ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
230 318
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 322
235#if __GNUC__ >= 3 323#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
238#else 326#else
239# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
240# define noinline 328# define noinline
241# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 330# define inline
243# endif 331# endif
244#endif 332#endif
245 333
246#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
261 349
262typedef ev_watcher *W; 350typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
265 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
267 362
268#ifdef _WIN32 363#ifdef _WIN32
269# include "ev_win32.c" 364# include "ev_win32.c"
270#endif 365#endif
271 366
292 perror (msg); 387 perror (msg);
293 abort (); 388 abort ();
294 } 389 }
295} 390}
296 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
297static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 408
299void 409void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 411{
302 alloc = cb; 412 alloc = cb;
303} 413}
304 414
305inline_speed void * 415inline_speed void *
306ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
307{ 417{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
309 419
310 if (!ptr && size) 420 if (!ptr && size)
311 { 421 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 423 abort ();
336 W w; 446 W w;
337 int events; 447 int events;
338} ANPENDING; 448} ANPENDING;
339 449
340#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
341typedef struct 452typedef struct
342{ 453{
343 WL head; 454 WL head;
344} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
345#endif 474#endif
346 475
347#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
348 477
349 struct ev_loop 478 struct ev_loop
407{ 536{
408 return ev_rt_now; 537 return ev_rt_now;
409} 538}
410#endif 539#endif
411 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
412int inline_size 570int inline_size
413array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
414{ 572{
415 int ncur = cur + 1; 573 int ncur = cur + 1;
416 574
417 do 575 do
418 ncur <<= 1; 576 ncur <<= 1;
419 while (cnt > ncur); 577 while (cnt > ncur);
420 578
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 581 {
424 ncur *= elem; 582 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 585 ncur /= elem;
428 } 586 }
429 587
430 return ncur; 588 return ncur;
476 pendings [pri][w_->pending - 1].w = w_; 634 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 635 pendings [pri][w_->pending - 1].events = revents;
478 } 636 }
479} 637}
480 638
481void inline_size 639void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 641{
484 int i; 642 int i;
485 643
486 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
533 { 691 {
534 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
536 ev_io *w; 694 ev_io *w;
537 695
538 int events = 0; 696 unsigned char events = 0;
539 697
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 699 events |= (unsigned char)w->events;
542 700
543#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
544 if (events) 702 if (events)
545 { 703 {
546 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
547 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 711 }
550#endif 712#endif
551 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
552 anfd->reify = 0; 718 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
556 } 724 }
557 725
558 fdchangecnt = 0; 726 fdchangecnt = 0;
559} 727}
560 728
561void inline_size 729void inline_size
562fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
563{ 731{
564 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
568 734
735 if (expect_true (!reify))
736 {
569 ++fdchangecnt; 737 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
572} 741}
573 742
574void inline_speed 743void inline_speed
575fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
576{ 745{
627 796
628 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 798 if (anfds [fd].events)
630 { 799 {
631 anfds [fd].events = 0; 800 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 802 }
634} 803}
635 804
636/*****************************************************************************/ 805/*****************************************************************************/
637 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
638void inline_speed 827void inline_speed
639upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
640{ 829{
641 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
642 832
643 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
644 {
645 heap [k] = heap [k >> 1];
646 ((W)heap [k])->active = k + 1;
647 k >>= 1;
648 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
649 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
650 heap [k] = w; 866 heap [k] = he;
651 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
652
653} 868}
654 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
655void inline_speed 877void inline_speed
656downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
657{ 879{
658 WT w = heap [k]; 880 ANHE he = heap [k];
659 881
660 while (k < (N >> 1)) 882 for (;;)
661 { 883 {
662 int j = k << 1; 884 int c = k << 1;
663 885
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 887 break;
669 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
670 heap [k] = heap [j]; 895 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
672 k = j; 898 k = c;
673 } 899 }
674 900
675 heap [k] = w; 901 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
677} 926}
678 927
679void inline_size 928void inline_size
680adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
681{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 932 upheap (heap, k);
933 else
683 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
684} 947}
685 948
686/*****************************************************************************/ 949/*****************************************************************************/
687 950
688typedef struct 951typedef struct
689{ 952{
690 WL head; 953 WL head;
691 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
692} ANSIG; 955} ANSIG;
693 956
694static ANSIG *signals; 957static ANSIG *signals;
695static int signalmax; 958static int signalmax;
696 959
697static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 961
701void inline_size 962void inline_size
702signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
703{ 964{
704 while (count--) 965 while (count--)
708 969
709 ++base; 970 ++base;
710 } 971 }
711} 972}
712 973
713static void 974/*****************************************************************************/
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 975
764void inline_speed 976void inline_speed
765fd_intern (int fd) 977fd_intern (int fd)
766{ 978{
767#ifdef _WIN32 979#ifdef _WIN32
772 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 985#endif
774} 986}
775 987
776static void noinline 988static void noinline
777siginit (EV_P) 989evpipe_init (EV_P)
778{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
779 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
781 1010
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
785} 1079}
786 1080
787/*****************************************************************************/ 1081/*****************************************************************************/
788 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
789static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
790 1121
791#ifndef _WIN32 1122#ifndef _WIN32
792 1123
793static ev_signal childev; 1124static ev_signal childev;
794 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
795void inline_speed 1130void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
797{ 1132{
798 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1135
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
801 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
802 { 1140 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1142 w->rpid = pid;
805 w->rstatus = status; 1143 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1145 }
1146 }
808} 1147}
809 1148
810#ifndef WCONTINUED 1149#ifndef WCONTINUED
811# define WCONTINUED 0 1150# define WCONTINUED 0
812#endif 1151#endif
821 if (!WCONTINUED 1160 if (!WCONTINUED
822 || errno != EINVAL 1161 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1163 return;
825 1164
826 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1168
830 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1172}
834 1173
835#endif 1174#endif
836 1175
837/*****************************************************************************/ 1176/*****************************************************************************/
909} 1248}
910 1249
911unsigned int 1250unsigned int
912ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
913{ 1252{
914 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1254
916 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
917} 1260}
918 1261
919unsigned int 1262unsigned int
920ev_backend (EV_P) 1263ev_backend (EV_P)
921{ 1264{
924 1267
925unsigned int 1268unsigned int
926ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
927{ 1270{
928 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
929} 1284}
930 1285
931static void noinline 1286static void noinline
932loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
933{ 1288{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1295 have_monotonic = 1;
941 } 1296 }
942#endif 1297#endif
943 1298
944 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1300 mn_now = get_clock ();
946 now_floor = mn_now; 1301 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
948 1312
949 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
950#ifndef _WIN32 1314#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1316 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1320 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1323
960 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1326
969#if EV_USE_PORT 1327#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1329#endif
972#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
980#endif 1338#endif
981#if EV_USE_SELECT 1339#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1341#endif
984 1342
985 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1345 }
988} 1346}
989 1347
990static void noinline 1348static void noinline
991loop_destroy (EV_P) 1349loop_destroy (EV_P)
992{ 1350{
993 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
994 1369
995#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
997 close (fs_fd); 1372 close (fs_fd);
998#endif 1373#endif
1021 array_free (pending, [i]); 1396 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1398 array_free (idle, [i]);
1024#endif 1399#endif
1025 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1026 1403
1027 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1032#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1033 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1035 1418
1036 backend = 0; 1419 backend = 0;
1037} 1420}
1038 1421
1422#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1040 1425
1041void inline_size 1426void inline_size
1042loop_fork (EV_P) 1427loop_fork (EV_P)
1043{ 1428{
1044#if EV_USE_PORT 1429#if EV_USE_PORT
1052#endif 1437#endif
1053#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1439 infy_fork (EV_A);
1055#endif 1440#endif
1056 1441
1057 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1058 { 1443 {
1059 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1060 1450
1061 ev_ref (EV_A); 1451 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1063 close (sigpipe [0]); 1461 close (evpipe [0]);
1064 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1065 1464
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1468 }
1071 1469
1072 postfork = 0; 1470 postfork = 0;
1073} 1471}
1074 1472
1075#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1076struct ev_loop * 1475struct ev_loop *
1077ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1078{ 1477{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1479
1096} 1495}
1097 1496
1098void 1497void
1099ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1100{ 1499{
1101 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1102} 1501}
1103 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1104#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1105 1602
1106#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1107struct ev_loop * 1604struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1109#else 1606#else
1110int 1607int
1111ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1112#endif 1609#endif
1113{ 1610{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1119 { 1612 {
1120#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1615#else
1125 1618
1126 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1127 1620
1128 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1129 { 1622 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1623#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153#ifndef _WIN32 1644#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
1156#endif 1647#endif
1157 1648
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
1165} 1650}
1166 1651
1167void 1652void
1168ev_default_fork (void) 1653ev_default_fork (void)
1170#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1657#endif
1173 1658
1174 if (backend) 1659 if (backend)
1175 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1661}
1177 1662
1178/*****************************************************************************/ 1663/*****************************************************************************/
1179 1664
1180void 1665void
1197 { 1682 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199 1684
1200 p->w->pending = 0; 1685 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1202 } 1688 }
1203 } 1689 }
1204} 1690}
1205
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1691
1286#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1287void inline_size 1693void inline_size
1288idle_reify (EV_P) 1694idle_reify (EV_P)
1289{ 1695{
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break; 1708 break;
1303 } 1709 }
1304 } 1710 }
1305 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1306} 1814}
1307#endif 1815#endif
1308 1816
1309void inline_speed 1817void inline_speed
1310time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1339 */ 1847 */
1340 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1341 { 1849 {
1342 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1343 1851
1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1345 return; /* all is well */ 1853 return; /* all is well */
1346 1854
1347 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1348 mn_now = get_clock (); 1856 mn_now = get_clock ();
1349 now_floor = mn_now; 1857 now_floor = mn_now;
1365#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1366 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1367#endif 1875#endif
1368 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1369 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1370 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1371 } 1883 }
1372 1884
1373 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1374 } 1886 }
1375} 1887}
1389static int loop_done; 1901static int loop_done;
1390 1902
1391void 1903void
1392ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1393{ 1905{
1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1395 ? EVUNLOOP_ONE
1396 : EVUNLOOP_CANCEL;
1397 1907
1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399 1909
1400 do 1910 do
1401 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1402#ifndef _WIN32 1916#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1405 { 1919 {
1406 curpid = getpid (); 1920 curpid = getpid ();
1435 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1436 fd_reify (EV_A); 1950 fd_reify (EV_A);
1437 1951
1438 /* calculate blocking time */ 1952 /* calculate blocking time */
1439 { 1953 {
1440 ev_tstamp block; 1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1441 1956
1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1443 block = 0.; /* do not block at all */
1444 else
1445 { 1958 {
1446 /* update time to cancel out callback processing overhead */ 1959 /* update time to cancel out callback processing overhead */
1447 time_update (EV_A_ 1e100); 1960 time_update (EV_A_ 1e100);
1448 1961
1449 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1450 1963
1451 if (timercnt) 1964 if (timercnt)
1452 { 1965 {
1453 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1454 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1455 } 1968 }
1456 1969
1457#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1458 if (periodiccnt) 1971 if (periodiccnt)
1459 { 1972 {
1460 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1461 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1462 } 1975 }
1463#endif 1976#endif
1464 1977
1465 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1466 } 1991 }
1467 1992
1468 ++loop_count; 1993 ++loop_count;
1469 backend_poll (EV_A_ block); 1994 backend_poll (EV_A_ waittime);
1470 1995
1471 /* update ev_rt_now, do magic */ 1996 /* update ev_rt_now, do magic */
1472 time_update (EV_A_ block); 1997 time_update (EV_A_ waittime + sleeptime);
1473 } 1998 }
1474 1999
1475 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1476 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1477#if EV_PERIODIC_ENABLE 2002#if EV_PERIODIC_ENABLE
1486 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1487 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1489 2014
1490 call_pending (EV_A); 2015 call_pending (EV_A);
1491
1492 } 2016 }
1493 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1494 2022
1495 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1496 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1497} 2025}
1498 2026
1587 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1588 return; 2116 return;
1589 2117
1590 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1591 2119
2120 EV_FREQUENT_CHECK;
2121
1592 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1593 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1594 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1595 2125
1596 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1597} 2130}
1598 2131
1599void noinline 2132void noinline
1600ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1601{ 2134{
1602 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1603 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1604 return; 2137 return;
1605 2138
1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1607 2140
2141 EV_FREQUENT_CHECK;
2142
1608 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1609 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1610 2145
1611 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1612} 2149}
1613 2150
1614void noinline 2151void noinline
1615ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1616{ 2153{
1617 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1618 return; 2155 return;
1619 2156
1620 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1621 2158
1622 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1623 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1624 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1626 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1627 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1628 2169
2170 EV_FREQUENT_CHECK;
2171
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1630} 2173}
1631 2174
1632void noinline 2175void noinline
1633ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1634{ 2177{
1635 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1637 return; 2180 return;
1638 2181
1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 EV_FREQUENT_CHECK;
1640 2183
1641 { 2184 {
1642 int active = ((W)w)->active; 2185 int active = ev_active (w);
1643 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1644 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1645 { 2192 {
1646 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1647 adjustheap ((WT *)timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1648 } 2195 }
1649 } 2196 }
1650 2197
1651 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1652 2201
1653 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1654} 2203}
1655 2204
1656void noinline 2205void noinline
1657ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1658{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1659 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1660 { 2211 {
1661 if (w->repeat) 2212 if (w->repeat)
1662 { 2213 {
1663 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1664 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1665 } 2217 }
1666 else 2218 else
1667 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1668 } 2220 }
1669 else if (w->repeat) 2221 else if (w->repeat)
1670 { 2222 {
1671 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1672 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1673 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1674} 2228}
1675 2229
1676#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1677void noinline 2231void noinline
1678ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1679{ 2233{
1680 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1681 return; 2235 return;
1682 2236
1683 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1685 else if (w->interval) 2239 else if (w->interval)
1686 { 2240 {
1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1688 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1690 } 2244 }
1691 else 2245 else
1692 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1693 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1694 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1696 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1697 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1698 2256
2257 EV_FREQUENT_CHECK;
2258
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1700} 2260}
1701 2261
1702void noinline 2262void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1704{ 2264{
1705 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1707 return; 2267 return;
1708 2268
1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 EV_FREQUENT_CHECK;
1710 2270
1711 { 2271 {
1712 int active = ((W)w)->active; 2272 int active = ev_active (w);
1713 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1714 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1715 { 2279 {
1716 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1717 adjustheap ((WT *)periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1718 } 2282 }
1719 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
1720 2286
1721 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1722} 2288}
1723 2289
1724void noinline 2290void noinline
1743 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1744 return; 2310 return;
1745 2311
1746 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1747 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1748 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1750 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1751 2334
1752 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1753 { 2336 {
1754#if _WIN32 2337#if _WIN32
1755 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1756#else 2339#else
1757 struct sigaction sa; 2340 struct sigaction sa;
1758 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1759 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1760 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1761 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1762#endif 2345#endif
1763 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
1764} 2349}
1765 2350
1766void noinline 2351void noinline
1767ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1768{ 2353{
1769 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1771 return; 2356 return;
1772 2357
2358 EV_FREQUENT_CHECK;
2359
1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1775 2362
1776 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1777 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1778} 2367}
1779 2368
1780void 2369void
1781ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1782{ 2371{
1784 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1785#endif 2374#endif
1786 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1787 return; 2376 return;
1788 2377
2378 EV_FREQUENT_CHECK;
2379
1789 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1791} 2384}
1792 2385
1793void 2386void
1794ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1795{ 2388{
1796 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1798 return; 2391 return;
1799 2392
2393 EV_FREQUENT_CHECK;
2394
1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1801 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1802} 2399}
1803 2400
1804#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1805 2402
1806# ifdef _WIN32 2403# ifdef _WIN32
1824 if (w->wd < 0) 2421 if (w->wd < 0)
1825 { 2422 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827 2424
1828 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 { 2429 {
1831 char path [4096]; 2430 char path [4096];
1832 strcpy (path, w->path); 2431 strcpy (path, w->path);
1833 2432
2032 else 2631 else
2033#endif 2632#endif
2034 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2035 2634
2036 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2037} 2638}
2038 2639
2039void 2640void
2040ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2041{ 2642{
2042 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2044 return; 2645 return;
2045 2646
2647 EV_FREQUENT_CHECK;
2648
2046#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2048#endif 2651#endif
2049 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2050 2653
2051 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2052} 2657}
2053#endif 2658#endif
2054 2659
2055#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2056void 2661void
2058{ 2663{
2059 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2060 return; 2665 return;
2061 2666
2062 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2063 2670
2064 { 2671 {
2065 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2066 2673
2067 ++idleall; 2674 ++idleall;
2068 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2069 2676
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2072 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2073} 2682}
2074 2683
2075void 2684void
2076ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2077{ 2686{
2078 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2080 return; 2689 return;
2081 2690
2691 EV_FREQUENT_CHECK;
2692
2082 { 2693 {
2083 int active = ((W)w)->active; 2694 int active = ev_active (w);
2084 2695
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2087 2698
2088 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2089 --idleall; 2700 --idleall;
2090 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2091} 2704}
2092#endif 2705#endif
2093 2706
2094void 2707void
2095ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2096{ 2709{
2097 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2098 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2099 2714
2100 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2103} 2720}
2104 2721
2105void 2722void
2106ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2107{ 2724{
2108 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2110 return; 2727 return;
2111 2728
2729 EV_FREQUENT_CHECK;
2730
2112 { 2731 {
2113 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2114 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2116 } 2736 }
2117 2737
2118 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2119} 2741}
2120 2742
2121void 2743void
2122ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2123{ 2745{
2124 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2125 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2126 2750
2127 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2130} 2756}
2131 2757
2132void 2758void
2133ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2134{ 2760{
2135 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2137 return; 2763 return;
2138 2764
2765 EV_FREQUENT_CHECK;
2766
2139 { 2767 {
2140 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2141 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2143 } 2772 }
2144 2773
2145 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2146} 2777}
2147 2778
2148#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2149void noinline 2780void noinline
2150ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2151{ 2782{
2152 ev_loop (w->loop, EVLOOP_NONBLOCK); 2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2153} 2784}
2154 2785
2155static void 2786static void
2156embed_cb (EV_P_ ev_io *io, int revents) 2787embed_io_cb (EV_P_ ev_io *io, int revents)
2157{ 2788{
2158 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2159 2790
2160 if (ev_cb (w)) 2791 if (ev_cb (w))
2161 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2162 else 2793 else
2163 ev_embed_sweep (loop, w); 2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2164} 2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2165 2820
2166void 2821void
2167ev_embed_start (EV_P_ ev_embed *w) 2822ev_embed_start (EV_P_ ev_embed *w)
2168{ 2823{
2169 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2170 return; 2825 return;
2171 2826
2172 { 2827 {
2173 struct ev_loop *loop = w->loop; 2828 struct ev_loop *loop = w->other;
2174 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2175 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2176 } 2831 }
2832
2833 EV_FREQUENT_CHECK;
2177 2834
2178 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2179 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2180 2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2181 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2182} 2847}
2183 2848
2184void 2849void
2185ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2186{ 2851{
2187 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2189 return; 2854 return;
2190 2855
2856 EV_FREQUENT_CHECK;
2857
2191 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2192 2860
2193 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2194} 2864}
2195#endif 2865#endif
2196 2866
2197#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2198void 2868void
2199ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2200{ 2870{
2201 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2202 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2203 2875
2204 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2207} 2881}
2208 2882
2209void 2883void
2210ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2211{ 2885{
2212 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2213 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2214 return; 2888 return;
2215 2889
2890 EV_FREQUENT_CHECK;
2891
2216 { 2892 {
2217 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2218 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2220 } 2897 }
2221 2898
2222 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2223} 2949}
2224#endif 2950#endif
2225 2951
2226/*****************************************************************************/ 2952/*****************************************************************************/
2227 2953
2285 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
2286 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
2287 } 3013 }
2288} 3014}
2289 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
2290#ifdef __cplusplus 3020#ifdef __cplusplus
2291} 3021}
2292#endif 3022#endif
2293 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines