd == -2)
2269 { 3740 {
2270#ifndef _WIN32 3741 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2271 sigset_t full, prev; 3742 if (sigfd < 0 && errno == EINVAL)
2272 sigfillset (&full); 3743 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275 3744
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3745 if (sigfd >= 0)
3746 {
3747 fd_intern (sigfd); /* doing it twice will not hurt */
2277 3748
2278#ifndef _WIN32 3749 sigemptyset (&sigfd_set);
2279 sigprocmask (SIG_SETMASK, &prev, 0); 3750
2280#endif 3751 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3752 ev_set_priority (&sigfd_w, EV_MAXPRI);
3753 ev_io_start (EV_A_ &sigfd_w);
3754 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3755 }
2281 } 3756 }
3757
3758 if (sigfd >= 0)
3759 {
3760 /* TODO: check .head */
3761 sigaddset (&sigfd_set, w->signum);
3762 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3763
3764 signalfd (sigfd, &sigfd_set, 0);
3765 }
3766#endif
2282 3767
2283 ev_start (EV_A_ (W)w, 1); 3768 ev_start (EV_A_ (W)w, 1);
2284 wlist_add (&signals [w->signum - 1].head, (WL)w); 3769 wlist_add (&signals [w->signum - 1].head, (WL)w);
2285 3770
2286 if (!((WL)w)->next) 3771 if (!((WL)w)->next)
3772# if EV_USE_SIGNALFD
3773 if (sigfd < 0) /*TODO*/
3774# endif
2287 { 3775 {
2288#if _WIN32 3776# ifdef _WIN32
3777 evpipe_init (EV_A);
3778
2289 signal (w->signum, ev_sighandler); 3779 signal (w->signum, ev_sighandler);
2290#else 3780# else
2291 struct sigaction sa; 3781 struct sigaction sa;
3782
3783 evpipe_init (EV_A);
3784
2292 sa.sa_handler = ev_sighandler; 3785 sa.sa_handler = ev_sighandler;
2293 sigfillset (&sa.sa_mask); 3786 sigfillset (&sa.sa_mask);
2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3787 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2295 sigaction (w->signum, &sa, 0); 3788 sigaction (w->signum, &sa, 0);
3789
3790 if (origflags & EVFLAG_NOSIGMASK)
3791 {
3792 sigemptyset (&sa.sa_mask);
3793 sigaddset (&sa.sa_mask, w->signum);
3794 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3795 }
2296#endif 3796#endif
2297 } 3797 }
2298 3798
2299 EV_FREQUENT_CHECK; 3799 EV_FREQUENT_CHECK;
2300} 3800}
2301 3801
2302void noinline 3802void noinline
2303ev_signal_stop (EV_P_ ev_signal *w) 3803ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2304{ 3804{
2305 clear_pending (EV_A_ (W)w); 3805 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3806 if (expect_false (!ev_is_active (w)))
2307 return; 3807 return;
2308 3808
2310 3810
2311 wlist_del (&signals [w->signum - 1].head, (WL)w); 3811 wlist_del (&signals [w->signum - 1].head, (WL)w);
2312 ev_stop (EV_A_ (W)w); 3812 ev_stop (EV_A_ (W)w);
2313 3813
2314 if (!signals [w->signum - 1].head) 3814 if (!signals [w->signum - 1].head)
3815 {
3816#if EV_MULTIPLICITY
3817 signals [w->signum - 1].loop = 0; /* unattach from signal */
3818#endif
3819#if EV_USE_SIGNALFD
3820 if (sigfd >= 0)
3821 {
3822 sigset_t ss;
3823
3824 sigemptyset (&ss);
3825 sigaddset (&ss, w->signum);
3826 sigdelset (&sigfd_set, w->signum);
3827
3828 signalfd (sigfd, &sigfd_set, 0);
3829 sigprocmask (SIG_UNBLOCK, &ss, 0);
3830 }
3831 else
3832#endif
2315 signal (w->signum, SIG_DFL); 3833 signal (w->signum, SIG_DFL);
3834 }
2316 3835
2317 EV_FREQUENT_CHECK; 3836 EV_FREQUENT_CHECK;
2318} 3837}
3838
3839#endif
3840
3841#if EV_CHILD_ENABLE
2319 3842
2320void 3843void
2321ev_child_start (EV_P_ ev_child *w) 3844ev_child_start (EV_P_ ev_child *w) EV_THROW
2322{ 3845{
2323#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3847 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif 3848#endif
2326 if (expect_false (ev_is_active (w))) 3849 if (expect_false (ev_is_active (w)))
2327 return; 3850 return;
2328 3851
2329 EV_FREQUENT_CHECK; 3852 EV_FREQUENT_CHECK;
2330 3853
2331 ev_start (EV_A_ (W)w, 1); 3854 ev_start (EV_A_ (W)w, 1);
2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3855 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2333 3856
2334 EV_FREQUENT_CHECK; 3857 EV_FREQUENT_CHECK;
2335} 3858}
2336 3859
2337void 3860void
2338ev_child_stop (EV_P_ ev_child *w) 3861ev_child_stop (EV_P_ ev_child *w) EV_THROW
2339{ 3862{
2340 clear_pending (EV_A_ (W)w); 3863 clear_pending (EV_A_ (W)w);
2341 if (expect_false (!ev_is_active (w))) 3864 if (expect_false (!ev_is_active (w)))
2342 return; 3865 return;
2343 3866
2344 EV_FREQUENT_CHECK; 3867 EV_FREQUENT_CHECK;
2345 3868
2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3869 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2347 ev_stop (EV_A_ (W)w); 3870 ev_stop (EV_A_ (W)w);
2348 3871
2349 EV_FREQUENT_CHECK; 3872 EV_FREQUENT_CHECK;
2350} 3873}
3874
3875#endif
2351 3876
2352#if EV_STAT_ENABLE 3877#if EV_STAT_ENABLE
2353 3878
2354# ifdef _WIN32 3879# ifdef _WIN32
2355# undef lstat 3880# undef lstat
2356# define lstat(a,b) _stati64 (a,b) 3881# define lstat(a,b) _stati64 (a,b)
2357# endif 3882# endif
2358 3883
2359#define DEF_STAT_INTERVAL 5.0074891 3884#define DEF_STAT_INTERVAL 5.0074891
3885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2360#define MIN_STAT_INTERVAL 0.1074891 3886#define MIN_STAT_INTERVAL 0.1074891
2361 3887
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363 3889
2364#if EV_USE_INOTIFY 3890#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192 3891
3892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2366 3894
2367static void noinline 3895static void noinline
2368infy_add (EV_P_ ev_stat *w) 3896infy_add (EV_P_ ev_stat *w)
2369{ 3897{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371 3899
2372 if (w->wd < 0) 3900 if (w->wd >= 0)
3901 {
3902 struct statfs sfs;
3903
3904 /* now local changes will be tracked by inotify, but remote changes won't */
3905 /* unless the filesystem is known to be local, we therefore still poll */
3906 /* also do poll on <2.6.25, but with normal frequency */
3907
3908 if (!fs_2625)
3909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3910 else if (!statfs (w->path, &sfs)
3911 && (sfs.f_type == 0x1373 /* devfs */
3912 || sfs.f_type == 0xEF53 /* ext2/3 */
3913 || sfs.f_type == 0x3153464a /* jfs */
3914 || sfs.f_type == 0x52654973 /* reiser3 */
3915 || sfs.f_type == 0x01021994 /* tempfs */
3916 || sfs.f_type == 0x58465342 /* xfs */))
3917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3918 else
3919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2373 { 3920 }
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3921 else
3922 {
3923 /* can't use inotify, continue to stat */
3924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2375 3925
2376 /* monitor some parent directory for speedup hints */ 3926 /* if path is not there, monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2378 /* but an efficiency issue only */ 3928 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 { 3930 {
2381 char path [4096]; 3931 char path [4096];
2382 strcpy (path, w->path); 3932 strcpy (path, w->path);
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388 3938
2389 char *pend = strrchr (path, '/'); 3939 char *pend = strrchr (path, '/');
2390 3940
2391 if (!pend) 3941 if (!pend || pend == path)
2392 break; /* whoops, no '/', complain to your admin */ 3942 break;
2393 3943
2394 *pend = 0; 3944 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask); 3945 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 } 3946 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 } 3948 }
2399 } 3949 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402 3950
2403 if (w->wd >= 0) 3951 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3952 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3953
3954 /* now re-arm timer, if required */
3955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3956 ev_timer_again (EV_A_ &w->timer);
3957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2405} 3958}
2406 3959
2407static void noinline 3960static void noinline
2408infy_del (EV_P_ ev_stat *w) 3961infy_del (EV_P_ ev_stat *w)
2409{ 3962{
2412 3965
2413 if (wd < 0) 3966 if (wd < 0)
2414 return; 3967 return;
2415 3968
2416 w->wd = -2; 3969 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3970 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w); 3971 wlist_del (&fs_hash [slot].head, (WL)w);
2419 3972
2420 /* remove this watcher, if others are watching it, they will rearm */ 3973 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd); 3974 inotify_rm_watch (fs_fd, wd);
2422} 3975}
2423 3976
2424static void noinline 3977static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{ 3979{
2427 if (slot < 0) 3980 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */ 3981 /* overflow, need to check for all hash slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3982 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2430 infy_wd (EV_A_ slot, wd, ev); 3983 infy_wd (EV_A_ slot, wd, ev);
2431 else 3984 else
2432 { 3985 {
2433 WL w_; 3986 WL w_;
2434 3987
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3988 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2436 { 3989 {
2437 ev_stat *w = (ev_stat *)w_; 3990 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */ 3991 w_ = w_->next; /* lets us remove this watcher and all before it */
2439 3992
2440 if (w->wd == wd || wd == -1) 3993 if (w->wd == wd || wd == -1)
2441 { 3994 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 { 3996 {
3997 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2444 w->wd = -1; 3998 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */ 3999 infy_add (EV_A_ w); /* re-add, no matter what */
2446 } 4000 }
2447 4001
2448 stat_timer_cb (EV_A_ &w->timer, 0); 4002 stat_timer_cb (EV_A_ &w->timer, 0);
2453 4007
2454static void 4008static void
2455infy_cb (EV_P_ ev_io *w, int revents) 4009infy_cb (EV_P_ ev_io *w, int revents)
2456{ 4010{
2457 char buf [EV_INOTIFY_BUFSIZE]; 4011 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs; 4012 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf)); 4013 int len = read (fs_fd, buf, sizeof (buf));
2461 4014
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4015 for (ofs = 0; ofs < len; )
4016 {
4017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4019 ofs += sizeof (struct inotify_event) + ev->len;
4020 }
2464} 4021}
2465 4022
2466void inline_size 4023inline_size void ecb_cold
4024ev_check_2625 (EV_P)
4025{
4026 /* kernels < 2.6.25 are borked
4027 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4028 */
4029 if (ev_linux_version () < 0x020619)
4030 return;
4031
4032 fs_2625 = 1;
4033}
4034
4035inline_size int
4036infy_newfd (void)
4037{
4038#if defined IN_CLOEXEC && defined IN_NONBLOCK
4039 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4040 if (fd >= 0)
4041 return fd;
4042#endif
4043 return inotify_init ();
4044}
4045
4046inline_size void
2467infy_init (EV_P) 4047infy_init (EV_P)
2468{ 4048{
2469 if (fs_fd != -2) 4049 if (fs_fd != -2)
2470 return; 4050 return;
2471 4051
4052 fs_fd = -1;
4053
4054 ev_check_2625 (EV_A);
4055
2472 fs_fd = inotify_init (); 4056 fs_fd = infy_newfd ();
2473 4057
2474 if (fs_fd >= 0) 4058 if (fs_fd >= 0)
2475 { 4059 {
4060 fd_intern (fs_fd);
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI); 4062 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w); 4063 ev_io_start (EV_A_ &fs_w);
4064 ev_unref (EV_A);
2479 } 4065 }
2480} 4066}
2481 4067
2482void inline_size 4068inline_size void
2483infy_fork (EV_P) 4069infy_fork (EV_P)
2484{ 4070{
2485 int slot; 4071 int slot;
2486 4072
2487 if (fs_fd < 0) 4073 if (fs_fd < 0)
2488 return; 4074 return;
2489 4075
4076 ev_ref (EV_A);
4077 ev_io_stop (EV_A_ &fs_w);
2490 close (fs_fd); 4078 close (fs_fd);
2491 fs_fd = inotify_init (); 4079 fs_fd = infy_newfd ();
2492 4080
4081 if (fs_fd >= 0)
4082 {
4083 fd_intern (fs_fd);
4084 ev_io_set (&fs_w, fs_fd, EV_READ);
4085 ev_io_start (EV_A_ &fs_w);
4086 ev_unref (EV_A);
4087 }
4088
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2494 { 4090 {
2495 WL w_ = fs_hash [slot].head; 4091 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0; 4092 fs_hash [slot].head = 0;
2497 4093
2498 while (w_) 4094 while (w_)
2503 w->wd = -1; 4099 w->wd = -1;
2504 4100
2505 if (fs_fd >= 0) 4101 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */ 4102 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else 4103 else
4104 {
4105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4106 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2508 ev_timer_start (EV_A_ &w->timer); 4107 ev_timer_again (EV_A_ &w->timer);
4108 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4109 }
2509 } 4110 }
2510
2511 } 4111 }
2512} 4112}
2513 4113
4114#endif
4115
4116#ifdef _WIN32
4117# define EV_LSTAT(p,b) _stati64 (p, b)
4118#else
4119# define EV_LSTAT(p,b) lstat (p, b)
2514#endif 4120#endif
2515 4121
2516void 4122void
2517ev_stat_stat (EV_P_ ev_stat *w) 4123ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2518{ 4124{
2519 if (lstat (w->path, &w->attr) < 0) 4125 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0; 4126 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink) 4127 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1; 4128 w->attr.st_nlink = 1;
2525static void noinline 4131static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4132stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{ 4133{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4134 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529 4135
2530 /* we copy this here each the time so that */ 4136 ev_statdata prev = w->attr;
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w); 4137 ev_stat_stat (EV_A_ w);
2534 4138
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4139 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if ( 4140 if (
2537 w->prev.st_dev != w->attr.st_dev 4141 prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino 4142 || prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode 4143 || prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink 4144 || prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid 4145 || prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid 4146 || prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev 4147 || prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size 4148 || prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime 4149 || prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime 4150 || prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime 4151 || prev.st_ctime != w->attr.st_ctime
2548 ) { 4152 ) {
4153 /* we only update w->prev on actual differences */
4154 /* in case we test more often than invoke the callback, */
4155 /* to ensure that prev is always different to attr */
4156 w->prev = prev;
4157
2549 #if EV_USE_INOTIFY 4158 #if EV_USE_INOTIFY
4159 if (fs_fd >= 0)
4160 {
2550 infy_del (EV_A_ w); 4161 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w); 4162 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */ 4163 ev_stat_stat (EV_A_ w); /* avoid race... */
4164 }
2553 #endif 4165 #endif
2554 4166
2555 ev_feed_event (EV_A_ w, EV_STAT); 4167 ev_feed_event (EV_A_ w, EV_STAT);
2556 } 4168 }
2557} 4169}
2558 4170
2559void 4171void
2560ev_stat_start (EV_P_ ev_stat *w) 4172ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2561{ 4173{
2562 if (expect_false (ev_is_active (w))) 4174 if (expect_false (ev_is_active (w)))
2563 return; 4175 return;
2564 4176
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w); 4177 ev_stat_stat (EV_A_ w);
2570 4178
4179 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2571 if (w->interval < MIN_STAT_INTERVAL) 4180 w->interval = MIN_STAT_INTERVAL;
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573 4181
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4182 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2575 ev_set_priority (&w->timer, ev_priority (w)); 4183 ev_set_priority (&w->timer, ev_priority (w));
2576 4184
2577#if EV_USE_INOTIFY 4185#if EV_USE_INOTIFY
2578 infy_init (EV_A); 4186 infy_init (EV_A);
2579 4187
2580 if (fs_fd >= 0) 4188 if (fs_fd >= 0)
2581 infy_add (EV_A_ w); 4189 infy_add (EV_A_ w);
2582 else 4190 else
2583#endif 4191#endif
4192 {
2584 ev_timer_start (EV_A_ &w->timer); 4193 ev_timer_again (EV_A_ &w->timer);
4194 ev_unref (EV_A);
4195 }
2585 4196
2586 ev_start (EV_A_ (W)w, 1); 4197 ev_start (EV_A_ (W)w, 1);
2587 4198
2588 EV_FREQUENT_CHECK; 4199 EV_FREQUENT_CHECK;
2589} 4200}
2590 4201
2591void 4202void
2592ev_stat_stop (EV_P_ ev_stat *w) 4203ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2593{ 4204{
2594 clear_pending (EV_A_ (W)w); 4205 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w))) 4206 if (expect_false (!ev_is_active (w)))
2596 return; 4207 return;
2597 4208
2598 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2599 4210
2600#if EV_USE_INOTIFY 4211#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w); 4212 infy_del (EV_A_ w);
2602#endif 4213#endif
4214
4215 if (ev_is_active (&w->timer))
4216 {
4217 ev_ref (EV_A);
2603 ev_timer_stop (EV_A_ &w->timer); 4218 ev_timer_stop (EV_A_ &w->timer);
4219 }
2604 4220
2605 ev_stop (EV_A_ (W)w); 4221 ev_stop (EV_A_ (W)w);
2606 4222
2607 EV_FREQUENT_CHECK; 4223 EV_FREQUENT_CHECK;
2608} 4224}
2609#endif 4225#endif
2610 4226
2611#if EV_IDLE_ENABLE 4227#if EV_IDLE_ENABLE
2612void 4228void
2613ev_idle_start (EV_P_ ev_idle *w) 4229ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2614{ 4230{
2615 if (expect_false (ev_is_active (w))) 4231 if (expect_false (ev_is_active (w)))
2616 return; 4232 return;
2617 4233
2618 pri_adjust (EV_A_ (W)w); 4234 pri_adjust (EV_A_ (W)w);
2631 4247
2632 EV_FREQUENT_CHECK; 4248 EV_FREQUENT_CHECK;
2633} 4249}
2634 4250
2635void 4251void
2636ev_idle_stop (EV_P_ ev_idle *w) 4252ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2637{ 4253{
2638 clear_pending (EV_A_ (W)w); 4254 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w))) 4255 if (expect_false (!ev_is_active (w)))
2640 return; 4256 return;
2641 4257
2653 4269
2654 EV_FREQUENT_CHECK; 4270 EV_FREQUENT_CHECK;
2655} 4271}
2656#endif 4272#endif
2657 4273
4274#if EV_PREPARE_ENABLE
2658void 4275void
2659ev_prepare_start (EV_P_ ev_prepare *w) 4276ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2660{ 4277{
2661 if (expect_false (ev_is_active (w))) 4278 if (expect_false (ev_is_active (w)))
2662 return; 4279 return;
2663 4280
2664 EV_FREQUENT_CHECK; 4281 EV_FREQUENT_CHECK;
2669 4286
2670 EV_FREQUENT_CHECK; 4287 EV_FREQUENT_CHECK;
2671} 4288}
2672 4289
2673void 4290void
2674ev_prepare_stop (EV_P_ ev_prepare *w) 4291ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2675{ 4292{
2676 clear_pending (EV_A_ (W)w); 4293 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w))) 4294 if (expect_false (!ev_is_active (w)))
2678 return; 4295 return;
2679 4296
2688 4305
2689 ev_stop (EV_A_ (W)w); 4306 ev_stop (EV_A_ (W)w);
2690 4307
2691 EV_FREQUENT_CHECK; 4308 EV_FREQUENT_CHECK;
2692} 4309}
4310#endif
2693 4311
4312#if EV_CHECK_ENABLE
2694void 4313void
2695ev_check_start (EV_P_ ev_check *w) 4314ev_check_start (EV_P_ ev_check *w) EV_THROW
2696{ 4315{
2697 if (expect_false (ev_is_active (w))) 4316 if (expect_false (ev_is_active (w)))
2698 return; 4317 return;
2699 4318
2700 EV_FREQUENT_CHECK; 4319 EV_FREQUENT_CHECK;
2705 4324
2706 EV_FREQUENT_CHECK; 4325 EV_FREQUENT_CHECK;
2707} 4326}
2708 4327
2709void 4328void
2710ev_check_stop (EV_P_ ev_check *w) 4329ev_check_stop (EV_P_ ev_check *w) EV_THROW
2711{ 4330{
2712 clear_pending (EV_A_ (W)w); 4331 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w))) 4332 if (expect_false (!ev_is_active (w)))
2714 return; 4333 return;
2715 4334
2724 4343
2725 ev_stop (EV_A_ (W)w); 4344 ev_stop (EV_A_ (W)w);
2726 4345
2727 EV_FREQUENT_CHECK; 4346 EV_FREQUENT_CHECK;
2728} 4347}
4348#endif
2729 4349
2730#if EV_EMBED_ENABLE 4350#if EV_EMBED_ENABLE
2731void noinline 4351void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w) 4352ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2733{ 4353{
2734 ev_loop (w->other, EVLOOP_NONBLOCK); 4354 ev_run (w->other, EVRUN_NOWAIT);
2735} 4355}
2736 4356
2737static void 4357static void
2738embed_io_cb (EV_P_ ev_io *io, int revents) 4358embed_io_cb (EV_P_ ev_io *io, int revents)
2739{ 4359{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4360 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741 4361
2742 if (ev_cb (w)) 4362 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4363 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else 4364 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK); 4365 ev_run (w->other, EVRUN_NOWAIT);
2746} 4366}
2747 4367
2748static void 4368static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4369embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{ 4370{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4371 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752 4372
2753 { 4373 {
2754 struct ev_loop *loop = w->other; 4374 EV_P = w->other;
2755 4375
2756 while (fdchangecnt) 4376 while (fdchangecnt)
2757 { 4377 {
2758 fd_reify (EV_A); 4378 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4379 ev_run (EV_A_ EVRUN_NOWAIT);
2760 } 4380 }
2761 } 4381 }
4382}
4383
4384static void
4385embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4386{
4387 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4388
4389 ev_embed_stop (EV_A_ w);
4390
4391 {
4392 EV_P = w->other;
4393
4394 ev_loop_fork (EV_A);
4395 ev_run (EV_A_ EVRUN_NOWAIT);
4396 }
4397
4398 ev_embed_start (EV_A_ w);
2762} 4399}
2763 4400
2764#if 0 4401#if 0
2765static void 4402static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4403embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2768 ev_idle_stop (EV_A_ idle); 4405 ev_idle_stop (EV_A_ idle);
2769} 4406}
2770#endif 4407#endif
2771 4408
2772void 4409void
2773ev_embed_start (EV_P_ ev_embed *w) 4410ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2774{ 4411{
2775 if (expect_false (ev_is_active (w))) 4412 if (expect_false (ev_is_active (w)))
2776 return; 4413 return;
2777 4414
2778 { 4415 {
2779 struct ev_loop *loop = w->other; 4416 EV_P = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4417 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4418 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 } 4419 }
2783 4420
2784 EV_FREQUENT_CHECK; 4421 EV_FREQUENT_CHECK;
2785 4422
2788 4425
2789 ev_prepare_init (&w->prepare, embed_prepare_cb); 4426 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI); 4427 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare); 4428 ev_prepare_start (EV_A_ &w->prepare);
2792 4429
4430 ev_fork_init (&w->fork, embed_fork_cb);
4431 ev_fork_start (EV_A_ &w->fork);
4432
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4433 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794 4434
2795 ev_start (EV_A_ (W)w, 1); 4435 ev_start (EV_A_ (W)w, 1);
2796 4436
2797 EV_FREQUENT_CHECK; 4437 EV_FREQUENT_CHECK;
2798} 4438}
2799 4439
2800void 4440void
2801ev_embed_stop (EV_P_ ev_embed *w) 4441ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2802{ 4442{
2803 clear_pending (EV_A_ (W)w); 4443 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w))) 4444 if (expect_false (!ev_is_active (w)))
2805 return; 4445 return;
2806 4446
2807 EV_FREQUENT_CHECK; 4447 EV_FREQUENT_CHECK;
2808 4448
2809 ev_io_stop (EV_A_ &w->io); 4449 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare); 4450 ev_prepare_stop (EV_A_ &w->prepare);
4451 ev_fork_stop (EV_A_ &w->fork);
2811 4452
2812 ev_stop (EV_A_ (W)w); 4453 ev_stop (EV_A_ (W)w);
2813 4454
2814 EV_FREQUENT_CHECK; 4455 EV_FREQUENT_CHECK;
2815} 4456}
2816#endif 4457#endif
2817 4458
2818#if EV_FORK_ENABLE 4459#if EV_FORK_ENABLE
2819void 4460void
2820ev_fork_start (EV_P_ ev_fork *w) 4461ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2821{ 4462{
2822 if (expect_false (ev_is_active (w))) 4463 if (expect_false (ev_is_active (w)))
2823 return; 4464 return;
2824 4465
2825 EV_FREQUENT_CHECK; 4466 EV_FREQUENT_CHECK;
2830 4471
2831 EV_FREQUENT_CHECK; 4472 EV_FREQUENT_CHECK;
2832} 4473}
2833 4474
2834void 4475void
2835ev_fork_stop (EV_P_ ev_fork *w) 4476ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2836{ 4477{
2837 clear_pending (EV_A_ (W)w); 4478 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4479 if (expect_false (!ev_is_active (w)))
2839 return; 4480 return;
2840 4481
2851 4492
2852 EV_FREQUENT_CHECK; 4493 EV_FREQUENT_CHECK;
2853} 4494}
2854#endif 4495#endif
2855 4496
4497#if EV_CLEANUP_ENABLE
4498void
4499ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4500{
4501 if (expect_false (ev_is_active (w)))
4502 return;
4503
4504 EV_FREQUENT_CHECK;
4505
4506 ev_start (EV_A_ (W)w, ++cleanupcnt);
4507 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4508 cleanups [cleanupcnt - 1] = w;
4509
4510 /* cleanup watchers should never keep a refcount on the loop */
4511 ev_unref (EV_A);
4512 EV_FREQUENT_CHECK;
4513}
4514
4515void
4516ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4517{
4518 clear_pending (EV_A_ (W)w);
4519 if (expect_false (!ev_is_active (w)))
4520 return;
4521
4522 EV_FREQUENT_CHECK;
4523 ev_ref (EV_A);
4524
4525 {
4526 int active = ev_active (w);
4527
4528 cleanups [active - 1] = cleanups [--cleanupcnt];
4529 ev_active (cleanups [active - 1]) = active;
4530 }
4531
4532 ev_stop (EV_A_ (W)w);
4533
4534 EV_FREQUENT_CHECK;
4535}
4536#endif
4537
2856#if EV_ASYNC_ENABLE 4538#if EV_ASYNC_ENABLE
2857void 4539void
2858ev_async_start (EV_P_ ev_async *w) 4540ev_async_start (EV_P_ ev_async *w) EV_THROW
2859{ 4541{
2860 if (expect_false (ev_is_active (w))) 4542 if (expect_false (ev_is_active (w)))
2861 return; 4543 return;
4544
4545 w->sent = 0;
2862 4546
2863 evpipe_init (EV_A); 4547 evpipe_init (EV_A);
2864 4548
2865 EV_FREQUENT_CHECK; 4549 EV_FREQUENT_CHECK;
2866 4550
2870 4554
2871 EV_FREQUENT_CHECK; 4555 EV_FREQUENT_CHECK;
2872} 4556}
2873 4557
2874void 4558void
2875ev_async_stop (EV_P_ ev_async *w) 4559ev_async_stop (EV_P_ ev_async *w) EV_THROW
2876{ 4560{
2877 clear_pending (EV_A_ (W)w); 4561 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w))) 4562 if (expect_false (!ev_is_active (w)))
2879 return; 4563 return;
2880 4564
2891 4575
2892 EV_FREQUENT_CHECK; 4576 EV_FREQUENT_CHECK;
2893} 4577}
2894 4578
2895void 4579void
2896ev_async_send (EV_P_ ev_async *w) 4580ev_async_send (EV_P_ ev_async *w) EV_THROW
2897{ 4581{
2898 w->sent = 1; 4582 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync); 4583 evpipe_write (EV_A_ &async_pending);
2900} 4584}
2901#endif 4585#endif
2902 4586
2903/*****************************************************************************/ 4587/*****************************************************************************/
2904 4588
2914once_cb (EV_P_ struct ev_once *once, int revents) 4598once_cb (EV_P_ struct ev_once *once, int revents)
2915{ 4599{
2916 void (*cb)(int revents, void *arg) = once->cb; 4600 void (*cb)(int revents, void *arg) = once->cb;
2917 void *arg = once->arg; 4601 void *arg = once->arg;
2918 4602
2919 ev_io_stop (EV_A_ &once->io); 4603 ev_io_stop (EV_A_ &once->io);
2920 ev_timer_stop (EV_A_ &once->to); 4604 ev_timer_stop (EV_A_ &once->to);
2921 ev_free (once); 4605 ev_free (once);
2922 4606
2923 cb (revents, arg); 4607 cb (revents, arg);
2924} 4608}
2925 4609
2926static void 4610static void
2927once_cb_io (EV_P_ ev_io *w, int revents) 4611once_cb_io (EV_P_ ev_io *w, int revents)
2928{ 4612{
2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4613 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4614
4615 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2930} 4616}
2931 4617
2932static void 4618static void
2933once_cb_to (EV_P_ ev_timer *w, int revents) 4619once_cb_to (EV_P_ ev_timer *w, int revents)
2934{ 4620{
2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4622
4623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2936} 4624}
2937 4625
2938void 4626void
2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4627ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2940{ 4628{
2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4629 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2942 4630
2943 if (expect_false (!once)) 4631 if (expect_false (!once))
2944 { 4632 {
2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4633 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2946 return; 4634 return;
2947 } 4635 }
2948 4636
2949 once->cb = cb; 4637 once->cb = cb;
2950 once->arg = arg; 4638 once->arg = arg;
2962 ev_timer_set (&once->to, timeout, 0.); 4650 ev_timer_set (&once->to, timeout, 0.);
2963 ev_timer_start (EV_A_ &once->to); 4651 ev_timer_start (EV_A_ &once->to);
2964 } 4652 }
2965} 4653}
2966 4654
4655/*****************************************************************************/
4656
4657#if EV_WALK_ENABLE
4658void ecb_cold
4659ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4660{
4661 int i, j;
4662 ev_watcher_list *wl, *wn;
4663
4664 if (types & (EV_IO | EV_EMBED))
4665 for (i = 0; i < anfdmax; ++i)
4666 for (wl = anfds [i].head; wl; )
4667 {
4668 wn = wl->next;
4669
4670#if EV_EMBED_ENABLE
4671 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4672 {
4673 if (types & EV_EMBED)
4674 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4675 }
4676 else
4677#endif
4678#if EV_USE_INOTIFY
4679 if (ev_cb ((ev_io *)wl) == infy_cb)
4680 ;
4681 else
4682#endif
4683 if ((ev_io *)wl != &pipe_w)
4684 if (types & EV_IO)
4685 cb (EV_A_ EV_IO, wl);
4686
4687 wl = wn;
4688 }
4689
4690 if (types & (EV_TIMER | EV_STAT))
4691 for (i = timercnt + HEAP0; i-- > HEAP0; )
4692#if EV_STAT_ENABLE
4693 /*TODO: timer is not always active*/
4694 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4695 {
4696 if (types & EV_STAT)
4697 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4698 }
4699 else
4700#endif
4701 if (types & EV_TIMER)
4702 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4703
4704#if EV_PERIODIC_ENABLE
4705 if (types & EV_PERIODIC)
4706 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4707 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4708#endif
4709
4710#if EV_IDLE_ENABLE
4711 if (types & EV_IDLE)
4712 for (j = NUMPRI; j--; )
4713 for (i = idlecnt [j]; i--; )
4714 cb (EV_A_ EV_IDLE, idles [j][i]);
4715#endif
4716
4717#if EV_FORK_ENABLE
4718 if (types & EV_FORK)
4719 for (i = forkcnt; i--; )
4720 if (ev_cb (forks [i]) != embed_fork_cb)
4721 cb (EV_A_ EV_FORK, forks [i]);
4722#endif
4723
4724#if EV_ASYNC_ENABLE
4725 if (types & EV_ASYNC)
4726 for (i = asynccnt; i--; )
4727 cb (EV_A_ EV_ASYNC, asyncs [i]);
4728#endif
4729
4730#if EV_PREPARE_ENABLE
4731 if (types & EV_PREPARE)
4732 for (i = preparecnt; i--; )
4733# if EV_EMBED_ENABLE
4734 if (ev_cb (prepares [i]) != embed_prepare_cb)
4735# endif
4736 cb (EV_A_ EV_PREPARE, prepares [i]);
4737#endif
4738
4739#if EV_CHECK_ENABLE
4740 if (types & EV_CHECK)
4741 for (i = checkcnt; i--; )
4742 cb (EV_A_ EV_CHECK, checks [i]);
4743#endif
4744
4745#if EV_SIGNAL_ENABLE
4746 if (types & EV_SIGNAL)
4747 for (i = 0; i < EV_NSIG - 1; ++i)
4748 for (wl = signals [i].head; wl; )
4749 {
4750 wn = wl->next;
4751 cb (EV_A_ EV_SIGNAL, wl);
4752 wl = wn;
4753 }
4754#endif
4755
4756#if EV_CHILD_ENABLE
4757 if (types & EV_CHILD)
4758 for (i = (EV_PID_HASHSIZE); i--; )
4759 for (wl = childs [i]; wl; )
4760 {
4761 wn = wl->next;
4762 cb (EV_A_ EV_CHILD, wl);
4763 wl = wn;
4764 }
4765#endif
4766/* EV_STAT 0x00001000 /* stat data changed */
4767/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4768}
4769#endif
4770
2967#if EV_MULTIPLICITY 4771#if EV_MULTIPLICITY
2968 #include "ev_wrap.h" 4772 #include "ev_wrap.h"
2969#endif 4773#endif
2970 4774
2971#ifdef __cplusplus
2972}
2973#endif
2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines