ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 259
217#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
220#endif 263#endif
241 284
242#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 286# include <winsock.h>
244#endif 287#endif
245 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
246/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
247 308
248/* 309/*
249 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
265#else 326#else
266# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
267# define noinline 328# define noinline
268# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 330# define inline
270# endif 331# endif
271#endif 332#endif
272 333
273#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
288 349
289typedef ev_watcher *W; 350typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
292 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
293#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 361#endif
323 perror (msg); 387 perror (msg);
324 abort (); 388 abort ();
325 } 389 }
326} 390}
327 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
328static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 408
330void 409void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 411{
333 alloc = cb; 412 alloc = cb;
334} 413}
335 414
336inline_speed void * 415inline_speed void *
337ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
338{ 417{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
340 419
341 if (!ptr && size) 420 if (!ptr && size)
342 { 421 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 423 abort ();
367 W w; 446 W w;
368 int events; 447 int events;
369} ANPENDING; 448} ANPENDING;
370 449
371#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
372typedef struct 452typedef struct
373{ 453{
374 WL head; 454 WL head;
375} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
376#endif 474#endif
377 475
378#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
379 477
380 struct ev_loop 478 struct ev_loop
451 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 551
454 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
455#elif defined(_WIN32) 553#elif defined(_WIN32)
456 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
457#else 555#else
458 struct timeval tv; 556 struct timeval tv;
459 557
460 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 562#endif
465 } 563 }
466} 564}
467 565
468/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 569
470int inline_size 570int inline_size
471array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
472{ 572{
473 int ncur = cur + 1; 573 int ncur = cur + 1;
474 574
475 do 575 do
476 ncur <<= 1; 576 ncur <<= 1;
477 while (cnt > ncur); 577 while (cnt > ncur);
478 578
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 581 {
482 ncur *= elem; 582 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 585 ncur /= elem;
486 } 586 }
487 587
488 return ncur; 588 return ncur;
702 } 802 }
703} 803}
704 804
705/*****************************************************************************/ 805/*****************************************************************************/
706 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
707void inline_speed 827void inline_speed
708upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
709{ 829{
710 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
711 832
712 while (k) 833 for (;;)
713 { 834 {
714 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 838
716 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
717 break; 855 break;
718 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
719 heap [k] = heap [p]; 919 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 921 k = p;
722 } 922 }
723 923
724 heap [k] = w; 924 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 926}
755 927
756void inline_size 928void inline_size
757adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
758{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 932 upheap (heap, k);
933 else
760 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
761} 947}
762 948
763/*****************************************************************************/ 949/*****************************************************************************/
764 950
765typedef struct 951typedef struct
802static void noinline 988static void noinline
803evpipe_init (EV_P) 989evpipe_init (EV_P)
804{ 990{
805 if (!ev_is_active (&pipeev)) 991 if (!ev_is_active (&pipeev))
806 { 992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
807 while (pipe (evpipe)) 1003 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1004 syserr ("(libev) error creating signal/async pipe");
809 1005
810 fd_intern (evpipe [0]); 1006 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1007 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
814 ev_io_start (EV_A_ &pipeev); 1011 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1013 }
817} 1014}
818 1015
819void inline_size 1016void inline_size
820evpipe_write (EV_P_ int sig, int async) 1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1018{
822 if (!(gotasync || gotsig)) 1019 if (!*flag)
823 { 1020 {
824 int old_errno = errno; 1021 int old_errno = errno; /* save errno because write might clobber it */
825 1022
826 if (sig) gotsig = 1; 1023 *flag = 1;
827 if (async) gotasync = 1;
828 1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
829 write (evpipe [1], &old_errno, 1); 1033 write (evpipe [1], &old_errno, 1);
1034
830 errno = old_errno; 1035 errno = old_errno;
831 } 1036 }
832} 1037}
833 1038
834static void 1039static void
835pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
836{ 1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
837 { 1044 {
838 int dummy; 1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
839 read (evpipe [0], &dummy, 1); 1052 read (evpipe [0], &dummy, 1);
840 } 1053 }
841 1054
842 if (gotsig) 1055 if (gotsig && ev_is_default_loop (EV_A))
843 { 1056 {
844 int signum; 1057 int signum;
845 gotsig = 0; 1058 gotsig = 0;
846 1059
847 for (signum = signalmax; signum--; ) 1060 for (signum = signalmax; signum--; )
866} 1079}
867 1080
868/*****************************************************************************/ 1081/*****************************************************************************/
869 1082
870static void 1083static void
871sighandler (int signum) 1084ev_sighandler (int signum)
872{ 1085{
873#if EV_MULTIPLICITY 1086#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1087 struct ev_loop *loop = &default_loop_struct;
875#endif 1088#endif
876 1089
877#if _WIN32 1090#if _WIN32
878 signal (signum, sighandler); 1091 signal (signum, ev_sighandler);
879#endif 1092#endif
880 1093
881 signals [signum - 1].gotsig = 1; 1094 signals [signum - 1].gotsig = 1;
882 evpipe_write (EV_A_ 1, 0); 1095 evpipe_write (EV_A_ &gotsig);
883} 1096}
884 1097
885void noinline 1098void noinline
886ev_feed_signal_event (EV_P_ int signum) 1099ev_feed_signal_event (EV_P_ int signum)
887{ 1100{
913#ifndef WIFCONTINUED 1126#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1127# define WIFCONTINUED(status) 0
915#endif 1128#endif
916 1129
917void inline_speed 1130void inline_speed
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
919{ 1132{
920 ev_child *w; 1133 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1135
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1137 {
925 if ((w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1139 && (!traced || (w->flags & 1)))
927 { 1140 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1142 w->rpid = pid;
930 w->rstatus = status; 1143 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1145 }
933 } 1146 }
947 if (!WCONTINUED 1160 if (!WCONTINUED
948 || errno != EINVAL 1161 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1163 return;
951 1164
952 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1168
956 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1172}
960 1173
961#endif 1174#endif
962 1175
963/*****************************************************************************/ 1176/*****************************************************************************/
1106 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure () 1320 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1110 1323
1111 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1113 1326
1114#if EV_USE_PORT 1327#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1329#endif
1140 if (ev_is_active (&pipeev)) 1353 if (ev_is_active (&pipeev))
1141 { 1354 {
1142 ev_ref (EV_A); /* signal watcher */ 1355 ev_ref (EV_A); /* signal watcher */
1143 ev_io_stop (EV_A_ &pipeev); 1356 ev_io_stop (EV_A_ &pipeev);
1144 1357
1145 close (evpipe [0]); evpipe [0] = 0; 1358#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1147 } 1368 }
1148 1369
1149#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1151 close (fs_fd); 1372 close (fs_fd);
1196#endif 1417#endif
1197 1418
1198 backend = 0; 1419 backend = 0;
1199} 1420}
1200 1421
1422#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1202 1425
1203void inline_size 1426void inline_size
1204loop_fork (EV_P) 1427loop_fork (EV_P)
1205{ 1428{
1206#if EV_USE_PORT 1429#if EV_USE_PORT
1217#endif 1440#endif
1218 1441
1219 if (ev_is_active (&pipeev)) 1442 if (ev_is_active (&pipeev))
1220 { 1443 {
1221 /* this "locks" the handlers against writing to the pipe */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1222 gotsig = gotasync = 1; 1448 gotasync = 1;
1449#endif
1223 1450
1224 ev_ref (EV_A); 1451 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1226 close (evpipe [0]); 1461 close (evpipe [0]);
1227 close (evpipe [1]); 1462 close (evpipe [1]);
1463 }
1228 1464
1229 evpipe_init (EV_A); 1465 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1466 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1467 pipecb (EV_A_ &pipeev, EV_READ);
1232 } 1468 }
1233 1469
1234 postfork = 0; 1470 postfork = 0;
1235} 1471}
1236 1472
1237#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1238struct ev_loop * 1475struct ev_loop *
1239ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1240{ 1477{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 1479
1261ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1262{ 1499{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1264} 1501}
1265 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1266#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1267 1602
1268#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1269struct ev_loop * 1604struct ev_loop *
1270ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1271#else 1606#else
1347 { 1682 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1349 1684
1350 p->w->pending = 0; 1685 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1352 } 1688 }
1353 } 1689 }
1354} 1690}
1355
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435 1691
1436#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1437void inline_size 1693void inline_size
1438idle_reify (EV_P) 1694idle_reify (EV_P)
1439{ 1695{
1451 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1452 break; 1708 break;
1453 } 1709 }
1454 } 1710 }
1455 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1456} 1814}
1457#endif 1815#endif
1458 1816
1459void inline_speed 1817void inline_speed
1460time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1489 */ 1847 */
1490 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1491 { 1849 {
1492 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1493 1851
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 1853 return; /* all is well */
1496 1854
1497 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 1856 mn_now = get_clock ();
1499 now_floor = mn_now; 1857 now_floor = mn_now;
1515#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1517#endif 1875#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1520 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1521 } 1883 }
1522 1884
1523 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1524 } 1886 }
1525} 1887}
1539static int loop_done; 1901static int loop_done;
1540 1902
1541void 1903void
1542ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1543{ 1905{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1545 ? EVUNLOOP_ONE
1546 : EVUNLOOP_CANCEL;
1547 1907
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1549 1909
1550 do 1910 do
1551 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1552#ifndef _WIN32 1916#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1555 { 1919 {
1556 curpid = getpid (); 1920 curpid = getpid ();
1597 1961
1598 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1599 1963
1600 if (timercnt) 1964 if (timercnt)
1601 { 1965 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1604 } 1968 }
1605 1969
1606#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 1971 if (periodiccnt)
1608 { 1972 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1611 } 1975 }
1612#endif 1976#endif
1613 1977
1614 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1647 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 2014
1651 call_pending (EV_A); 2015 call_pending (EV_A);
1652
1653 } 2016 }
1654 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1655 2022
1656 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1658} 2025}
1659 2026
1748 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1749 return; 2116 return;
1750 2117
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1752 2119
2120 EV_FREQUENT_CHECK;
2121
1753 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1755 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1756 2125
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1758 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1759} 2130}
1760 2131
1761void noinline 2132void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1763{ 2134{
1764 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1766 return; 2137 return;
1767 2138
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1769 2142
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1772 2145
1773 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1774} 2149}
1775 2150
1776void noinline 2151void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1778{ 2153{
1779 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1780 return; 2155 return;
1781 2156
1782 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1783 2158
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1790 2169
2170 EV_FREQUENT_CHECK;
2171
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2173}
1793 2174
1794void noinline 2175void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2177{
1797 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1799 return; 2180 return;
1800 2181
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2182 EV_FREQUENT_CHECK;
1802 2183
1803 { 2184 {
1804 int active = ((W)w)->active; 2185 int active = ev_active (w);
1805 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1806 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1807 { 2192 {
1808 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1810 } 2195 }
1811 } 2196 }
1812 2197
1813 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1814 2201
1815 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1816} 2203}
1817 2204
1818void noinline 2205void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1820{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1821 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1822 { 2211 {
1823 if (w->repeat) 2212 if (w->repeat)
1824 { 2213 {
1825 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1827 } 2217 }
1828 else 2218 else
1829 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1830 } 2220 }
1831 else if (w->repeat) 2221 else if (w->repeat)
1832 { 2222 {
1833 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1835 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1836} 2228}
1837 2229
1838#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1839void noinline 2231void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2233{
1842 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1843 return; 2235 return;
1844 2236
1845 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2239 else if (w->interval)
1848 { 2240 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2244 }
1853 else 2245 else
1854 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1855 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1860 2256
2257 EV_FREQUENT_CHECK;
2258
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2260}
1863 2261
1864void noinline 2262void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2264{
1867 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1869 return; 2267 return;
1870 2268
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2269 EV_FREQUENT_CHECK;
1872 2270
1873 { 2271 {
1874 int active = ((W)w)->active; 2272 int active = ev_active (w);
1875 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1876 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2279 {
1878 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1880 } 2282 }
1881 } 2283 }
1882 2284
2285 EV_FREQUENT_CHECK;
2286
1883 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1884} 2288}
1885 2289
1886void noinline 2290void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1906 return; 2310 return;
1907 2311
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1909 2313
1910 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
1911 2317
1912 { 2318 {
1913#ifndef _WIN32 2319#ifndef _WIN32
1914 sigset_t full, prev; 2320 sigset_t full, prev;
1915 sigfillset (&full); 2321 sigfillset (&full);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2334
1929 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1930 { 2336 {
1931#if _WIN32 2337#if _WIN32
1932 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1933#else 2339#else
1934 struct sigaction sa; 2340 struct sigaction sa;
1935 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1939#endif 2345#endif
1940 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
1941} 2349}
1942 2350
1943void noinline 2351void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2353{
1946 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1948 return; 2356 return;
1949 2357
2358 EV_FREQUENT_CHECK;
2359
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1952 2362
1953 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1954 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1955} 2367}
1956 2368
1957void 2369void
1958ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1959{ 2371{
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2374#endif
1963 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1964 return; 2376 return;
1965 2377
2378 EV_FREQUENT_CHECK;
2379
1966 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1968} 2384}
1969 2385
1970void 2386void
1971ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1972{ 2388{
1973 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1975 return; 2391 return;
1976 2392
2393 EV_FREQUENT_CHECK;
2394
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1979} 2399}
1980 2400
1981#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1982 2402
1983# ifdef _WIN32 2403# ifdef _WIN32
2001 if (w->wd < 0) 2421 if (w->wd < 0)
2002 { 2422 {
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2004 2424
2005 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2429 {
2008 char path [4096]; 2430 char path [4096];
2009 strcpy (path, w->path); 2431 strcpy (path, w->path);
2010 2432
2209 else 2631 else
2210#endif 2632#endif
2211 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2212 2634
2213 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2214} 2638}
2215 2639
2216void 2640void
2217ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2218{ 2642{
2219 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2221 return; 2645 return;
2222 2646
2647 EV_FREQUENT_CHECK;
2648
2223#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2225#endif 2651#endif
2226 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2227 2653
2228 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2229} 2657}
2230#endif 2658#endif
2231 2659
2232#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2233void 2661void
2235{ 2663{
2236 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2237 return; 2665 return;
2238 2666
2239 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2240 2670
2241 { 2671 {
2242 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2243 2673
2244 ++idleall; 2674 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2246 2676
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2249 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2250} 2682}
2251 2683
2252void 2684void
2253ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2254{ 2686{
2255 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2257 return; 2689 return;
2258 2690
2691 EV_FREQUENT_CHECK;
2692
2259 { 2693 {
2260 int active = ((W)w)->active; 2694 int active = ev_active (w);
2261 2695
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 2698
2265 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2266 --idleall; 2700 --idleall;
2267 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2268} 2704}
2269#endif 2705#endif
2270 2706
2271void 2707void
2272ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 2709{
2274 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2275 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2276 2714
2277 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2280} 2720}
2281 2721
2282void 2722void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 2724{
2285 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2287 return; 2727 return;
2288 2728
2729 EV_FREQUENT_CHECK;
2730
2289 { 2731 {
2290 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2291 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2293 } 2736 }
2294 2737
2295 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2296} 2741}
2297 2742
2298void 2743void
2299ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2300{ 2745{
2301 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2302 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2303 2750
2304 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2307} 2756}
2308 2757
2309void 2758void
2310ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2311{ 2760{
2312 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2314 return; 2763 return;
2315 2764
2765 EV_FREQUENT_CHECK;
2766
2316 { 2767 {
2317 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2318 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2320 } 2772 }
2321 2773
2322 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2323} 2777}
2324 2778
2325#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2326void noinline 2780void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2374 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 2831 }
2378 2832
2833 EV_FREQUENT_CHECK;
2834
2379 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2381 2837
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2385 2841
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 2843
2388 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2389} 2847}
2390 2848
2391void 2849void
2392ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2393{ 2851{
2394 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2396 return; 2854 return;
2397 2855
2856 EV_FREQUENT_CHECK;
2857
2398 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2400 2860
2401 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2402} 2864}
2403#endif 2865#endif
2404 2866
2405#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2406void 2868void
2407ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2408{ 2870{
2409 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2410 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2411 2875
2412 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2415} 2881}
2416 2882
2417void 2883void
2418ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2419{ 2885{
2420 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2422 return; 2888 return;
2423 2889
2890 EV_FREQUENT_CHECK;
2891
2424 { 2892 {
2425 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2426 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2428 } 2897 }
2429 2898
2430 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2431} 2902}
2432#endif 2903#endif
2433 2904
2434#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2435void 2906void
2437{ 2908{
2438 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2439 return; 2910 return;
2440 2911
2441 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2442 2915
2443 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2446} 2921}
2447 2922
2448void 2923void
2449ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2450{ 2925{
2451 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2453 return; 2928 return;
2454 2929
2930 EV_FREQUENT_CHECK;
2931
2455 { 2932 {
2456 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2457 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 2936 ev_active (asyncs [active - 1]) = active;
2459 } 2937 }
2460 2938
2461 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2462} 2942}
2463 2943
2464void 2944void
2465ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2466{ 2946{
2467 w->sent = 1; 2947 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 2948 evpipe_write (EV_A_ &gotasync);
2469} 2949}
2470#endif 2950#endif
2471 2951
2472/*****************************************************************************/ 2952/*****************************************************************************/
2473 2953

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines