ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.169 by root, Sat Dec 8 14:27:39 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 318
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 322
225#if __GNUC__ >= 3 323#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
228#else 326#else
229# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
230# define noinline 328# define noinline
231# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 330# define inline
233# endif 331# endif
234#endif 332#endif
235 333
236#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
251 349
252typedef ev_watcher *W; 350typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
255 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
257 362
258#ifdef _WIN32 363#ifdef _WIN32
259# include "ev_win32.c" 364# include "ev_win32.c"
260#endif 365#endif
261 366
282 perror (msg); 387 perror (msg);
283 abort (); 388 abort ();
284 } 389 }
285} 390}
286 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
287static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 408
289void 409void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 411{
292 alloc = cb; 412 alloc = cb;
293} 413}
294 414
295inline_speed void * 415inline_speed void *
296ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
297{ 417{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
299 419
300 if (!ptr && size) 420 if (!ptr && size)
301 { 421 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 423 abort ();
326 W w; 446 W w;
327 int events; 447 int events;
328} ANPENDING; 448} ANPENDING;
329 449
330#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
331typedef struct 452typedef struct
332{ 453{
333 WL head; 454 WL head;
334} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
335#endif 474#endif
336 475
337#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
338 477
339 struct ev_loop 478 struct ev_loop
397{ 536{
398 return ev_rt_now; 537 return ev_rt_now;
399} 538}
400#endif 539#endif
401 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
402int inline_size 570int inline_size
403array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
404{ 572{
405 int ncur = cur + 1; 573 int ncur = cur + 1;
406 574
407 do 575 do
408 ncur <<= 1; 576 ncur <<= 1;
409 while (cnt > ncur); 577 while (cnt > ncur);
410 578
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 581 {
414 ncur *= elem; 582 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 585 ncur /= elem;
418 } 586 }
419 587
420 return ncur; 588 return ncur;
421} 589}
422 590
423inline_speed void * 591static noinline void *
424array_realloc (int elem, void *base, int *cur, int cnt) 592array_realloc (int elem, void *base, int *cur, int cnt)
425{ 593{
426 *cur = array_nextsize (elem, *cur, cnt); 594 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 595 return ev_realloc (base, elem * *cur);
428} 596}
453 621
454void noinline 622void noinline
455ev_feed_event (EV_P_ void *w, int revents) 623ev_feed_event (EV_P_ void *w, int revents)
456{ 624{
457 W w_ = (W)w; 625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
458 627
459 if (expect_false (w_->pending)) 628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
460 { 631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
461 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 635 pendings [pri][w_->pending - 1].events = revents;
462 return;
463 } 636 }
464
465 w_->pending = ++pendingcnt [ABSPRI (w_)];
466 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
467 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
468 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
469} 637}
470 638
471void inline_size 639void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 641{
474 int i; 642 int i;
475 643
476 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
523 { 691 {
524 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
526 ev_io *w; 694 ev_io *w;
527 695
528 int events = 0; 696 unsigned char events = 0;
529 697
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 699 events |= (unsigned char)w->events;
532 700
533#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
534 if (events) 702 if (events)
535 { 703 {
536 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
537 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
539 } 711 }
540#endif 712#endif
541 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
542 anfd->reify = 0; 718 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
546 } 724 }
547 725
548 fdchangecnt = 0; 726 fdchangecnt = 0;
549} 727}
550 728
551void inline_size 729void inline_size
552fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
553{ 731{
554 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
558 734
735 if (expect_true (!reify))
736 {
559 ++fdchangecnt; 737 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
562} 741}
563 742
564void inline_speed 743void inline_speed
565fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
566{ 745{
617 796
618 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 798 if (anfds [fd].events)
620 { 799 {
621 anfds [fd].events = 0; 800 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 802 }
624} 803}
625 804
626/*****************************************************************************/ 805/*****************************************************************************/
627 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
628void inline_speed 827void inline_speed
629upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
630{ 829{
631 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
632 832
633 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
639 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
640 heap [k] = w; 866 heap [k] = he;
641 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
642
643} 868}
644 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
645void inline_speed 877void inline_speed
646downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
647{ 879{
648 WT w = heap [k]; 880 ANHE he = heap [k];
649 881
650 while (k < (N >> 1)) 882 for (;;)
651 { 883 {
652 int j = k << 1; 884 int c = k << 1;
653 885
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 887 break;
659 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
660 heap [k] = heap [j]; 895 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
662 k = j; 898 k = c;
663 } 899 }
664 900
665 heap [k] = w; 901 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
667} 926}
668 927
669void inline_size 928void inline_size
670adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
671{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 932 upheap (heap, k);
933 else
673 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
674} 947}
675 948
676/*****************************************************************************/ 949/*****************************************************************************/
677 950
678typedef struct 951typedef struct
679{ 952{
680 WL head; 953 WL head;
681 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
682} ANSIG; 955} ANSIG;
683 956
684static ANSIG *signals; 957static ANSIG *signals;
685static int signalmax; 958static int signalmax;
686 959
687static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 961
691void inline_size 962void inline_size
692signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
693{ 964{
694 while (count--) 965 while (count--)
698 969
699 ++base; 970 ++base;
700 } 971 }
701} 972}
702 973
703static void 974/*****************************************************************************/
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709 975
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_size 976void inline_speed
755fd_intern (int fd) 977fd_intern (int fd)
756{ 978{
757#ifdef _WIN32 979#ifdef _WIN32
758 int arg = 1; 980 int arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 985#endif
764} 986}
765 987
766static void noinline 988static void noinline
767siginit (EV_P) 989evpipe_init (EV_P)
768{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
769 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
771 1010
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
775} 1079}
776 1080
777/*****************************************************************************/ 1081/*****************************************************************************/
778 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
779static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
780 1121
781#ifndef _WIN32 1122#ifndef _WIN32
782 1123
783static ev_signal childev; 1124static ev_signal childev;
784 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
785void inline_speed 1130void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
787{ 1132{
788 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1135
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
791 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
792 { 1140 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1142 w->rpid = pid;
795 w->rstatus = status; 1143 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1145 }
1146 }
798} 1147}
799 1148
800#ifndef WCONTINUED 1149#ifndef WCONTINUED
801# define WCONTINUED 0 1150# define WCONTINUED 0
802#endif 1151#endif
811 if (!WCONTINUED 1160 if (!WCONTINUED
812 || errno != EINVAL 1161 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1163 return;
815 1164
816 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1168
820 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1172}
824 1173
825#endif 1174#endif
826 1175
827/*****************************************************************************/ 1176/*****************************************************************************/
899} 1248}
900 1249
901unsigned int 1250unsigned int
902ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
903{ 1252{
904 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1254
906 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
907} 1260}
908 1261
909unsigned int 1262unsigned int
910ev_backend (EV_P) 1263ev_backend (EV_P)
911{ 1264{
914 1267
915unsigned int 1268unsigned int
916ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
917{ 1270{
918 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
919} 1284}
920 1285
921static void noinline 1286static void noinline
922loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
923{ 1288{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1295 have_monotonic = 1;
931 } 1296 }
932#endif 1297#endif
933 1298
934 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1300 mn_now = get_clock ();
936 now_floor = mn_now; 1301 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
938 1312
939 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
940#ifndef _WIN32 1314#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1316 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1320 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1323
950 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1326
959#if EV_USE_PORT 1327#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1329#endif
962#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
970#endif 1338#endif
971#if EV_USE_SELECT 1339#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1341#endif
974 1342
975 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1345 }
978} 1346}
979 1347
980static void noinline 1348static void noinline
981loop_destroy (EV_P) 1349loop_destroy (EV_P)
982{ 1350{
983 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
984 1369
985#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
987 close (fs_fd); 1372 close (fs_fd);
988#endif 1373#endif
1011 array_free (pending, [i]); 1396 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1398 array_free (idle, [i]);
1014#endif 1399#endif
1015 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1016 1403
1017 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1022#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1023 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1025 1418
1026 backend = 0; 1419 backend = 0;
1027} 1420}
1028 1421
1422#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1030 1425
1031void inline_size 1426void inline_size
1032loop_fork (EV_P) 1427loop_fork (EV_P)
1033{ 1428{
1034#if EV_USE_PORT 1429#if EV_USE_PORT
1042#endif 1437#endif
1043#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1439 infy_fork (EV_A);
1045#endif 1440#endif
1046 1441
1047 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1048 { 1443 {
1049 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1050 1450
1051 ev_ref (EV_A); 1451 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1053 close (sigpipe [0]); 1461 close (evpipe [0]);
1054 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1055 1464
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1468 }
1061 1469
1062 postfork = 0; 1470 postfork = 0;
1063} 1471}
1064 1472
1065#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1066struct ev_loop * 1475struct ev_loop *
1067ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1068{ 1477{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1479
1086} 1495}
1087 1496
1088void 1497void
1089ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1090{ 1499{
1091 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1092} 1501}
1093 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1094#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1095 1602
1096#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1097struct ev_loop * 1604struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1099#else 1606#else
1100int 1607int
1101ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1102#endif 1609#endif
1103{ 1610{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1109 { 1612 {
1110#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1615#else
1115 1618
1116 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1117 1620
1118 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1119 { 1622 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1623#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1644#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
1146#endif 1647#endif
1147 1648
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
1155} 1650}
1156 1651
1157void 1652void
1158ev_default_fork (void) 1653ev_default_fork (void)
1160#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1657#endif
1163 1658
1164 if (backend) 1659 if (backend)
1165 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1661}
1167 1662
1168/*****************************************************************************/ 1663/*****************************************************************************/
1169 1664
1170void 1665void
1187 { 1682 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1684
1190 p->w->pending = 0; 1685 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1192 } 1688 }
1193 } 1689 }
1194} 1690}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 1691
1275#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1276void inline_size 1693void inline_size
1277idle_reify (EV_P) 1694idle_reify (EV_P)
1278{ 1695{
1293 } 1710 }
1294 } 1711 }
1295} 1712}
1296#endif 1713#endif
1297 1714
1298int inline_size 1715void inline_size
1299time_update_monotonic (EV_P) 1716timers_reify (EV_P)
1300{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1814}
1815#endif
1816
1817void inline_speed
1818time_update (EV_P_ ev_tstamp max_block)
1819{
1820 int i;
1821
1822#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic))
1824 {
1825 ev_tstamp odiff = rtmn_diff;
1826
1301 mn_now = get_clock (); 1827 mn_now = get_clock ();
1302 1828
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1832 {
1305 ev_rt_now = rtmn_diff + mn_now; 1833 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1834 return;
1307 } 1835 }
1308 else 1836
1309 {
1310 now_floor = mn_now; 1837 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1838 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1839
1316void inline_size 1840 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1841 * on the choice of "4": one iteration isn't enough,
1318{ 1842 * in case we get preempted during the calls to
1319 int i; 1843 * ev_time and get_clock. a second call is almost guaranteed
1320 1844 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1845 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1846 * in the unlikely event of having been preempted here.
1323 { 1847 */
1324 if (time_update_monotonic (EV_A)) 1848 for (i = 4; --i; )
1325 { 1849 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1339 1851
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1853 return; /* all is well */
1342 1854
1343 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1856 mn_now = get_clock ();
1345 now_floor = mn_now; 1857 now_floor = mn_now;
1346 } 1858 }
1347 1859
1348# if EV_PERIODIC_ENABLE 1860# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1861 periodics_reschedule (EV_A);
1350# endif 1862# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1865 }
1355 else 1866 else
1356#endif 1867#endif
1357 { 1868 {
1358 ev_rt_now = ev_time (); 1869 ev_rt_now = ev_time ();
1359 1870
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1872 {
1362#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1364#endif 1875#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1369 } 1883 }
1370 1884
1371 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1372 } 1886 }
1373} 1887}
1387static int loop_done; 1901static int loop_done;
1388 1902
1389void 1903void
1390ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1391{ 1905{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1907
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1909
1398 do 1910 do
1399 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1400#ifndef _WIN32 1916#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1403 { 1919 {
1404 curpid = getpid (); 1920 curpid = getpid ();
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 1931 call_pending (EV_A);
1416 } 1932 }
1417#endif 1933#endif
1418 1934
1419 /* queue check watchers (and execute them) */ 1935 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 1936 if (expect_false (preparecnt))
1421 { 1937 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 1939 call_pending (EV_A);
1424 } 1940 }
1433 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1950 fd_reify (EV_A);
1435 1951
1436 /* calculate blocking time */ 1952 /* calculate blocking time */
1437 { 1953 {
1438 ev_tstamp block; 1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1439 1956
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1958 {
1444 /* update time to cancel out callback processing overhead */ 1959 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1960 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1961
1455 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1456 1963
1457 if (timercnt) 1964 if (timercnt)
1458 { 1965 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1461 } 1968 }
1462 1969
1463#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1971 if (periodiccnt)
1465 { 1972 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1468 } 1975 }
1469#endif 1976#endif
1470 1977
1471 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1472 } 1991 }
1473 1992
1474 ++loop_count; 1993 ++loop_count;
1475 backend_poll (EV_A_ block); 1994 backend_poll (EV_A_ waittime);
1995
1996 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime);
1476 } 1998 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 1999
1481 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2002#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2003 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2014
1496 call_pending (EV_A); 2015 call_pending (EV_A);
1497
1498 } 2016 }
1499 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1500 2022
1501 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1503} 2025}
1504 2026
1546ev_clear_pending (EV_P_ void *w) 2068ev_clear_pending (EV_P_ void *w)
1547{ 2069{
1548 W w_ = (W)w; 2070 W w_ = (W)w;
1549 int pending = w_->pending; 2071 int pending = w_->pending;
1550 2072
1551 if (!pending) 2073 if (expect_true (pending))
2074 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2076 w_->pending = 0;
2077 p->w = 0;
2078 return p->events;
2079 }
2080 else
1552 return 0; 2081 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2082}
1560 2083
1561void inline_size 2084void inline_size
1562pri_adjust (EV_P_ W w) 2085pri_adjust (EV_P_ W w)
1563{ 2086{
1582 w->active = 0; 2105 w->active = 0;
1583} 2106}
1584 2107
1585/*****************************************************************************/ 2108/*****************************************************************************/
1586 2109
1587void 2110void noinline
1588ev_io_start (EV_P_ ev_io *w) 2111ev_io_start (EV_P_ ev_io *w)
1589{ 2112{
1590 int fd = w->fd; 2113 int fd = w->fd;
1591 2114
1592 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1593 return; 2116 return;
1594 2117
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1596 2119
2120 EV_FREQUENT_CHECK;
2121
1597 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1600 2125
1601 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1602} 2127 w->events &= ~EV_IOFDSET;
1603 2128
1604void 2129 EV_FREQUENT_CHECK;
2130}
2131
2132void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1606{ 2134{
1607 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1609 return; 2137 return;
1610 2138
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2140
2141 EV_FREQUENT_CHECK;
2142
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1615 2145
1616 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
1617}
1618 2147
1619void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1621{ 2153{
1622 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1623 return; 2155 return;
1624 2156
1625 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1626 2158
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1633 2169
2170 EV_FREQUENT_CHECK;
2171
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2173}
1636 2174
1637void 2175void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2177{
1640 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1642 return; 2180 return;
1643 2181
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 EV_FREQUENT_CHECK;
1645 2183
1646 { 2184 {
1647 int active = ((W)w)->active; 2185 int active = ev_active (w);
1648 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1649 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1650 { 2192 {
1651 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1653 } 2195 }
1654 } 2196 }
1655 2197
1656 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1657 2201
1658 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1659} 2203}
1660 2204
1661void 2205void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1663{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1664 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1665 { 2211 {
1666 if (w->repeat) 2212 if (w->repeat)
1667 { 2213 {
1668 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1670 } 2217 }
1671 else 2218 else
1672 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1673 } 2220 }
1674 else if (w->repeat) 2221 else if (w->repeat)
1675 { 2222 {
1676 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1678 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1679} 2228}
1680 2229
1681#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1682void 2231void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2233{
1685 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1686 return; 2235 return;
1687 2236
1688 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2239 else if (w->interval)
1691 { 2240 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2244 }
2245 else
2246 ev_at (w) = w->offset;
1696 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1701 2256
2257 EV_FREQUENT_CHECK;
2258
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2260}
1704 2261
1705void 2262void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2264{
1708 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1710 return; 2267 return;
1711 2268
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 EV_FREQUENT_CHECK;
1713 2270
1714 { 2271 {
1715 int active = ((W)w)->active; 2272 int active = ev_active (w);
1716 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1717 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2279 {
1719 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1721 } 2282 }
1722 } 2283 }
1723 2284
2285 EV_FREQUENT_CHECK;
2286
1724 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1725} 2288}
1726 2289
1727void 2290void noinline
1728ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1729{ 2292{
1730 /* TODO: use adjustheap and recalculation */ 2293 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 2294 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 2295 ev_periodic_start (EV_A_ w);
1735 2298
1736#ifndef SA_RESTART 2299#ifndef SA_RESTART
1737# define SA_RESTART 0 2300# define SA_RESTART 0
1738#endif 2301#endif
1739 2302
1740void 2303void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 2304ev_signal_start (EV_P_ ev_signal *w)
1742{ 2305{
1743#if EV_MULTIPLICITY 2306#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif 2308#endif
1746 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1747 return; 2310 return;
1748 2311
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1750 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1751 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2334
1755 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1756 { 2336 {
1757#if _WIN32 2337#if _WIN32
1758 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1759#else 2339#else
1760 struct sigaction sa; 2340 struct sigaction sa;
1761 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1765#endif 2345#endif
1766 } 2346 }
1767}
1768 2347
1769void 2348 EV_FREQUENT_CHECK;
2349}
2350
2351void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2353{
1772 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1774 return; 2356 return;
1775 2357
2358 EV_FREQUENT_CHECK;
2359
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1778 2362
1779 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1781} 2367}
1782 2368
1783void 2369void
1784ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1785{ 2371{
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2374#endif
1789 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1790 return; 2376 return;
1791 2377
2378 EV_FREQUENT_CHECK;
2379
1792 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1794} 2384}
1795 2385
1796void 2386void
1797ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1798{ 2388{
1799 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1801 return; 2391 return;
1802 2392
2393 EV_FREQUENT_CHECK;
2394
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1805} 2399}
1806 2400
1807#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1808 2402
1809# ifdef _WIN32 2403# ifdef _WIN32
1827 if (w->wd < 0) 2421 if (w->wd < 0)
1828 { 2422 {
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1830 2424
1831 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2429 {
1834 char path [4096]; 2430 char path [4096];
1835 strcpy (path, w->path); 2431 strcpy (path, w->path);
1836 2432
2035 else 2631 else
2036#endif 2632#endif
2037 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2038 2634
2039 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2040} 2638}
2041 2639
2042void 2640void
2043ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2044{ 2642{
2045 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2047 return; 2645 return;
2048 2646
2647 EV_FREQUENT_CHECK;
2648
2049#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2051#endif 2651#endif
2052 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2053 2653
2054 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2055} 2657}
2056#endif 2658#endif
2057 2659
2058#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2059void 2661void
2061{ 2663{
2062 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2063 return; 2665 return;
2064 2666
2065 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2066 2670
2067 { 2671 {
2068 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2069 2673
2070 ++idleall; 2674 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2072 2676
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2075 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2076} 2682}
2077 2683
2078void 2684void
2079ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2080{ 2686{
2081 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2083 return; 2689 return;
2084 2690
2691 EV_FREQUENT_CHECK;
2692
2085 { 2693 {
2086 int active = ((W)w)->active; 2694 int active = ev_active (w);
2087 2695
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 2698
2091 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2092 --idleall; 2700 --idleall;
2093 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2094} 2704}
2095#endif 2705#endif
2096 2706
2097void 2707void
2098ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 2709{
2100 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2101 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2102 2714
2103 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2106} 2720}
2107 2721
2108void 2722void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 2724{
2111 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2113 return; 2727 return;
2114 2728
2729 EV_FREQUENT_CHECK;
2730
2115 { 2731 {
2116 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2117 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2119 } 2736 }
2120 2737
2121 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2122} 2741}
2123 2742
2124void 2743void
2125ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2126{ 2745{
2127 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2128 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2129 2750
2130 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2133} 2756}
2134 2757
2135void 2758void
2136ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2137{ 2760{
2138 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2140 return; 2763 return;
2141 2764
2765 EV_FREQUENT_CHECK;
2766
2142 { 2767 {
2143 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2144 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2146 } 2772 }
2147 2773
2148 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2149} 2777}
2150 2778
2151#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2152void noinline 2780void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 2782{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 2784}
2157 2785
2158static void 2786static void
2159embed_cb (EV_P_ ev_io *io, int revents) 2787embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 2788{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 2790
2163 if (ev_cb (w)) 2791 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 2793 else
2166 ev_embed_sweep (loop, w); 2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2168 2820
2169void 2821void
2170ev_embed_start (EV_P_ ev_embed *w) 2822ev_embed_start (EV_P_ ev_embed *w)
2171{ 2823{
2172 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2173 return; 2825 return;
2174 2826
2175 { 2827 {
2176 struct ev_loop *loop = w->loop; 2828 struct ev_loop *loop = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 2831 }
2832
2833 EV_FREQUENT_CHECK;
2180 2834
2181 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2183 2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2184 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2185} 2847}
2186 2848
2187void 2849void
2188ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2189{ 2851{
2190 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2192 return; 2854 return;
2193 2855
2856 EV_FREQUENT_CHECK;
2857
2194 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2195 2860
2196 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2197} 2864}
2198#endif 2865#endif
2199 2866
2200#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2201void 2868void
2202ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2203{ 2870{
2204 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2205 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2206 2875
2207 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2210} 2881}
2211 2882
2212void 2883void
2213ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2214{ 2885{
2215 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2217 return; 2888 return;
2218 2889
2890 EV_FREQUENT_CHECK;
2891
2219 { 2892 {
2220 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2221 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2223 } 2897 }
2224 2898
2225 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2226} 2949}
2227#endif 2950#endif
2228 2951
2229/*****************************************************************************/ 2952/*****************************************************************************/
2230 2953
2288 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
2290 } 3013 }
2291} 3014}
2292 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
2293#ifdef __cplusplus 3020#ifdef __cplusplus
2294} 3021}
2295#endif 3022#endif
2296 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines