ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
230 318
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 322
235#if __GNUC__ >= 3 323#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
238#else 326#else
239# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
240# define noinline 328# define noinline
241# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 330# define inline
243# endif 331# endif
244#endif 332#endif
245 333
246#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
261 349
262typedef ev_watcher *W; 350typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
265 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
267 362
268#ifdef _WIN32 363#ifdef _WIN32
269# include "ev_win32.c" 364# include "ev_win32.c"
270#endif 365#endif
271 366
292 perror (msg); 387 perror (msg);
293 abort (); 388 abort ();
294 } 389 }
295} 390}
296 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
297static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 408
299void 409void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 411{
302 alloc = cb; 412 alloc = cb;
303} 413}
304 414
305inline_speed void * 415inline_speed void *
306ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
307{ 417{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
309 419
310 if (!ptr && size) 420 if (!ptr && size)
311 { 421 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 423 abort ();
336 W w; 446 W w;
337 int events; 447 int events;
338} ANPENDING; 448} ANPENDING;
339 449
340#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
341typedef struct 452typedef struct
342{ 453{
343 WL head; 454 WL head;
344} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
345#endif 474#endif
346 475
347#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
348 477
349 struct ev_loop 478 struct ev_loop
407{ 536{
408 return ev_rt_now; 537 return ev_rt_now;
409} 538}
410#endif 539#endif
411 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
412int inline_size 570int inline_size
413array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
414{ 572{
415 int ncur = cur + 1; 573 int ncur = cur + 1;
416 574
417 do 575 do
418 ncur <<= 1; 576 ncur <<= 1;
419 while (cnt > ncur); 577 while (cnt > ncur);
420 578
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 581 {
424 ncur *= elem; 582 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 585 ncur /= elem;
428 } 586 }
429 587
430 return ncur; 588 return ncur;
533 { 691 {
534 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
536 ev_io *w; 694 ev_io *w;
537 695
538 int events = 0; 696 unsigned char events = 0;
539 697
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 699 events |= (unsigned char)w->events;
542 700
543#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
544 if (events) 702 if (events)
545 { 703 {
546 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
547 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 711 }
550#endif 712#endif
551 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
552 anfd->reify = 0; 718 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
556 } 724 }
557 725
558 fdchangecnt = 0; 726 fdchangecnt = 0;
559} 727}
560 728
561void inline_size 729void inline_size
562fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
563{ 731{
564 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
568 734
735 if (expect_true (!reify))
736 {
569 ++fdchangecnt; 737 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
572} 741}
573 742
574void inline_speed 743void inline_speed
575fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
576{ 745{
627 796
628 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 798 if (anfds [fd].events)
630 { 799 {
631 anfds [fd].events = 0; 800 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 802 }
634} 803}
635 804
636/*****************************************************************************/ 805/*****************************************************************************/
637 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
638void inline_speed 827void inline_speed
639upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
640{ 829{
641 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
642 832
643 while (k) 833 for (;;)
644 { 834 {
645 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
646 838
647 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
648 break; 855 break;
649 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
650 heap [k] = heap [p]; 919 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 921 k = p;
653 } 922 }
654 923
655 heap [k] = w; 924 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
657}
658
659void inline_speed
660downheap (WT *heap, int N, int k)
661{
662 WT w = heap [k];
663
664 for (;;)
665 {
666 int c = (k << 1) + 1;
667
668 if (c >= N)
669 break;
670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
677 heap [k] = heap [c];
678 ((W)heap [k])->active = k + 1;
679
680 k = c;
681 }
682
683 heap [k] = w;
684 ((W)heap [k])->active = k + 1;
685} 926}
686 927
687void inline_size 928void inline_size
688adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
689{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
690 upheap (heap, k); 932 upheap (heap, k);
933 else
691 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
692} 947}
693 948
694/*****************************************************************************/ 949/*****************************************************************************/
695 950
696typedef struct 951typedef struct
697{ 952{
698 WL head; 953 WL head;
699 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
700} ANSIG; 955} ANSIG;
701 956
702static ANSIG *signals; 957static ANSIG *signals;
703static int signalmax; 958static int signalmax;
704 959
705static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
706static sig_atomic_t volatile gotsig;
707static ev_io sigev;
708 961
709void inline_size 962void inline_size
710signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
711{ 964{
712 while (count--) 965 while (count--)
716 969
717 ++base; 970 ++base;
718 } 971 }
719} 972}
720 973
721static void 974/*****************************************************************************/
722sighandler (int signum)
723{
724#if _WIN32
725 signal (signum, sighandler);
726#endif
727
728 signals [signum - 1].gotsig = 1;
729
730 if (!gotsig)
731 {
732 int old_errno = errno;
733 gotsig = 1;
734 write (sigpipe [1], &signum, 1);
735 errno = old_errno;
736 }
737}
738
739void noinline
740ev_feed_signal_event (EV_P_ int signum)
741{
742 WL w;
743
744#if EV_MULTIPLICITY
745 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
746#endif
747
748 --signum;
749
750 if (signum < 0 || signum >= signalmax)
751 return;
752
753 signals [signum].gotsig = 0;
754
755 for (w = signals [signum].head; w; w = w->next)
756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
757}
758
759static void
760sigcb (EV_P_ ev_io *iow, int revents)
761{
762 int signum;
763
764 read (sigpipe [0], &revents, 1);
765 gotsig = 0;
766
767 for (signum = signalmax; signum--; )
768 if (signals [signum].gotsig)
769 ev_feed_signal_event (EV_A_ signum + 1);
770}
771 975
772void inline_speed 976void inline_speed
773fd_intern (int fd) 977fd_intern (int fd)
774{ 978{
775#ifdef _WIN32 979#ifdef _WIN32
780 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
781#endif 985#endif
782} 986}
783 987
784static void noinline 988static void noinline
785siginit (EV_P) 989evpipe_init (EV_P)
786{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
787 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
788 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
789 1010
790 ev_io_set (&sigev, sigpipe [0], EV_READ);
791 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
792 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
793} 1079}
794 1080
795/*****************************************************************************/ 1081/*****************************************************************************/
796 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
797static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
798 1121
799#ifndef _WIN32 1122#ifndef _WIN32
800 1123
801static ev_signal childev; 1124static ev_signal childev;
802 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
803void inline_speed 1130void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
805{ 1132{
806 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
807 1135
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
809 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
810 { 1140 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
812 w->rpid = pid; 1142 w->rpid = pid;
813 w->rstatus = status; 1143 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 } 1145 }
1146 }
816} 1147}
817 1148
818#ifndef WCONTINUED 1149#ifndef WCONTINUED
819# define WCONTINUED 0 1150# define WCONTINUED 0
820#endif 1151#endif
829 if (!WCONTINUED 1160 if (!WCONTINUED
830 || errno != EINVAL 1161 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return; 1163 return;
833 1164
834 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
835 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
837 1168
838 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
839 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
841} 1172}
842 1173
843#endif 1174#endif
844 1175
845/*****************************************************************************/ 1176/*****************************************************************************/
917} 1248}
918 1249
919unsigned int 1250unsigned int
920ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
921{ 1252{
922 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
923 | EVBACKEND_KQUEUE 1254
924 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
925} 1260}
926 1261
927unsigned int 1262unsigned int
928ev_backend (EV_P) 1263ev_backend (EV_P)
929{ 1264{
932 1267
933unsigned int 1268unsigned int
934ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
935{ 1270{
936 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
937} 1284}
938 1285
939static void noinline 1286static void noinline
940loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
941{ 1288{
947 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
948 have_monotonic = 1; 1295 have_monotonic = 1;
949 } 1296 }
950#endif 1297#endif
951 1298
952 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
953 mn_now = get_clock (); 1300 mn_now = get_clock ();
954 now_floor = mn_now; 1301 now_floor = mn_now;
955 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
956 1312
957 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
958#ifndef _WIN32 1314#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid (); 1316 curpid = getpid ();
963 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
964 && !enable_secure () 1320 && !enable_secure ()
965 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
966 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
967 1323
968 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
969 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
970
971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976 1326
977#if EV_USE_PORT 1327#if EV_USE_PORT
978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
979#endif 1329#endif
980#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
988#endif 1338#endif
989#if EV_USE_SELECT 1339#if EV_USE_SELECT
990 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
991#endif 1341#endif
992 1342
993 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
994 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
995 } 1345 }
996} 1346}
997 1347
998static void noinline 1348static void noinline
999loop_destroy (EV_P) 1349loop_destroy (EV_P)
1000{ 1350{
1001 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1002 1369
1003#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1004 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1005 close (fs_fd); 1372 close (fs_fd);
1006#endif 1373#endif
1029 array_free (pending, [i]); 1396 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1031 array_free (idle, [i]); 1398 array_free (idle, [i]);
1032#endif 1399#endif
1033 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1034 1403
1035 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1036 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1037 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1038#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1039 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1040#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1041 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1042 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1043 1418
1044 backend = 0; 1419 backend = 0;
1045} 1420}
1046 1421
1422#if EV_USE_INOTIFY
1047void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1048 1425
1049void inline_size 1426void inline_size
1050loop_fork (EV_P) 1427loop_fork (EV_P)
1051{ 1428{
1052#if EV_USE_PORT 1429#if EV_USE_PORT
1060#endif 1437#endif
1061#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1062 infy_fork (EV_A); 1439 infy_fork (EV_A);
1063#endif 1440#endif
1064 1441
1065 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1066 { 1443 {
1067 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1068 1450
1069 ev_ref (EV_A); 1451 ev_ref (EV_A);
1070 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1071 close (sigpipe [0]); 1461 close (evpipe [0]);
1072 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1073 1464
1074 while (pipe (sigpipe))
1075 syserr ("(libev) error creating pipe");
1076
1077 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1078 } 1468 }
1079 1469
1080 postfork = 0; 1470 postfork = 0;
1081} 1471}
1082 1472
1083#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1084struct ev_loop * 1475struct ev_loop *
1085ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1086{ 1477{
1087 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1088 1479
1104} 1495}
1105 1496
1106void 1497void
1107ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1108{ 1499{
1109 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1110} 1501}
1111 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1112#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1113 1602
1114#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1115struct ev_loop * 1604struct ev_loop *
1116ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1117#else 1606#else
1118int 1607int
1119ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1120#endif 1609#endif
1121{ 1610{
1122 if (sigpipe [0] == sigpipe [1])
1123 if (pipe (sigpipe))
1124 return 0;
1125
1126 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1127 { 1612 {
1128#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1129 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1130#else 1615#else
1133 1618
1134 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1135 1620
1136 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1137 { 1622 {
1138 siginit (EV_A);
1139
1140#ifndef _WIN32 1623#ifndef _WIN32
1141 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1142 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1143 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1144 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1161#ifndef _WIN32 1644#ifndef _WIN32
1162 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
1163 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
1164#endif 1647#endif
1165 1648
1166 ev_ref (EV_A); /* signal watcher */
1167 ev_io_stop (EV_A_ &sigev);
1168
1169 close (sigpipe [0]); sigpipe [0] = 0;
1170 close (sigpipe [1]); sigpipe [1] = 0;
1171
1172 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
1173} 1650}
1174 1651
1175void 1652void
1176ev_default_fork (void) 1653ev_default_fork (void)
1178#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
1179 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
1180#endif 1657#endif
1181 1658
1182 if (backend) 1659 if (backend)
1183 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1184} 1661}
1185 1662
1186/*****************************************************************************/ 1663/*****************************************************************************/
1187 1664
1188void 1665void
1205 { 1682 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207 1684
1208 p->w->pending = 0; 1685 p->w->pending = 0;
1209 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1210 } 1688 }
1211 } 1689 }
1212} 1690}
1213
1214void inline_size
1215timers_reify (EV_P)
1216{
1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1218 {
1219 ev_timer *w = (ev_timer *)timers [0];
1220
1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1222
1223 /* first reschedule or stop timer */
1224 if (w->repeat)
1225 {
1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1227
1228 ((WT)w)->at += w->repeat;
1229 if (((WT)w)->at < mn_now)
1230 ((WT)w)->at = mn_now;
1231
1232 downheap (timers, timercnt, 0);
1233 }
1234 else
1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1236
1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1238 }
1239}
1240
1241#if EV_PERIODIC_ENABLE
1242void inline_size
1243periodics_reify (EV_P)
1244{
1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1246 {
1247 ev_periodic *w = (ev_periodic *)periodics [0];
1248
1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1250
1251 /* first reschedule or stop timer */
1252 if (w->reschedule_cb)
1253 {
1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1256 downheap (periodics, periodiccnt, 0);
1257 }
1258 else if (w->interval)
1259 {
1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else
1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1267
1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1269 }
1270}
1271
1272static void noinline
1273periodics_reschedule (EV_P)
1274{
1275 int i;
1276
1277 /* adjust periodics after time jump */
1278 for (i = 0; i < periodiccnt; ++i)
1279 {
1280 ev_periodic *w = (ev_periodic *)periodics [i];
1281
1282 if (w->reschedule_cb)
1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1284 else if (w->interval)
1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1286 }
1287
1288 /* now rebuild the heap */
1289 for (i = periodiccnt >> 1; i--; )
1290 downheap (periodics, periodiccnt, i);
1291}
1292#endif
1293 1691
1294#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1295void inline_size 1693void inline_size
1296idle_reify (EV_P) 1694idle_reify (EV_P)
1297{ 1695{
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break; 1708 break;
1311 } 1709 }
1312 } 1710 }
1313 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1314} 1814}
1315#endif 1815#endif
1316 1816
1317void inline_speed 1817void inline_speed
1318time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1347 */ 1847 */
1348 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1349 { 1849 {
1350 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1351 1851
1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1353 return; /* all is well */ 1853 return; /* all is well */
1354 1854
1355 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1356 mn_now = get_clock (); 1856 mn_now = get_clock ();
1357 now_floor = mn_now; 1857 now_floor = mn_now;
1373#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1375#endif 1875#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1378 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1379 } 1883 }
1380 1884
1381 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1382 } 1886 }
1383} 1887}
1397static int loop_done; 1901static int loop_done;
1398 1902
1399void 1903void
1400ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1401{ 1905{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405 1907
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407 1909
1408 do 1910 do
1409 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1410#ifndef _WIN32 1916#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1413 { 1919 {
1414 curpid = getpid (); 1920 curpid = getpid ();
1443 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1950 fd_reify (EV_A);
1445 1951
1446 /* calculate blocking time */ 1952 /* calculate blocking time */
1447 { 1953 {
1448 ev_tstamp block; 1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1449 1956
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1958 {
1454 /* update time to cancel out callback processing overhead */ 1959 /* update time to cancel out callback processing overhead */
1455 time_update (EV_A_ 1e100); 1960 time_update (EV_A_ 1e100);
1456 1961
1457 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1458 1963
1459 if (timercnt) 1964 if (timercnt)
1460 { 1965 {
1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1462 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1463 } 1968 }
1464 1969
1465#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1466 if (periodiccnt) 1971 if (periodiccnt)
1467 { 1972 {
1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1469 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1470 } 1975 }
1471#endif 1976#endif
1472 1977
1473 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1474 } 1991 }
1475 1992
1476 ++loop_count; 1993 ++loop_count;
1477 backend_poll (EV_A_ block); 1994 backend_poll (EV_A_ waittime);
1478 1995
1479 /* update ev_rt_now, do magic */ 1996 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block); 1997 time_update (EV_A_ waittime + sleeptime);
1481 } 1998 }
1482 1999
1483 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1484 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1485#if EV_PERIODIC_ENABLE 2002#if EV_PERIODIC_ENABLE
1494 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1495 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1497 2014
1498 call_pending (EV_A); 2015 call_pending (EV_A);
1499
1500 } 2016 }
1501 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1502 2022
1503 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1504 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1505} 2025}
1506 2026
1595 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1596 return; 2116 return;
1597 2117
1598 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1599 2119
2120 EV_FREQUENT_CHECK;
2121
1600 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1602 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1603 2125
1604 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1605} 2130}
1606 2131
1607void noinline 2132void noinline
1608ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1609{ 2134{
1610 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1611 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1612 return; 2137 return;
1613 2138
1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1615 2140
2141 EV_FREQUENT_CHECK;
2142
1616 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1617 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1618 2145
1619 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1620} 2149}
1621 2150
1622void noinline 2151void noinline
1623ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1624{ 2153{
1625 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1626 return; 2155 return;
1627 2156
1628 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1629 2158
1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1631 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1632 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1634 timers [timercnt - 1] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1635 upheap (timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1636 2169
2170 EV_FREQUENT_CHECK;
2171
1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1638} 2173}
1639 2174
1640void noinline 2175void noinline
1641ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1642{ 2177{
1643 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1645 return; 2180 return;
1646 2181
1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2182 EV_FREQUENT_CHECK;
1648 2183
1649 { 2184 {
1650 int active = ((W)w)->active; 2185 int active = ev_active (w);
1651 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1652 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1653 { 2192 {
1654 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1655 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1656 } 2195 }
1657 } 2196 }
1658 2197
1659 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1660 2201
1661 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1662} 2203}
1663 2204
1664void noinline 2205void noinline
1665ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1666{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1667 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1668 { 2211 {
1669 if (w->repeat) 2212 if (w->repeat)
1670 { 2213 {
1671 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1672 adjustheap (timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1673 } 2217 }
1674 else 2218 else
1675 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1676 } 2220 }
1677 else if (w->repeat) 2221 else if (w->repeat)
1678 { 2222 {
1679 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1680 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1681 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1682} 2228}
1683 2229
1684#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1685void noinline 2231void noinline
1686ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1687{ 2233{
1688 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1689 return; 2235 return;
1690 2236
1691 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2239 else if (w->interval)
1694 { 2240 {
1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1696 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1698 } 2244 }
1699 else 2245 else
1700 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1701 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1702 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1704 periodics [periodiccnt - 1] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1705 upheap (periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1706 2256
2257 EV_FREQUENT_CHECK;
2258
1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1708} 2260}
1709 2261
1710void noinline 2262void noinline
1711ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1712{ 2264{
1713 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1714 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1715 return; 2267 return;
1716 2268
1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2269 EV_FREQUENT_CHECK;
1718 2270
1719 { 2271 {
1720 int active = ((W)w)->active; 2272 int active = ev_active (w);
1721 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1722 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1723 { 2279 {
1724 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1725 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1726 } 2282 }
1727 } 2283 }
1728 2284
2285 EV_FREQUENT_CHECK;
2286
1729 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1730} 2288}
1731 2289
1732void noinline 2290void noinline
1733ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1750#endif 2308#endif
1751 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1752 return; 2310 return;
1753 2311
1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
1755 2317
1756 { 2318 {
1757#ifndef _WIN32 2319#ifndef _WIN32
1758 sigset_t full, prev; 2320 sigset_t full, prev;
1759 sigfillset (&full); 2321 sigfillset (&full);
1766 sigprocmask (SIG_SETMASK, &prev, 0); 2328 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif 2329#endif
1768 } 2330 }
1769 2331
1770 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1772 2334
1773 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1774 { 2336 {
1775#if _WIN32 2337#if _WIN32
1776 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1777#else 2339#else
1778 struct sigaction sa; 2340 struct sigaction sa;
1779 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1780 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1781 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1782 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1783#endif 2345#endif
1784 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
1785} 2349}
1786 2350
1787void noinline 2351void noinline
1788ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1789{ 2353{
1790 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1791 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1792 return; 2356 return;
1793 2357
2358 EV_FREQUENT_CHECK;
2359
1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1795 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1796 2362
1797 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1798 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1799} 2367}
1800 2368
1801void 2369void
1802ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1803{ 2371{
1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1806#endif 2374#endif
1807 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1808 return; 2376 return;
1809 2377
2378 EV_FREQUENT_CHECK;
2379
1810 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1811 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1812} 2384}
1813 2385
1814void 2386void
1815ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1816{ 2388{
1817 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1818 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1819 return; 2391 return;
1820 2392
2393 EV_FREQUENT_CHECK;
2394
1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1822 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1823} 2399}
1824 2400
1825#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1826 2402
1827# ifdef _WIN32 2403# ifdef _WIN32
1845 if (w->wd < 0) 2421 if (w->wd < 0)
1846 { 2422 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848 2424
1849 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 { 2429 {
1852 char path [4096]; 2430 char path [4096];
1853 strcpy (path, w->path); 2431 strcpy (path, w->path);
1854 2432
2053 else 2631 else
2054#endif 2632#endif
2055 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2056 2634
2057 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2058} 2638}
2059 2639
2060void 2640void
2061ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2062{ 2642{
2063 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2065 return; 2645 return;
2066 2646
2647 EV_FREQUENT_CHECK;
2648
2067#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2069#endif 2651#endif
2070 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2071 2653
2072 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2073} 2657}
2074#endif 2658#endif
2075 2659
2076#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2077void 2661void
2079{ 2663{
2080 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2081 return; 2665 return;
2082 2666
2083 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2084 2670
2085 { 2671 {
2086 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2087 2673
2088 ++idleall; 2674 ++idleall;
2089 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2090 2676
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2093 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2094} 2682}
2095 2683
2096void 2684void
2097ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2098{ 2686{
2099 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2101 return; 2689 return;
2102 2690
2691 EV_FREQUENT_CHECK;
2692
2103 { 2693 {
2104 int active = ((W)w)->active; 2694 int active = ev_active (w);
2105 2695
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2108 2698
2109 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2110 --idleall; 2700 --idleall;
2111 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2112} 2704}
2113#endif 2705#endif
2114 2706
2115void 2707void
2116ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2117{ 2709{
2118 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2119 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2120 2714
2121 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2124} 2720}
2125 2721
2126void 2722void
2127ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2128{ 2724{
2129 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2131 return; 2727 return;
2132 2728
2729 EV_FREQUENT_CHECK;
2730
2133 { 2731 {
2134 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2135 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2137 } 2736 }
2138 2737
2139 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2140} 2741}
2141 2742
2142void 2743void
2143ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2144{ 2745{
2145 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2146 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2147 2750
2148 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2151} 2756}
2152 2757
2153void 2758void
2154ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2155{ 2760{
2156 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2158 return; 2763 return;
2159 2764
2765 EV_FREQUENT_CHECK;
2766
2160 { 2767 {
2161 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2162 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2164 } 2772 }
2165 2773
2166 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2167} 2777}
2168 2778
2169#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2170void noinline 2780void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2172{ 2782{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK); 2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2174} 2784}
2175 2785
2176static void 2786static void
2177embed_cb (EV_P_ ev_io *io, int revents) 2787embed_io_cb (EV_P_ ev_io *io, int revents)
2178{ 2788{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180 2790
2181 if (ev_cb (w)) 2791 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else 2793 else
2184 ev_embed_sweep (loop, w); 2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2185} 2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2186 2820
2187void 2821void
2188ev_embed_start (EV_P_ ev_embed *w) 2822ev_embed_start (EV_P_ ev_embed *w)
2189{ 2823{
2190 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2191 return; 2825 return;
2192 2826
2193 { 2827 {
2194 struct ev_loop *loop = w->loop; 2828 struct ev_loop *loop = w->other;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2197 } 2831 }
2832
2833 EV_FREQUENT_CHECK;
2198 2834
2199 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2201 2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2202 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2203} 2847}
2204 2848
2205void 2849void
2206ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2207{ 2851{
2208 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2210 return; 2854 return;
2211 2855
2856 EV_FREQUENT_CHECK;
2857
2212 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2213 2860
2214 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2215} 2864}
2216#endif 2865#endif
2217 2866
2218#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2219void 2868void
2220ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2221{ 2870{
2222 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2223 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2224 2875
2225 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2228} 2881}
2229 2882
2230void 2883void
2231ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2232{ 2885{
2233 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2235 return; 2888 return;
2236 2889
2890 EV_FREQUENT_CHECK;
2891
2237 { 2892 {
2238 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2239 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2241 } 2897 }
2242 2898
2243 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2244} 2949}
2245#endif 2950#endif
2246 2951
2247/*****************************************************************************/ 2952/*****************************************************************************/
2248 2953
2306 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
2307 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
2308 } 3013 }
2309} 3014}
2310 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
2311#ifdef __cplusplus 3020#ifdef __cplusplus
2312} 3021}
2313#endif 3022#endif
2314 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines