ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.208 by root, Fri Feb 1 13:22:48 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 259
217#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
220#endif 263#endif
241 284
242#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 286# include <winsock.h>
244#endif 287#endif
245 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
246/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
247 308
248/* 309/*
249 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
265#else 326#else
266# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
267# define noinline 328# define noinline
268# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 330# define inline
270# endif 331# endif
271#endif 332#endif
272 333
273#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
288 349
289typedef ev_watcher *W; 350typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
292 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
293#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 361#endif
323 perror (msg); 387 perror (msg);
324 abort (); 388 abort ();
325 } 389 }
326} 390}
327 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
328static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 408
330void 409void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 411{
333 alloc = cb; 412 alloc = cb;
334} 413}
335 414
336inline_speed void * 415inline_speed void *
337ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
338{ 417{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
340 419
341 if (!ptr && size) 420 if (!ptr && size)
342 { 421 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 423 abort ();
367 W w; 446 W w;
368 int events; 447 int events;
369} ANPENDING; 448} ANPENDING;
370 449
371#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
372typedef struct 452typedef struct
373{ 453{
374 WL head; 454 WL head;
375} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
376#endif 474#endif
377 475
378#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
379 477
380 struct ev_loop 478 struct ev_loop
451 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 551
454 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
455#elif defined(_WIN32) 553#elif defined(_WIN32)
456 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
457#else 555#else
458 struct timeval tv; 556 struct timeval tv;
459 557
460 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 562#endif
465 } 563 }
466} 564}
467 565
468/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 569
470int inline_size 570int inline_size
471array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
472{ 572{
473 int ncur = cur + 1; 573 int ncur = cur + 1;
474 574
475 do 575 do
476 ncur <<= 1; 576 ncur <<= 1;
477 while (cnt > ncur); 577 while (cnt > ncur);
478 578
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 581 {
482 ncur *= elem; 582 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 585 ncur /= elem;
486 } 586 }
487 587
488 return ncur; 588 return ncur;
702 } 802 }
703} 803}
704 804
705/*****************************************************************************/ 805/*****************************************************************************/
706 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
707void inline_speed 827void inline_speed
708upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
709{ 829{
710 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
711 832
712 while (k) 833 for (;;)
713 { 834 {
714 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 838
716 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
717 break; 855 break;
718 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
719 heap [k] = heap [p]; 919 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 921 k = p;
722 } 922 }
723 923
724 heap [k] = w; 924 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 926}
755 927
756void inline_size 928void inline_size
757adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
758{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 932 upheap (heap, k);
933 else
760 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
761} 947}
762 948
763/*****************************************************************************/ 949/*****************************************************************************/
764 950
765typedef struct 951typedef struct
802static void noinline 988static void noinline
803evpipe_init (EV_P) 989evpipe_init (EV_P)
804{ 990{
805 if (!ev_is_active (&pipeev)) 991 if (!ev_is_active (&pipeev))
806 { 992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
807 while (pipe (evpipe)) 1003 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1004 syserr ("(libev) error creating signal/async pipe");
809 1005
810 fd_intern (evpipe [0]); 1006 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1007 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
814 ev_io_start (EV_A_ &pipeev); 1011 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1013 }
817} 1014}
818 1015
819void inline_size 1016void inline_size
820evpipe_write (EV_P_ int sig, int async) 1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1018{
822 if (!(gotasync || gotsig)) 1019 if (!*flag)
823 { 1020 {
824 int old_errno = errno; 1021 int old_errno = errno; /* save errno because write might clobber it */
825 1022
826 if (sig) gotsig = 1; 1023 *flag = 1;
827 if (async) gotasync = 1;
828 1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
829 write (evpipe [1], &old_errno, 1); 1033 write (evpipe [1], &old_errno, 1);
1034
830 errno = old_errno; 1035 errno = old_errno;
831 } 1036 }
832} 1037}
833 1038
834static void 1039static void
835pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
836{ 1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
837 { 1044 {
838 int dummy; 1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
839 read (evpipe [0], &dummy, 1); 1052 read (evpipe [0], &dummy, 1);
840 } 1053 }
841 1054
842 if (gotsig) 1055 if (gotsig && ev_is_default_loop (EV_A))
843 { 1056 {
844 int signum; 1057 int signum;
845 gotsig = 0; 1058 gotsig = 0;
846 1059
847 for (signum = signalmax; signum--; ) 1060 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 1061 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 1062 ev_feed_signal_event (EV_A_ signum + 1);
850 } 1063 }
851 1064
1065#if EV_ASYNC_ENABLE
852 if (gotasync) 1066 if (gotasync)
853 { 1067 {
854 int i; 1068 int i;
855 gotasync = 0; 1069 gotasync = 0;
856 1070
859 { 1073 {
860 asyncs [i]->sent = 0; 1074 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1076 }
863 } 1077 }
1078#endif
864} 1079}
865 1080
866/*****************************************************************************/ 1081/*****************************************************************************/
867 1082
868static void 1083static void
869sighandler (int signum) 1084ev_sighandler (int signum)
870{ 1085{
871#if EV_MULTIPLICITY 1086#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 1087 struct ev_loop *loop = &default_loop_struct;
873#endif 1088#endif
874 1089
875#if _WIN32 1090#if _WIN32
876 signal (signum, sighandler); 1091 signal (signum, ev_sighandler);
877#endif 1092#endif
878 1093
879 signals [signum - 1].gotsig = 1; 1094 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 1095 evpipe_write (EV_A_ &gotsig);
881} 1096}
882 1097
883void noinline 1098void noinline
884ev_feed_signal_event (EV_P_ int signum) 1099ev_feed_signal_event (EV_P_ int signum)
885{ 1100{
911#ifndef WIFCONTINUED 1126#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1127# define WIFCONTINUED(status) 0
913#endif 1128#endif
914 1129
915void inline_speed 1130void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
917{ 1132{
918 ev_child *w; 1133 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1135
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1137 {
923 if ((w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1139 && (!traced || (w->flags & 1)))
925 { 1140 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1142 w->rpid = pid;
928 w->rstatus = status; 1143 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1145 }
931 } 1146 }
945 if (!WCONTINUED 1160 if (!WCONTINUED
946 || errno != EINVAL 1161 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1163 return;
949 1164
950 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1168
954 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1172}
958 1173
959#endif 1174#endif
960 1175
961/*****************************************************************************/ 1176/*****************************************************************************/
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1295 have_monotonic = 1;
1081 } 1296 }
1082#endif 1297#endif
1083 1298
1084 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1300 mn_now = get_clock ();
1086 now_floor = mn_now; 1301 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1088 1303
1089 io_blocktime = 0.; 1304 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1091 1312
1092 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
1093#ifndef _WIN32 1314#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1316 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1320 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1323
1103 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1326
1112#if EV_USE_PORT 1327#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1329#endif
1115#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
1138 if (ev_is_active (&pipeev)) 1353 if (ev_is_active (&pipeev))
1139 { 1354 {
1140 ev_ref (EV_A); /* signal watcher */ 1355 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1356 ev_io_stop (EV_A_ &pipeev);
1142 1357
1143 close (evpipe [0]); evpipe [0] = 0; 1358#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1145 } 1368 }
1146 1369
1147#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1149 close (fs_fd); 1372 close (fs_fd);
1187#if EV_FORK_ENABLE 1410#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1411 array_free (fork, EMPTY);
1189#endif 1412#endif
1190 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1192 1418
1193 backend = 0; 1419 backend = 0;
1194} 1420}
1195 1421
1422#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1197 1425
1198void inline_size 1426void inline_size
1199loop_fork (EV_P) 1427loop_fork (EV_P)
1200{ 1428{
1201#if EV_USE_PORT 1429#if EV_USE_PORT
1212#endif 1440#endif
1213 1441
1214 if (ev_is_active (&pipeev)) 1442 if (ev_is_active (&pipeev))
1215 { 1443 {
1216 /* this "locks" the handlers against writing to the pipe */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1448 gotasync = 1;
1449#endif
1218 1450
1219 ev_ref (EV_A); 1451 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1221 close (evpipe [0]); 1461 close (evpipe [0]);
1222 close (evpipe [1]); 1462 close (evpipe [1]);
1463 }
1223 1464
1224 evpipe_init (EV_A); 1465 evpipe_init (EV_A);
1225 /* now iterate over everything, in case we missed something */ 1466 /* now iterate over everything, in case we missed something */
1226 pipecb (EV_A_ &pipeev, EV_READ); 1467 pipecb (EV_A_ &pipeev, EV_READ);
1227 } 1468 }
1228 1469
1229 postfork = 0; 1470 postfork = 0;
1230} 1471}
1231 1472
1232#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1233struct ev_loop * 1475struct ev_loop *
1234ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1235{ 1477{
1236 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1237 1479
1256ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1257{ 1499{
1258 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1259} 1501}
1260 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1261#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1262 1602
1263#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1264struct ev_loop * 1604struct ev_loop *
1265ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1266#else 1606#else
1342 { 1682 {
1343 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1344 1684
1345 p->w->pending = 0; 1685 p->w->pending = 0;
1346 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1347 } 1688 }
1348 } 1689 }
1349} 1690}
1350
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430 1691
1431#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1432void inline_size 1693void inline_size
1433idle_reify (EV_P) 1694idle_reify (EV_P)
1434{ 1695{
1446 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1447 break; 1708 break;
1448 } 1709 }
1449 } 1710 }
1450 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1451} 1814}
1452#endif 1815#endif
1453 1816
1454void inline_speed 1817void inline_speed
1455time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1484 */ 1847 */
1485 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1486 { 1849 {
1487 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1488 1851
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 1853 return; /* all is well */
1491 1854
1492 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 1856 mn_now = get_clock ();
1494 now_floor = mn_now; 1857 now_floor = mn_now;
1510#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1512#endif 1875#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1515 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1516 } 1883 }
1517 1884
1518 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1519 } 1886 }
1520} 1887}
1534static int loop_done; 1901static int loop_done;
1535 1902
1536void 1903void
1537ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1538{ 1905{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542 1907
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1544 1909
1545 do 1910 do
1546 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1547#ifndef _WIN32 1916#ifndef _WIN32
1548 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1549 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1550 { 1919 {
1551 curpid = getpid (); 1920 curpid = getpid ();
1592 1961
1593 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1594 1963
1595 if (timercnt) 1964 if (timercnt)
1596 { 1965 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1599 } 1968 }
1600 1969
1601#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 1971 if (periodiccnt)
1603 { 1972 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1606 } 1975 }
1607#endif 1976#endif
1608 1977
1609 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1642 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 2014
1646 call_pending (EV_A); 2015 call_pending (EV_A);
1647
1648 } 2016 }
1649 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1650 2022
1651 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1653} 2025}
1654 2026
1743 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1744 return; 2116 return;
1745 2117
1746 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1747 2119
2120 EV_FREQUENT_CHECK;
2121
1748 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1750 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1751 2125
1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1754} 2130}
1755 2131
1756void noinline 2132void noinline
1757ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1758{ 2134{
1759 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1761 return; 2137 return;
1762 2138
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1764 2142
1765 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1767 2145
1768 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1769} 2149}
1770 2150
1771void noinline 2151void noinline
1772ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1773{ 2153{
1774 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1775 return; 2155 return;
1776 2156
1777 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1778 2158
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1781 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1785 2169
2170 EV_FREQUENT_CHECK;
2171
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 2173}
1788 2174
1789void noinline 2175void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1791{ 2177{
1792 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1794 return; 2180 return;
1795 2181
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2182 EV_FREQUENT_CHECK;
1797 2183
1798 { 2184 {
1799 int active = ((W)w)->active; 2185 int active = ev_active (w);
1800 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1801 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1802 { 2192 {
1803 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1804 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1805 } 2195 }
1806 } 2196 }
1807 2197
1808 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1809 2201
1810 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1811} 2203}
1812 2204
1813void noinline 2205void noinline
1814ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1815{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1816 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1817 { 2211 {
1818 if (w->repeat) 2212 if (w->repeat)
1819 { 2213 {
1820 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1822 } 2217 }
1823 else 2218 else
1824 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1825 } 2220 }
1826 else if (w->repeat) 2221 else if (w->repeat)
1827 { 2222 {
1828 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1830 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1831} 2228}
1832 2229
1833#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1834void noinline 2231void noinline
1835ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1836{ 2233{
1837 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1838 return; 2235 return;
1839 2236
1840 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 2239 else if (w->interval)
1843 { 2240 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 2244 }
1848 else 2245 else
1849 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1850 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1855 2256
2257 EV_FREQUENT_CHECK;
2258
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 2260}
1858 2261
1859void noinline 2262void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 2264{
1862 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1864 return; 2267 return;
1865 2268
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2269 EV_FREQUENT_CHECK;
1867 2270
1868 { 2271 {
1869 int active = ((W)w)->active; 2272 int active = ev_active (w);
1870 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1871 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1872 { 2279 {
1873 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1874 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1875 } 2282 }
1876 } 2283 }
1877 2284
2285 EV_FREQUENT_CHECK;
2286
1878 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1879} 2288}
1880 2289
1881void noinline 2290void noinline
1882ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1901 return; 2310 return;
1902 2311
1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1904 2313
1905 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
1906 2317
1907 { 2318 {
1908#ifndef _WIN32 2319#ifndef _WIN32
1909 sigset_t full, prev; 2320 sigset_t full, prev;
1910 sigfillset (&full); 2321 sigfillset (&full);
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2334
1924 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1925 { 2336 {
1926#if _WIN32 2337#if _WIN32
1927 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1928#else 2339#else
1929 struct sigaction sa; 2340 struct sigaction sa;
1930 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1934#endif 2345#endif
1935 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
1936} 2349}
1937 2350
1938void noinline 2351void noinline
1939ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1940{ 2353{
1941 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1942 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1943 return; 2356 return;
1944 2357
2358 EV_FREQUENT_CHECK;
2359
1945 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1946 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1947 2362
1948 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1949 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1950} 2367}
1951 2368
1952void 2369void
1953ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1954{ 2371{
1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1957#endif 2374#endif
1958 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1959 return; 2376 return;
1960 2377
2378 EV_FREQUENT_CHECK;
2379
1961 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1963} 2384}
1964 2385
1965void 2386void
1966ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1967{ 2388{
1968 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1970 return; 2391 return;
1971 2392
2393 EV_FREQUENT_CHECK;
2394
1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1973 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1974} 2399}
1975 2400
1976#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1977 2402
1978# ifdef _WIN32 2403# ifdef _WIN32
1996 if (w->wd < 0) 2421 if (w->wd < 0)
1997 { 2422 {
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999 2424
2000 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 2429 {
2003 char path [4096]; 2430 char path [4096];
2004 strcpy (path, w->path); 2431 strcpy (path, w->path);
2005 2432
2204 else 2631 else
2205#endif 2632#endif
2206 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2207 2634
2208 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2209} 2638}
2210 2639
2211void 2640void
2212ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2213{ 2642{
2214 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2216 return; 2645 return;
2217 2646
2647 EV_FREQUENT_CHECK;
2648
2218#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2220#endif 2651#endif
2221 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2222 2653
2223 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2224} 2657}
2225#endif 2658#endif
2226 2659
2227#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2228void 2661void
2230{ 2663{
2231 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2232 return; 2665 return;
2233 2666
2234 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2235 2670
2236 { 2671 {
2237 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2238 2673
2239 ++idleall; 2674 ++idleall;
2240 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2241 2676
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2244 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2245} 2682}
2246 2683
2247void 2684void
2248ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2249{ 2686{
2250 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2252 return; 2689 return;
2253 2690
2691 EV_FREQUENT_CHECK;
2692
2254 { 2693 {
2255 int active = ((W)w)->active; 2694 int active = ev_active (w);
2256 2695
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2698
2260 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2261 --idleall; 2700 --idleall;
2262 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2263} 2704}
2264#endif 2705#endif
2265 2706
2266void 2707void
2267ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2268{ 2709{
2269 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2270 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2271 2714
2272 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2275} 2720}
2276 2721
2277void 2722void
2278ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2279{ 2724{
2280 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2282 return; 2727 return;
2283 2728
2729 EV_FREQUENT_CHECK;
2730
2284 { 2731 {
2285 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2286 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2288 } 2736 }
2289 2737
2290 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2291} 2741}
2292 2742
2293void 2743void
2294ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2295{ 2745{
2296 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2297 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2298 2750
2299 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2302} 2756}
2303 2757
2304void 2758void
2305ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2306{ 2760{
2307 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2309 return; 2763 return;
2310 2764
2765 EV_FREQUENT_CHECK;
2766
2311 { 2767 {
2312 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2313 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2315 } 2772 }
2316 2773
2317 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2318} 2777}
2319 2778
2320#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2321void noinline 2780void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2369 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 } 2831 }
2373 2832
2833 EV_FREQUENT_CHECK;
2834
2374 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2376 2837
2377 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2380 2841
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382 2843
2383 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2384} 2847}
2385 2848
2386void 2849void
2387ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2388{ 2851{
2389 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2391 return; 2854 return;
2392 2855
2856 EV_FREQUENT_CHECK;
2857
2393 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2395 2860
2396 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2397} 2864}
2398#endif 2865#endif
2399 2866
2400#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2401void 2868void
2402ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2403{ 2870{
2404 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2405 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2406 2875
2407 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2410} 2881}
2411 2882
2412void 2883void
2413ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2414{ 2885{
2415 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2417 return; 2888 return;
2418 2889
2890 EV_FREQUENT_CHECK;
2891
2419 { 2892 {
2420 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2421 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2423 } 2897 }
2424 2898
2425 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2426} 2902}
2427#endif 2903#endif
2428 2904
2429#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2430void 2906void
2432{ 2908{
2433 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2434 return; 2910 return;
2435 2911
2436 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2437 2915
2438 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2441} 2921}
2442 2922
2443void 2923void
2444ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2445{ 2925{
2446 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2448 return; 2928 return;
2449 2929
2930 EV_FREQUENT_CHECK;
2931
2450 { 2932 {
2451 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2452 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 2936 ev_active (asyncs [active - 1]) = active;
2454 } 2937 }
2455 2938
2456 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2457} 2942}
2458 2943
2459void 2944void
2460ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2461{ 2946{
2462 w->sent = 1; 2947 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 2948 evpipe_write (EV_A_ &gotasync);
2464} 2949}
2465#endif 2950#endif
2466 2951
2467/*****************************************************************************/ 2952/*****************************************************************************/
2468 2953

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines