ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
52# endif 65# endif
53# endif 66# endif
54 67
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
57# else 71# else
58# define EV_USE_SELECT 0 72# define EV_USE_NANOSLEEP 0
73# endif
59# endif 74# endif
60 75
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
62# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
63# else 79# else
64# define EV_USE_POLL 0 80# define EV_USE_SELECT 0
81# endif
65# endif 82# endif
66 83
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
68# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
69# else 87# else
70# define EV_USE_EPOLL 0 88# define EV_USE_POLL 0
89# endif
71# endif 90# endif
72 91
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
74# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
75# else 95# else
76# define EV_USE_KQUEUE 0 96# define EV_USE_EPOLL 0
97# endif
77# endif 98# endif
78 99
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
80# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
81# else 103# else
82# define EV_USE_PORT 0 104# define EV_USE_KQUEUE 0
105# endif
83# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
84 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
85#endif 132#endif
86 133
87#include <math.h> 134#include <math.h>
88#include <stdlib.h> 135#include <stdlib.h>
89#include <fcntl.h> 136#include <fcntl.h>
96#include <sys/types.h> 143#include <sys/types.h>
97#include <time.h> 144#include <time.h>
98 145
99#include <signal.h> 146#include <signal.h>
100 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
101#ifndef _WIN32 154#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 155# include <sys/time.h>
104# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
105#else 158#else
106# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 160# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
110# endif 163# endif
111#endif 164#endif
112 165
113/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
114 167
115#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
117#endif 170#endif
118 171
119#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
121#endif 178#endif
122 179
123#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
125#endif 182#endif
131# define EV_USE_POLL 1 188# define EV_USE_POLL 1
132# endif 189# endif
133#endif 190#endif
134 191
135#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
136# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
137#endif 198#endif
138 199
139#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
141#endif 202#endif
142 203
143#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 205# define EV_USE_PORT 0
145#endif 206#endif
146 207
147/**/ 208#ifndef EV_USE_INOTIFY
148 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
149/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
150#ifdef __APPLE__ 211# else
151# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
152# undef EV_USE_KQUEUE
153#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
154 259
155#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
158#endif 263#endif
160#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
163#endif 268#endif
164 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
165#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 286# include <winsock.h>
167#endif 287#endif
168 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
169/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 318
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
175 322
176#ifdef EV_H
177# include EV_H
178#else
179# include "ev.h"
180#endif
181
182#if __GNUC__ >= 3 323#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 325# define noinline __attribute__ ((noinline))
185#else 326#else
186# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
187# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
188#endif 332#endif
189 333
190#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
192 343
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
195 346
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 348#define EMPTY2(a,b) /* used to suppress some warnings */
198 349
199typedef struct ev_watcher *W; 350typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
202 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
204 362
205#ifdef _WIN32 363#ifdef _WIN32
206# include "ev_win32.c" 364# include "ev_win32.c"
207#endif 365#endif
208 366
209/*****************************************************************************/ 367/*****************************************************************************/
210 368
211static void (*syserr_cb)(const char *msg); 369static void (*syserr_cb)(const char *msg);
212 370
371void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 372ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 373{
215 syserr_cb = cb; 374 syserr_cb = cb;
216} 375}
217 376
218static void 377static void noinline
219syserr (const char *msg) 378syserr (const char *msg)
220{ 379{
221 if (!msg) 380 if (!msg)
222 msg = "(libev) system error"; 381 msg = "(libev) system error";
223 382
228 perror (msg); 387 perror (msg);
229 abort (); 388 abort ();
230 } 389 }
231} 390}
232 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
233static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 408
409void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 411{
237 alloc = cb; 412 alloc = cb;
238} 413}
239 414
240static void * 415inline_speed void *
241ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
242{ 417{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
244 419
245 if (!ptr && size) 420 if (!ptr && size)
246 { 421 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort (); 423 abort ();
269typedef struct 444typedef struct
270{ 445{
271 W w; 446 W w;
272 int events; 447 int events;
273} ANPENDING; 448} ANPENDING;
449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
274 475
275#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
276 477
277 struct ev_loop 478 struct ev_loop
278 { 479 {
312 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif 515#endif
315} 516}
316 517
317inline ev_tstamp 518ev_tstamp inline_size
318get_clock (void) 519get_clock (void)
319{ 520{
320#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
322 { 523 {
335{ 536{
336 return ev_rt_now; 537 return ev_rt_now;
337} 538}
338#endif 539#endif
339 540
340#define array_roundsize(type,n) (((n) | 4) & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
341 597
342#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
344 { \ 600 { \
345 int newcnt = cur; \ 601 int ocur_ = (cur); \
346 do \ 602 (base) = (type *)array_realloc \
347 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 605 }
356 606
607#if 0
357#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 610 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 614 }
615#endif
364 616
365#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
367 619
368/*****************************************************************************/ 620/*****************************************************************************/
369 621
370static void 622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
371anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
372{ 652{
373 while (count--) 653 while (count--)
374 { 654 {
375 base->head = 0; 655 base->head = 0;
378 658
379 ++base; 659 ++base;
380 } 660 }
381} 661}
382 662
383void 663void inline_speed
384ev_feed_event (EV_P_ void *w, int revents)
385{
386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
389 {
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
391 return;
392 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398}
399
400static void
401queue_events (EV_P_ W *events, int eventcnt, int type)
402{
403 int i;
404
405 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type);
407}
408
409inline void
410fd_event (EV_P_ int fd, int revents) 664fd_event (EV_P_ int fd, int revents)
411{ 665{
412 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 667 ev_io *w;
414 668
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 670 {
417 int ev = w->events & revents; 671 int ev = w->events & revents;
418 672
419 if (ev) 673 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
422} 676}
423 677
424void 678void
425ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 680{
681 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
428} 683}
429 684
430/*****************************************************************************/ 685void inline_size
431
432inline void
433fd_reify (EV_P) 686fd_reify (EV_P)
434{ 687{
435 int i; 688 int i;
436 689
437 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
438 { 691 {
439 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 694 ev_io *w;
442 695
443 int events = 0; 696 unsigned char events = 0;
444 697
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 699 events |= (unsigned char)w->events;
447 700
448#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
449 if (events) 702 if (events)
450 { 703 {
451 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
452 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 } 711 }
455#endif 712#endif
456 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
457 anfd->reify = 0; 718 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
461 } 724 }
462 725
463 fdchangecnt = 0; 726 fdchangecnt = 0;
464} 727}
465 728
466static void 729void inline_size
467fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
468{ 731{
469 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
473 734
735 if (expect_true (!reify))
736 {
474 ++fdchangecnt; 737 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
477} 741}
478 742
479static void 743void inline_speed
480fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
481{ 745{
482 struct ev_io *w; 746 ev_io *w;
483 747
484 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
485 { 749 {
486 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 752 }
489} 753}
490 754
491inline int 755int inline_size
492fd_valid (int fd) 756fd_valid (int fd)
493{ 757{
494#ifdef _WIN32 758#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 759 return _get_osfhandle (fd) != -1;
496#else 760#else
497 return fcntl (fd, F_GETFD) != -1; 761 return fcntl (fd, F_GETFD) != -1;
498#endif 762#endif
499} 763}
500 764
501/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
502static void 766static void noinline
503fd_ebadf (EV_P) 767fd_ebadf (EV_P)
504{ 768{
505 int fd; 769 int fd;
506 770
507 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
510 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
511} 775}
512 776
513/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 778static void noinline
515fd_enomem (EV_P) 779fd_enomem (EV_P)
516{ 780{
517 int fd; 781 int fd;
518 782
519 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
522 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
523 return; 787 return;
524 } 788 }
525} 789}
526 790
527/* usually called after fork if method needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 792static void noinline
529fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
530{ 794{
531 int fd; 795 int fd;
532 796
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 798 if (anfds [fd].events)
536 { 799 {
537 anfds [fd].events = 0; 800 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
539 } 802 }
540} 803}
541 804
542/*****************************************************************************/ 805/*****************************************************************************/
543 806
544static void 807/*
545upheap (WT *heap, int k) 808 * the heap functions want a real array index. array index 0 uis guaranteed to not
546{ 809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
547 WT w = heap [k]; 810 * the branching factor of the d-tree.
811 */
548 812
549 while (k && heap [k >> 1]->at > w->at) 813/*
550 { 814 * at the moment we allow libev the luxury of two heaps,
551 heap [k] = heap [k >> 1]; 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
552 ((W)heap [k])->active = k + 1; 816 * which is more cache-efficient.
553 k >>= 1; 817 * the difference is about 5% with 50000+ watchers.
554 } 818 */
819#if EV_USE_4HEAP
555 820
556 heap [k] = w; 821#define DHEAP 4
557 ((W)heap [k])->active = k + 1; 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
558 825
559} 826/* away from the root */
560 827void inline_speed
561static void
562downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
563{ 829{
564 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
565 832
566 while (k < (N >> 1)) 833 for (;;)
567 { 834 {
568 int j = k << 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
569 838
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
571 ++j; 841 {
572 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
573 if (w->at <= heap [j]->at) 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
574 break; 855 break;
575 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
576 heap [k] = heap [j]; 895 heap [k] = heap [c];
577 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
578 k = j; 898 k = c;
579 } 899 }
580 900
581 heap [k] = w; 901 heap [k] = he;
582 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
583} 903}
904#endif
584 905
585inline void 906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
586adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
587{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
588 upheap (heap, k); 932 upheap (heap, k);
933 else
589 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
590} 947}
591 948
592/*****************************************************************************/ 949/*****************************************************************************/
593 950
594typedef struct 951typedef struct
595{ 952{
596 WL head; 953 WL head;
597 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
598} ANSIG; 955} ANSIG;
599 956
600static ANSIG *signals; 957static ANSIG *signals;
601static int signalmax; 958static int signalmax;
602 959
603static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606 961
607static void 962void inline_size
608signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
609{ 964{
610 while (count--) 965 while (count--)
611 { 966 {
612 base->head = 0; 967 base->head = 0;
614 969
615 ++base; 970 ++base;
616 } 971 }
617} 972}
618 973
619static void 974/*****************************************************************************/
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625 975
626 signals [signum - 1].gotsig = 1; 976void inline_speed
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 977fd_intern (int fd)
672{ 978{
673#ifdef _WIN32 979#ifdef _WIN32
674 int arg = 1; 980 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 983 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 985#endif
680} 986}
681 987
988static void noinline
989evpipe_init (EV_P)
990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
1006 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
1011 ev_io_start (EV_A_ &pipeev);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
682static void 1039static void
683siginit (EV_P) 1040pipecb (EV_P_ ev_io *iow, int revents)
684{ 1041{
685 fd_intern (sigpipe [0]); 1042#if EV_USE_EVENTFD
686 fd_intern (sigpipe [1]); 1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
687 1054
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1055 if (gotsig && ev_is_default_loop (EV_A))
689 ev_io_start (EV_A_ &sigev); 1056 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
691} 1079}
692 1080
693/*****************************************************************************/ 1081/*****************************************************************************/
694 1082
695static struct ev_child *childs [PID_HASHSIZE]; 1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
1120static WL childs [EV_PID_HASHSIZE];
696 1121
697#ifndef _WIN32 1122#ifndef _WIN32
698 1123
699static struct ev_signal childev; 1124static ev_signal childev;
1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
1130void inline_speed
1131child_reap (EV_P_ int chain, int pid, int status)
1132{
1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
1140 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1142 w->rpid = pid;
1143 w->rstatus = status;
1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1145 }
1146 }
1147}
700 1148
701#ifndef WCONTINUED 1149#ifndef WCONTINUED
702# define WCONTINUED 0 1150# define WCONTINUED 0
703#endif 1151#endif
704 1152
705static void 1153static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1154childcb (EV_P_ ev_signal *sw, int revents)
722{ 1155{
723 int pid, status; 1156 int pid, status;
724 1157
1158 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1159 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1160 if (!WCONTINUED
1161 || errno != EINVAL
1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1163 return;
1164
727 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1168
730 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1172}
734 1173
735#endif 1174#endif
736 1175
737/*****************************************************************************/ 1176/*****************************************************************************/
763{ 1202{
764 return EV_VERSION_MINOR; 1203 return EV_VERSION_MINOR;
765} 1204}
766 1205
767/* return true if we are running with elevated privileges and should ignore env variables */ 1206/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1207int inline_size
769enable_secure (void) 1208enable_secure (void)
770{ 1209{
771#ifdef _WIN32 1210#ifdef _WIN32
772 return 0; 1211 return 0;
773#else 1212#else
775 || getgid () != getegid (); 1214 || getgid () != getegid ();
776#endif 1215#endif
777} 1216}
778 1217
779unsigned int 1218unsigned int
780ev_method (EV_P) 1219ev_supported_backends (void)
781{ 1220{
782 return method; 1221 unsigned int flags = 0;
783}
784 1222
785static void 1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1226 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_recommended_backends (void)
1234{
1235 unsigned int flags = ev_supported_backends ();
1236
1237#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE;
1241#endif
1242#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation
1244 flags &= ~EVBACKEND_POLL;
1245#endif
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_embeddable_backends (void)
1252{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_backend (EV_P)
1264{
1265 return backend;
1266}
1267
1268unsigned int
1269ev_loop_count (EV_P)
1270{
1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
1284}
1285
1286static void noinline
786loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
787{ 1288{
788 if (!method) 1289 if (!backend)
789 { 1290 {
790#if EV_USE_MONOTONIC 1291#if EV_USE_MONOTONIC
791 { 1292 {
792 struct timespec ts; 1293 struct timespec ts;
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1295 have_monotonic = 1;
795 } 1296 }
796#endif 1297#endif
797 1298
798 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
799 mn_now = get_clock (); 1300 mn_now = get_clock ();
800 now_floor = mn_now; 1301 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
802 1303
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1312
1313 /* pid check not overridable via env */
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1323
806 if (!(flags & 0x0000ffff)) 1324 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1325 flags |= ev_recommended_backends ();
808 1326
809 method = 0;
810#if EV_USE_PORT 1327#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1329#endif
813#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1332#endif
816#if EV_USE_EPOLL 1333#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1334 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1335#endif
819#if EV_USE_POLL 1336#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1338#endif
822#if EV_USE_SELECT 1339#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1341#endif
825 1342
826 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
828 } 1345 }
829} 1346}
830 1347
831static void 1348static void noinline
832loop_destroy (EV_P) 1349loop_destroy (EV_P)
833{ 1350{
834 int i; 1351 int i;
835 1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369
1370#if EV_USE_INOTIFY
1371 if (fs_fd >= 0)
1372 close (fs_fd);
1373#endif
1374
1375 if (backend_fd >= 0)
1376 close (backend_fd);
1377
836#if EV_USE_PORT 1378#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1380#endif
839#if EV_USE_KQUEUE 1381#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1383#endif
842#if EV_USE_EPOLL 1384#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1386#endif
845#if EV_USE_POLL 1387#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1389#endif
848#if EV_USE_SELECT 1390#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1392#endif
851 1393
852 for (i = NUMPRI; i--; ) 1394 for (i = NUMPRI; i--; )
1395 {
853 array_free (pending, [i]); 1396 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399#endif
1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
854 1403
855 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0); 1405 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1406 array_free (timer, EMPTY);
858#if EV_PERIODICS 1407#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1408 array_free (periodic, EMPTY);
860#endif 1409#endif
1410#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1411 array_free (fork, EMPTY);
1412#endif
862 array_free (prepare, EMPTY0); 1413 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
864 1418
865 method = 0; 1419 backend = 0;
866} 1420}
867 1421
868static void 1422#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P);
1424#endif
1425
1426void inline_size
869loop_fork (EV_P) 1427loop_fork (EV_P)
870{ 1428{
871#if EV_USE_PORT 1429#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1431#endif
874#if EV_USE_KQUEUE 1432#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1434#endif
877#if EV_USE_EPOLL 1435#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1437#endif
1438#if EV_USE_INOTIFY
1439 infy_fork (EV_A);
1440#endif
880 1441
881 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
882 { 1443 {
883 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
884 1450
885 ev_ref (EV_A); 1451 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
887 close (sigpipe [0]); 1461 close (evpipe [0]);
888 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
889 1464
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
894 } 1468 }
895 1469
896 postfork = 0; 1470 postfork = 0;
897} 1471}
898 1472
899#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
900struct ev_loop * 1475struct ev_loop *
901ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
902{ 1477{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904 1479
905 memset (loop, 0, sizeof (struct ev_loop)); 1480 memset (loop, 0, sizeof (struct ev_loop));
906 1481
907 loop_init (EV_A_ flags); 1482 loop_init (EV_A_ flags);
908 1483
909 if (ev_method (EV_A)) 1484 if (ev_backend (EV_A))
910 return loop; 1485 return loop;
911 1486
912 return 0; 1487 return 0;
913} 1488}
914 1489
920} 1495}
921 1496
922void 1497void
923ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
924{ 1499{
925 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
926} 1501}
927 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
928#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
929 1602
930#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
931struct ev_loop * 1604struct ev_loop *
932ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
933#else 1606#else
934int 1607int
935ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
936#endif 1609#endif
937{ 1610{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
943 { 1612 {
944#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
946#else 1615#else
947 ev_default_loop_ptr = 1; 1616 ev_default_loop_ptr = 1;
948#endif 1617#endif
949 1618
950 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
951 1620
952 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
953 { 1622 {
954 siginit (EV_A);
955
956#ifndef _WIN32 1623#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
977#ifndef _WIN32 1644#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
980#endif 1647#endif
981 1648
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
989} 1650}
990 1651
991void 1652void
992ev_default_fork (void) 1653ev_default_fork (void)
993{ 1654{
994#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
996#endif 1657#endif
997 1658
998 if (method) 1659 if (backend)
999 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1000} 1661}
1001 1662
1002/*****************************************************************************/ 1663/*****************************************************************************/
1003 1664
1004static int 1665void
1005any_pending (EV_P) 1666ev_invoke (EV_P_ void *w, int revents)
1006{ 1667{
1007 int pri; 1668 EV_CB_INVOKE ((W)w, revents);
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014} 1669}
1015 1670
1016inline void 1671void inline_speed
1017call_pending (EV_P) 1672call_pending (EV_P)
1018{ 1673{
1019 int pri; 1674 int pri;
1020 1675
1021 for (pri = NUMPRI; pri--; ) 1676 for (pri = NUMPRI; pri--; )
1023 { 1678 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 1680
1026 if (expect_true (p->w)) 1681 if (expect_true (p->w))
1027 { 1682 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1684
1028 p->w->pending = 0; 1685 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1030 } 1688 }
1031 } 1689 }
1032} 1690}
1033 1691
1034inline void 1692#if EV_IDLE_ENABLE
1693void inline_size
1694idle_reify (EV_P)
1695{
1696 if (expect_false (idleall))
1697 {
1698 int pri;
1699
1700 for (pri = NUMPRI; pri--; )
1701 {
1702 if (pendingcnt [pri])
1703 break;
1704
1705 if (idlecnt [pri])
1706 {
1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1708 break;
1709 }
1710 }
1711 }
1712}
1713#endif
1714
1715void inline_size
1035timers_reify (EV_P) 1716timers_reify (EV_P)
1036{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 1721 {
1039 struct ev_timer *w = timers [0]; 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1040 1723
1041 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1042 1725
1043 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
1044 if (w->repeat) 1727 if (w->repeat)
1045 { 1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 1734
1048 ((WT)w)->at += w->repeat; 1735 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 1736 downheap (timers, timercnt, HEAP0);
1053 } 1737 }
1054 else 1738 else
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 1740
1741 EV_FREQUENT_CHECK;
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1058 } 1743 }
1059} 1744}
1060 1745
1061#if EV_PERIODICS 1746#if EV_PERIODIC_ENABLE
1062inline void 1747void inline_size
1063periodics_reify (EV_P) 1748periodics_reify (EV_P)
1064{ 1749{
1750 EV_FREQUENT_CHECK;
1751
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 1753 {
1067 struct ev_periodic *w = periodics [0]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1068 1755
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 1757
1071 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
1072 if (w->reschedule_cb) 1759 if (w->reschedule_cb)
1073 { 1760 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1076 downheap ((WT *)periodics, periodiccnt, 0); 1766 downheap (periodics, periodiccnt, HEAP0);
1077 } 1767 }
1078 else if (w->interval) 1768 else if (w->interval)
1079 { 1769 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1082 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1083 } 1786 }
1084 else 1787 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 1789
1790 EV_FREQUENT_CHECK;
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 } 1792 }
1089} 1793}
1090 1794
1091static void 1795static void noinline
1092periodics_reschedule (EV_P) 1796periodics_reschedule (EV_P)
1093{ 1797{
1094 int i; 1798 int i;
1095 1799
1096 /* adjust periodics after time jump */ 1800 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i) 1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1098 { 1802 {
1099 struct ev_periodic *w = periodics [i]; 1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1100 1804
1101 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval) 1807 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1814}
1815#endif
1816
1817void inline_speed
1818time_update (EV_P_ ev_tstamp max_block)
1819{
1820 int i;
1821
1822#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic))
1105 } 1824 {
1825 ev_tstamp odiff = rtmn_diff;
1106 1826
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock (); 1827 mn_now = get_clock ();
1117 1828
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 { 1832 {
1120 ev_rt_now = rtmn_diff + mn_now; 1833 ev_rt_now = rtmn_diff + mn_now;
1121 return 0; 1834 return;
1122 } 1835 }
1123 else 1836
1124 {
1125 now_floor = mn_now; 1837 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 1838 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 1839
1131inline void 1840 /* loop a few times, before making important decisions.
1132time_update (EV_P) 1841 * on the choice of "4": one iteration isn't enough,
1133{ 1842 * in case we get preempted during the calls to
1134 int i; 1843 * ev_time and get_clock. a second call is almost guaranteed
1135 1844 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 1845 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 1846 * in the unlikely event of having been preempted here.
1138 { 1847 */
1139 if (time_update_monotonic (EV_A)) 1848 for (i = 4; --i; )
1140 { 1849 {
1141 ev_tstamp odiff = rtmn_diff; 1850 rtmn_diff = ev_rt_now - mn_now;
1142 1851
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1853 return; /* all is well */
1854
1855 ev_rt_now = ev_time ();
1856 mn_now = get_clock ();
1857 now_floor = mn_now;
1858 }
1859
1860# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A);
1862# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 }
1866 else
1867#endif
1868 {
1869 ev_rt_now = ev_time ();
1870
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1872 {
1873#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A);
1875#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
1144 { 1878 {
1145 rtmn_diff = ev_rt_now - mn_now; 1879 ANHE *he = timers + i + HEAP0;
1146 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1881 ANHE_at_cache (*he);
1148 return; /* all is well */
1149
1150 ev_rt_now = ev_time ();
1151 mn_now = get_clock ();
1152 now_floor = mn_now;
1153 } 1882 }
1154
1155# if EV_PERIODICS
1156 periodics_reschedule (EV_A);
1157# endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 1883 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 1884
1178 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1179 } 1886 }
1180} 1887}
1181 1888
1194static int loop_done; 1901static int loop_done;
1195 1902
1196void 1903void
1197ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1198{ 1905{
1199 double block; 1906 loop_done = EVUNLOOP_CANCEL;
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1201 1907
1202 while (activecnt) 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1909
1910 do
1203 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1916#ifndef _WIN32
1917 if (expect_false (curpid)) /* penalise the forking check even more */
1918 if (expect_false (getpid () != curpid))
1919 {
1920 curpid = getpid ();
1921 postfork = 1;
1922 }
1923#endif
1924
1925#if EV_FORK_ENABLE
1926 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork))
1928 if (forkcnt)
1929 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A);
1932 }
1933#endif
1934
1204 /* queue check watchers (and execute them) */ 1935 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 1936 if (expect_false (preparecnt))
1206 { 1937 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 1939 call_pending (EV_A);
1209 } 1940 }
1210 1941
1942 if (expect_false (!activecnt))
1943 break;
1944
1211 /* we might have forked, so reify kernel state if necessary */ 1945 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 1946 if (expect_false (postfork))
1213 loop_fork (EV_A); 1947 loop_fork (EV_A);
1214 1948
1215 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 1950 fd_reify (EV_A);
1217 1951
1218 /* calculate blocking time */ 1952 /* calculate blocking time */
1953 {
1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1219 1956
1220 /* we only need this for !monotonic clock or timers, but as we basically 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 1958 {
1228 ev_rt_now = ev_time (); 1959 /* update time to cancel out callback processing overhead */
1229 mn_now = ev_rt_now; 1960 time_update (EV_A_ 1e100);
1230 }
1231 1961
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1237 1963
1238 if (timercnt) 1964 if (timercnt)
1239 { 1965 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1242 } 1968 }
1243 1969
1244#if EV_PERIODICS 1970#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 1971 if (periodiccnt)
1246 { 1972 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1249 } 1975 }
1250#endif 1976#endif
1251 1977
1252 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1253 } 1991 }
1254 1992
1255 method_poll (EV_A_ block); 1993 ++loop_count;
1994 backend_poll (EV_A_ waittime);
1256 1995
1257 /* update ev_rt_now, do magic */ 1996 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 1997 time_update (EV_A_ waittime + sleeptime);
1998 }
1259 1999
1260 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2002#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2003 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2004#endif
1265 2005
2006#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2007 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2008 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2009#endif
1269 2010
1270 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1273 2014
1274 call_pending (EV_A); 2015 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2016 }
2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1279 2022
1280 if (loop_done != 2) 2023 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 2024 loop_done = EVUNLOOP_CANCEL;
1282} 2025}
1283 2026
1284void 2027void
1285ev_unloop (EV_P_ int how) 2028ev_unloop (EV_P_ int how)
1286{ 2029{
1287 loop_done = how; 2030 loop_done = how;
1288} 2031}
1289 2032
1290/*****************************************************************************/ 2033/*****************************************************************************/
1291 2034
1292inline void 2035void inline_size
1293wlist_add (WL *head, WL elem) 2036wlist_add (WL *head, WL elem)
1294{ 2037{
1295 elem->next = *head; 2038 elem->next = *head;
1296 *head = elem; 2039 *head = elem;
1297} 2040}
1298 2041
1299inline void 2042void inline_size
1300wlist_del (WL *head, WL elem) 2043wlist_del (WL *head, WL elem)
1301{ 2044{
1302 while (*head) 2045 while (*head)
1303 { 2046 {
1304 if (*head == elem) 2047 if (*head == elem)
1309 2052
1310 head = &(*head)->next; 2053 head = &(*head)->next;
1311 } 2054 }
1312} 2055}
1313 2056
1314inline void 2057void inline_speed
1315ev_clear_pending (EV_P_ W w) 2058clear_pending (EV_P_ W w)
1316{ 2059{
1317 if (w->pending) 2060 if (w->pending)
1318 { 2061 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2062 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1320 w->pending = 0; 2063 w->pending = 0;
1321 } 2064 }
1322} 2065}
1323 2066
1324inline void 2067int
2068ev_clear_pending (EV_P_ void *w)
2069{
2070 W w_ = (W)w;
2071 int pending = w_->pending;
2072
2073 if (expect_true (pending))
2074 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2076 w_->pending = 0;
2077 p->w = 0;
2078 return p->events;
2079 }
2080 else
2081 return 0;
2082}
2083
2084void inline_size
2085pri_adjust (EV_P_ W w)
2086{
2087 int pri = w->priority;
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri;
2091}
2092
2093void inline_speed
1325ev_start (EV_P_ W w, int active) 2094ev_start (EV_P_ W w, int active)
1326{ 2095{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2096 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2097 w->active = active;
1331 ev_ref (EV_A); 2098 ev_ref (EV_A);
1332} 2099}
1333 2100
1334inline void 2101void inline_size
1335ev_stop (EV_P_ W w) 2102ev_stop (EV_P_ W w)
1336{ 2103{
1337 ev_unref (EV_A); 2104 ev_unref (EV_A);
1338 w->active = 0; 2105 w->active = 0;
1339} 2106}
1340 2107
1341/*****************************************************************************/ 2108/*****************************************************************************/
1342 2109
1343void 2110void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2111ev_io_start (EV_P_ ev_io *w)
1345{ 2112{
1346 int fd = w->fd; 2113 int fd = w->fd;
1347 2114
1348 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1349 return; 2116 return;
1350 2117
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1352 2119
2120 EV_FREQUENT_CHECK;
2121
1353 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1356 2125
1357 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1358} 2127 w->events &= ~EV_IOFDSET;
1359 2128
1360void 2129 EV_FREQUENT_CHECK;
2130}
2131
2132void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1362{ 2134{
1363 ev_clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1365 return; 2137 return;
1366 2138
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2140
2141 EV_FREQUENT_CHECK;
2142
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1371 2145
1372 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
1373}
1374 2147
1375void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1377{ 2153{
1378 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1379 return; 2155 return;
1380 2156
1381 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1382 2158
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1389 2169
2170 EV_FREQUENT_CHECK;
2171
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2173}
1392 2174
1393void 2175void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2177{
1396 ev_clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1398 return; 2180 return;
1399 2181
2182 EV_FREQUENT_CHECK;
2183
2184 {
2185 int active = ev_active (w);
2186
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2188
2189 --timercnt;
2190
1402 if (expect_true (((W)w)->active < timercnt--)) 2191 if (expect_true (active < timercnt + HEAP0))
1403 { 2192 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2194 adjustheap (timers, timercnt, active);
1406 } 2195 }
2196 }
1407 2197
1408 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1409 2201
1410 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1411} 2203}
1412 2204
1413void 2205void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1415{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1416 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1417 { 2211 {
1418 if (w->repeat) 2212 if (w->repeat)
1419 { 2213 {
1420 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1422 } 2217 }
1423 else 2218 else
1424 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1425 } 2220 }
1426 else if (w->repeat) 2221 else if (w->repeat)
1427 { 2222 {
1428 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1430 } 2225 }
1431}
1432 2226
2227 EV_FREQUENT_CHECK;
2228}
2229
1433#if EV_PERIODICS 2230#if EV_PERIODIC_ENABLE
1434void 2231void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2233{
1437 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1438 return; 2235 return;
1439 2236
1440 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2239 else if (w->interval)
1443 { 2240 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2244 }
2245 else
2246 ev_at (w) = w->offset;
1448 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1453 2256
2257 EV_FREQUENT_CHECK;
2258
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2260}
1456 2261
1457void 2262void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2264{
1460 ev_clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1462 return; 2267 return;
1463 2268
2269 EV_FREQUENT_CHECK;
2270
2271 {
2272 int active = ev_active (w);
2273
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2275
2276 --periodiccnt;
2277
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2279 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2281 adjustheap (periodics, periodiccnt, active);
1470 } 2282 }
2283 }
2284
2285 EV_FREQUENT_CHECK;
1471 2286
1472 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1473} 2288}
1474 2289
1475void 2290void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2292{
1478 /* TODO: use adjustheap and recalculation */ 2293 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2294 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2295 ev_periodic_start (EV_A_ w);
1481} 2296}
1482#endif 2297#endif
1483 2298
1484void 2299#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2300# define SA_RESTART 0
2301#endif
2302
2303void noinline
2304ev_signal_start (EV_P_ ev_signal *w)
1486{ 2305{
2306#if EV_MULTIPLICITY
2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2308#endif
1487 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1488 return; 2310 return;
1489 2311
1490 ev_start (EV_A_ (W)w, ++idlecnt);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1492 idles [idlecnt - 1] = w;
1493}
1494
1495void
1496ev_idle_stop (EV_P_ struct ev_idle *w)
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501
1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1503 ev_stop (EV_A_ (W)w);
1504}
1505
1506void
1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1508{
1509 if (expect_false (ev_is_active (w)))
1510 return;
1511
1512 ev_start (EV_A_ (W)w, ++preparecnt);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1514 prepares [preparecnt - 1] = w;
1515}
1516
1517void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1519{
1520 ev_clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w)))
1522 return;
1523
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1525 ev_stop (EV_A_ (W)w);
1526}
1527
1528void
1529ev_check_start (EV_P_ struct ev_check *w)
1530{
1531 if (expect_false (ev_is_active (w)))
1532 return;
1533
1534 ev_start (EV_A_ (W)w, ++checkcnt);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538
1539void
1540ev_check_stop (EV_P_ struct ev_check *w)
1541{
1542 ev_clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w)))
1544 return;
1545
1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1547 ev_stop (EV_A_ (W)w);
1548}
1549
1550#ifndef SA_RESTART
1551# define SA_RESTART 0
1552#endif
1553
1554void
1555ev_signal_start (EV_P_ struct ev_signal *w)
1556{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w)))
1561 return;
1562
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1565 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1568 2334
1569 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1570 { 2336 {
1571#if _WIN32 2337#if _WIN32
1572 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1573#else 2339#else
1574 struct sigaction sa; 2340 struct sigaction sa;
1575 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1576 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1579#endif 2345#endif
1580 } 2346 }
1581}
1582 2347
1583void 2348 EV_FREQUENT_CHECK;
2349}
2350
2351void noinline
1584ev_signal_stop (EV_P_ struct ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1585{ 2353{
1586 ev_clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1588 return; 2356 return;
1589 2357
2358 EV_FREQUENT_CHECK;
2359
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1591 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1592 2362
1593 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1594 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
1595}
1596 2365
2366 EV_FREQUENT_CHECK;
2367}
2368
1597void 2369void
1598ev_child_start (EV_P_ struct ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1599{ 2371{
1600#if EV_MULTIPLICITY 2372#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2374#endif
1603 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1604 return; 2376 return;
1605 2377
2378 EV_FREQUENT_CHECK;
2379
1606 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1608}
1609 2382
2383 EV_FREQUENT_CHECK;
2384}
2385
1610void 2386void
1611ev_child_stop (EV_P_ struct ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1612{ 2388{
1613 ev_clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1615 return; 2391 return;
1616 2392
2393 EV_FREQUENT_CHECK;
2394
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1619} 2399}
2400
2401#if EV_STAT_ENABLE
2402
2403# ifdef _WIN32
2404# undef lstat
2405# define lstat(a,b) _stati64 (a,b)
2406# endif
2407
2408#define DEF_STAT_INTERVAL 5.0074891
2409#define MIN_STAT_INTERVAL 0.1074891
2410
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412
2413#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192
2415
2416static void noinline
2417infy_add (EV_P_ ev_stat *w)
2418{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2420
2421 if (w->wd < 0)
2422 {
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2424
2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 {
2430 char path [4096];
2431 strcpy (path, w->path);
2432
2433 do
2434 {
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437
2438 char *pend = strrchr (path, '/');
2439
2440 if (!pend)
2441 break; /* whoops, no '/', complain to your admin */
2442
2443 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 }
2448 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451
2452 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2454}
2455
2456static void noinline
2457infy_del (EV_P_ ev_stat *w)
2458{
2459 int slot;
2460 int wd = w->wd;
2461
2462 if (wd < 0)
2463 return;
2464
2465 w->wd = -2;
2466 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2467 wlist_del (&fs_hash [slot].head, (WL)w);
2468
2469 /* remove this watcher, if others are watching it, they will rearm */
2470 inotify_rm_watch (fs_fd, wd);
2471}
2472
2473static void noinline
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{
2476 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2479 infy_wd (EV_A_ slot, wd, ev);
2480 else
2481 {
2482 WL w_;
2483
2484 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2485 {
2486 ev_stat *w = (ev_stat *)w_;
2487 w_ = w_->next; /* lets us remove this watcher and all before it */
2488
2489 if (w->wd == wd || wd == -1)
2490 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 {
2493 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */
2495 }
2496
2497 stat_timer_cb (EV_A_ &w->timer, 0);
2498 }
2499 }
2500 }
2501}
2502
2503static void
2504infy_cb (EV_P_ ev_io *w, int revents)
2505{
2506 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf));
2510
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2513}
2514
2515void inline_size
2516infy_init (EV_P)
2517{
2518 if (fs_fd != -2)
2519 return;
2520
2521 fs_fd = inotify_init ();
2522
2523 if (fs_fd >= 0)
2524 {
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w);
2528 }
2529}
2530
2531void inline_size
2532infy_fork (EV_P)
2533{
2534 int slot;
2535
2536 if (fs_fd < 0)
2537 return;
2538
2539 close (fs_fd);
2540 fs_fd = inotify_init ();
2541
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2543 {
2544 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0;
2546
2547 while (w_)
2548 {
2549 ev_stat *w = (ev_stat *)w_;
2550 w_ = w_->next; /* lets us add this watcher */
2551
2552 w->wd = -1;
2553
2554 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else
2557 ev_timer_start (EV_A_ &w->timer);
2558 }
2559
2560 }
2561}
2562
2563#endif
2564
2565void
2566ev_stat_stat (EV_P_ ev_stat *w)
2567{
2568 if (lstat (w->path, &w->attr) < 0)
2569 w->attr.st_nlink = 0;
2570 else if (!w->attr.st_nlink)
2571 w->attr.st_nlink = 1;
2572}
2573
2574static void noinline
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578
2579 /* we copy this here each the time so that */
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w);
2583
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if (
2586 w->prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime
2597 ) {
2598 #if EV_USE_INOTIFY
2599 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */
2602 #endif
2603
2604 ev_feed_event (EV_A_ w, EV_STAT);
2605 }
2606}
2607
2608void
2609ev_stat_start (EV_P_ ev_stat *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w);
2619
2620 if (w->interval < MIN_STAT_INTERVAL)
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2624 ev_set_priority (&w->timer, ev_priority (w));
2625
2626#if EV_USE_INOTIFY
2627 infy_init (EV_A);
2628
2629 if (fs_fd >= 0)
2630 infy_add (EV_A_ w);
2631 else
2632#endif
2633 ev_timer_start (EV_A_ &w->timer);
2634
2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2638}
2639
2640void
2641ev_stat_stop (EV_P_ ev_stat *w)
2642{
2643 clear_pending (EV_A_ (W)w);
2644 if (expect_false (!ev_is_active (w)))
2645 return;
2646
2647 EV_FREQUENT_CHECK;
2648
2649#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w);
2651#endif
2652 ev_timer_stop (EV_A_ &w->timer);
2653
2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2657}
2658#endif
2659
2660#if EV_IDLE_ENABLE
2661void
2662ev_idle_start (EV_P_ ev_idle *w)
2663{
2664 if (expect_false (ev_is_active (w)))
2665 return;
2666
2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2670
2671 {
2672 int active = ++idlecnt [ABSPRI (w)];
2673
2674 ++idleall;
2675 ev_start (EV_A_ (W)w, active);
2676
2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2678 idles [ABSPRI (w)][active - 1] = w;
2679 }
2680
2681 EV_FREQUENT_CHECK;
2682}
2683
2684void
2685ev_idle_stop (EV_P_ ev_idle *w)
2686{
2687 clear_pending (EV_A_ (W)w);
2688 if (expect_false (!ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 {
2694 int active = ev_active (w);
2695
2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2698
2699 ev_stop (EV_A_ (W)w);
2700 --idleall;
2701 }
2702
2703 EV_FREQUENT_CHECK;
2704}
2705#endif
2706
2707void
2708ev_prepare_start (EV_P_ ev_prepare *w)
2709{
2710 if (expect_false (ev_is_active (w)))
2711 return;
2712
2713 EV_FREQUENT_CHECK;
2714
2715 ev_start (EV_A_ (W)w, ++preparecnt);
2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_prepare_stop (EV_P_ ev_prepare *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 prepares [active - 1] = prepares [--preparecnt];
2735 ev_active (prepares [active - 1]) = active;
2736 }
2737
2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2741}
2742
2743void
2744ev_check_start (EV_P_ ev_check *w)
2745{
2746 if (expect_false (ev_is_active (w)))
2747 return;
2748
2749 EV_FREQUENT_CHECK;
2750
2751 ev_start (EV_A_ (W)w, ++checkcnt);
2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2756}
2757
2758void
2759ev_check_stop (EV_P_ ev_check *w)
2760{
2761 clear_pending (EV_A_ (W)w);
2762 if (expect_false (!ev_is_active (w)))
2763 return;
2764
2765 EV_FREQUENT_CHECK;
2766
2767 {
2768 int active = ev_active (w);
2769
2770 checks [active - 1] = checks [--checkcnt];
2771 ev_active (checks [active - 1]) = active;
2772 }
2773
2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2777}
2778
2779#if EV_EMBED_ENABLE
2780void noinline
2781ev_embed_sweep (EV_P_ ev_embed *w)
2782{
2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2784}
2785
2786static void
2787embed_io_cb (EV_P_ ev_io *io, int revents)
2788{
2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2790
2791 if (ev_cb (w))
2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2793 else
2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2820
2821void
2822ev_embed_start (EV_P_ ev_embed *w)
2823{
2824 if (expect_false (ev_is_active (w)))
2825 return;
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 }
2832
2833 EV_FREQUENT_CHECK;
2834
2835 ev_set_priority (&w->io, ev_priority (w));
2836 ev_io_start (EV_A_ &w->io);
2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_embed_stop (EV_P_ ev_embed *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2860
2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2864}
2865#endif
2866
2867#if EV_FORK_ENABLE
2868void
2869ev_fork_start (EV_P_ ev_fork *w)
2870{
2871 if (expect_false (ev_is_active (w)))
2872 return;
2873
2874 EV_FREQUENT_CHECK;
2875
2876 ev_start (EV_A_ (W)w, ++forkcnt);
2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2881}
2882
2883void
2884ev_fork_stop (EV_P_ ev_fork *w)
2885{
2886 clear_pending (EV_A_ (W)w);
2887 if (expect_false (!ev_is_active (w)))
2888 return;
2889
2890 EV_FREQUENT_CHECK;
2891
2892 {
2893 int active = ev_active (w);
2894
2895 forks [active - 1] = forks [--forkcnt];
2896 ev_active (forks [active - 1]) = active;
2897 }
2898
2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2949}
2950#endif
1620 2951
1621/*****************************************************************************/ 2952/*****************************************************************************/
1622 2953
1623struct ev_once 2954struct ev_once
1624{ 2955{
1625 struct ev_io io; 2956 ev_io io;
1626 struct ev_timer to; 2957 ev_timer to;
1627 void (*cb)(int revents, void *arg); 2958 void (*cb)(int revents, void *arg);
1628 void *arg; 2959 void *arg;
1629}; 2960};
1630 2961
1631static void 2962static void
1640 2971
1641 cb (revents, arg); 2972 cb (revents, arg);
1642} 2973}
1643 2974
1644static void 2975static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 2976once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 2977{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1648} 2979}
1649 2980
1650static void 2981static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 2982once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 2983{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1654} 2985}
1655 2986
1656void 2987void
1680 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
1682 } 3013 }
1683} 3014}
1684 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
1685#ifdef __cplusplus 3020#ifdef __cplusplus
1686} 3021}
1687#endif 3022#endif
1688 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines