ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
422 W w; 446 W w;
423 int events; 447 int events;
424} ANPENDING; 448} ANPENDING;
425 449
426#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
427typedef struct 452typedef struct
428{ 453{
429 WL head; 454 WL head;
430} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
431#endif 474#endif
432 475
433#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
434 477
435 struct ev_loop 478 struct ev_loop
760} 803}
761 804
762/*****************************************************************************/ 805/*****************************************************************************/
763 806
764/* 807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
765 * at the moment we allow libev the luxury of two heaps, 814 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 816 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 817 * the difference is about 5% with 50000+ watchers.
769 */ 818 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 819#if EV_USE_4HEAP
773 820
774#define DHEAP 4 821#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
776 905
777/* towards the root */ 906/* towards the root */
778void inline_speed 907void inline_speed
779upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
780{ 909{
781 WT w = heap [k]; 910 ANHE he = heap [k];
782 911
783 for (;;) 912 for (;;)
784 { 913 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 914 int p = HPARENT (k);
786 915
787 if (p == k || heap [p]->at <= w->at) 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
788 break; 917 break;
789 918
790 heap [k] = heap [p]; 919 heap [k] = heap [p];
791 ev_active (heap [k]) = k; 920 ev_active (ANHE_w (heap [k])) = k;
792 k = p; 921 k = p;
793 } 922 }
794 923
795 heap [k] = w; 924 heap [k] = he;
796 ev_active (heap [k]) = k; 925 ev_active (ANHE_w (he)) = k;
797} 926}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
811
812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
814 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at);
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
820 }
821 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break;
834
835 ev_active (*minpos) = k;
836 heap [k] = *minpos;
837
838 k = minpos - heap;
839 }
840
841 heap [k] = w;
842 ev_active (heap [k]) = k;
843}
844
845#else // 4HEAP
846
847#define HEAP0 1
848
849/* towards the root */
850void inline_speed
851upheap (WT *heap, int k)
852{
853 WT w = heap [k];
854
855 for (;;)
856 {
857 int p = k >> 1;
858
859 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at)
861 break;
862
863 heap [k] = heap [p];
864 ev_active (heap [k]) = k;
865 k = p;
866 }
867
868 heap [k] = w;
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break;
884
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c];
892 ((W)heap [k])->active = k;
893
894 k = c;
895 }
896
897 heap [k] = w;
898 ev_active (heap [k]) = k;
899}
900#endif
901 927
902void inline_size 928void inline_size
903adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
904{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
905 upheap (heap, k); 932 upheap (heap, k);
933 else
906 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
907} 947}
908 948
909/*****************************************************************************/ 949/*****************************************************************************/
910 950
911typedef struct 951typedef struct
1429 1469
1430 postfork = 0; 1470 postfork = 0;
1431} 1471}
1432 1472
1433#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1434struct ev_loop * 1475struct ev_loop *
1435ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1436{ 1477{
1437 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1438 1479
1456void 1497void
1457ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1458{ 1499{
1459 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1460} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1461#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1462 1602
1463#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1464struct ev_loop * 1604struct ev_loop *
1465ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1466#else 1606#else
1542 { 1682 {
1543 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1544 1684
1545 p->w->pending = 0; 1685 p->w->pending = 0;
1546 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1547 } 1688 }
1548 } 1689 }
1549} 1690}
1550 1691
1551#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1572#endif 1713#endif
1573 1714
1574void inline_size 1715void inline_size
1575timers_reify (EV_P) 1716timers_reify (EV_P)
1576{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 1721 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1580 1723
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582 1725
1583 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
1584 if (w->repeat) 1727 if (w->repeat)
1585 { 1728 {
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587
1588 ev_at (w) += w->repeat; 1729 ev_at (w) += w->repeat;
1589 if (ev_at (w) < mn_now) 1730 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now; 1731 ev_at (w) = mn_now;
1591 1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1592 downheap (timers, timercnt, HEAP0); 1736 downheap (timers, timercnt, HEAP0);
1593 } 1737 }
1594 else 1738 else
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 1740
1741 EV_FREQUENT_CHECK;
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1598 } 1743 }
1599} 1744}
1600 1745
1601#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1602void inline_size 1747void inline_size
1603periodics_reify (EV_P) 1748periodics_reify (EV_P)
1604{ 1749{
1750 EV_FREQUENT_CHECK;
1751
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 1753 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1608 1755
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1610 1757
1611 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
1612 if (w->reschedule_cb) 1759 if (w->reschedule_cb)
1613 { 1760 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 1766 downheap (periodics, periodiccnt, HEAP0);
1617 } 1767 }
1618 else if (w->interval) 1768 else if (w->interval)
1619 { 1769 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1623 downheap (periodics, periodiccnt, HEAP0); 1785 downheap (periodics, periodiccnt, HEAP0);
1624 } 1786 }
1625 else 1787 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 1789
1790 EV_FREQUENT_CHECK;
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1629 } 1792 }
1630} 1793}
1631 1794
1632static void noinline 1795static void noinline
1633periodics_reschedule (EV_P) 1796periodics_reschedule (EV_P)
1634{ 1797{
1635 int i; 1798 int i;
1636 1799
1637 /* adjust periodics after time jump */ 1800 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 1802 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 1804
1642 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 1807 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 }
1647 1809
1648 /* now rebuild the heap */ 1810 ANHE_at_cache (periodics [i]);
1649 for (i = periodiccnt >> 1; --i; ) 1811 }
1812
1650 downheap (periodics, periodiccnt, i + HEAP0); 1813 reheap (periodics, periodiccnt);
1651} 1814}
1652#endif 1815#endif
1653 1816
1654void inline_speed 1817void inline_speed
1655time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1709 { 1872 {
1710#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1712#endif 1875#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now; 1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1716 } 1883 }
1717 1884
1718 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1719 } 1886 }
1720} 1887}
1740 1907
1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1742 1909
1743 do 1910 do
1744 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1745#ifndef _WIN32 1916#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1748 { 1919 {
1749 curpid = getpid (); 1920 curpid = getpid ();
1790 1961
1791 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1792 1963
1793 if (timercnt) 1964 if (timercnt)
1794 { 1965 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1797 } 1968 }
1798 1969
1799#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 1971 if (periodiccnt)
1801 { 1972 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1804 } 1975 }
1805#endif 1976#endif
1806 1977
1807 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1944 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1945 return; 2116 return;
1946 2117
1947 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1948 2119
2120 EV_FREQUENT_CHECK;
2121
1949 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1951 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1952 2125
1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1954 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1955} 2130}
1956 2131
1957void noinline 2132void noinline
1958ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1959{ 2134{
1960 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1962 return; 2137 return;
1963 2138
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1965 2142
1966 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1968 2145
1969 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1970} 2149}
1971 2150
1972void noinline 2151void noinline
1973ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1974{ 2153{
1977 2156
1978 ev_at (w) += mn_now; 2157 ev_at (w) += mn_now;
1979 2158
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
2167 ANHE_at_cache (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2168 upheap (timers, ev_active (w));
1986 2169
2170 EV_FREQUENT_CHECK;
2171
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2173}
1989 2174
1990void noinline 2175void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2177{
1993 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1995 return; 2180 return;
1996 2181
2182 EV_FREQUENT_CHECK;
2183
1997 { 2184 {
1998 int active = ev_active (w); 2185 int active = ev_active (w);
1999 2186
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2188
2189 --timercnt;
2190
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2191 if (expect_true (active < timercnt + HEAP0))
2003 { 2192 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2193 timers [active] = timers [timercnt + HEAP0];
2005 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
2006 } 2195 }
2007
2008 --timercnt;
2009 } 2196 }
2197
2198 EV_FREQUENT_CHECK;
2010 2199
2011 ev_at (w) -= mn_now; 2200 ev_at (w) -= mn_now;
2012 2201
2013 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
2014} 2203}
2015 2204
2016void noinline 2205void noinline
2017ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
2018{ 2207{
2208 EV_FREQUENT_CHECK;
2209
2019 if (ev_is_active (w)) 2210 if (ev_is_active (w))
2020 { 2211 {
2021 if (w->repeat) 2212 if (w->repeat)
2022 { 2213 {
2023 ev_at (w) = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2216 adjustheap (timers, timercnt, ev_active (w));
2025 } 2217 }
2026 else 2218 else
2027 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
2028 } 2220 }
2029 else if (w->repeat) 2221 else if (w->repeat)
2030 { 2222 {
2031 ev_at (w) = w->repeat; 2223 ev_at (w) = w->repeat;
2032 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
2033 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
2034} 2228}
2035 2229
2036#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
2037void noinline 2231void noinline
2038ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 } 2244 }
2051 else 2245 else
2052 ev_at (w) = w->offset; 2246 ev_at (w) = w->offset;
2053 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2254 ANHE_at_cache (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 2255 upheap (periodics, ev_active (w));
2058 2256
2257 EV_FREQUENT_CHECK;
2258
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2260}
2061 2261
2062void noinline 2262void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2264{
2065 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
2067 return; 2267 return;
2068 2268
2269 EV_FREQUENT_CHECK;
2270
2069 { 2271 {
2070 int active = ev_active (w); 2272 int active = ev_active (w);
2071 2273
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2275
2276 --periodiccnt;
2277
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2278 if (expect_true (active < periodiccnt + HEAP0))
2075 { 2279 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
2077 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
2078 } 2282 }
2079
2080 --periodiccnt;
2081 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
2082 2286
2083 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
2084} 2288}
2085 2289
2086void noinline 2290void noinline
2106 return; 2310 return;
2107 2311
2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2109 2313
2110 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2111 2317
2112 { 2318 {
2113#ifndef _WIN32 2319#ifndef _WIN32
2114 sigset_t full, prev; 2320 sigset_t full, prev;
2115 sigfillset (&full); 2321 sigfillset (&full);
2136 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2138 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2139#endif 2345#endif
2140 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
2141} 2349}
2142 2350
2143void noinline 2351void noinline
2144ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
2145{ 2353{
2146 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
2148 return; 2356 return;
2149 2357
2358 EV_FREQUENT_CHECK;
2359
2150 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
2151 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2152 2362
2153 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
2154 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
2155} 2367}
2156 2368
2157void 2369void
2158ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
2159{ 2371{
2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2162#endif 2374#endif
2163 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2164 return; 2376 return;
2165 2377
2378 EV_FREQUENT_CHECK;
2379
2166 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
2168} 2384}
2169 2385
2170void 2386void
2171ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
2172{ 2388{
2173 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2174 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2175 return; 2391 return;
2176 2392
2393 EV_FREQUENT_CHECK;
2394
2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2178 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
2179} 2399}
2180 2400
2181#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
2182 2402
2183# ifdef _WIN32 2403# ifdef _WIN32
2411 else 2631 else
2412#endif 2632#endif
2413 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2414 2634
2415 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2416} 2638}
2417 2639
2418void 2640void
2419ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2420{ 2642{
2421 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2423 return; 2645 return;
2424 2646
2647 EV_FREQUENT_CHECK;
2648
2425#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2427#endif 2651#endif
2428 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2429 2653
2430 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2431} 2657}
2432#endif 2658#endif
2433 2659
2434#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2435void 2661void
2437{ 2663{
2438 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2439 return; 2665 return;
2440 2666
2441 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2442 2670
2443 { 2671 {
2444 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2445 2673
2446 ++idleall; 2674 ++idleall;
2447 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2448 2676
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2451 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2452} 2682}
2453 2683
2454void 2684void
2455ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2456{ 2686{
2457 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2459 return; 2689 return;
2460 2690
2691 EV_FREQUENT_CHECK;
2692
2461 { 2693 {
2462 int active = ev_active (w); 2694 int active = ev_active (w);
2463 2695
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466 2698
2467 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2468 --idleall; 2700 --idleall;
2469 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2470} 2704}
2471#endif 2705#endif
2472 2706
2473void 2707void
2474ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2475{ 2709{
2476 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2477 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2478 2714
2479 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2482} 2720}
2483 2721
2484void 2722void
2485ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2486{ 2724{
2487 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2489 return; 2727 return;
2490 2728
2729 EV_FREQUENT_CHECK;
2730
2491 { 2731 {
2492 int active = ev_active (w); 2732 int active = ev_active (w);
2493 2733
2494 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active; 2735 ev_active (prepares [active - 1]) = active;
2496 } 2736 }
2497 2737
2498 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2499} 2741}
2500 2742
2501void 2743void
2502ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2503{ 2745{
2504 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2505 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2506 2750
2507 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2510} 2756}
2511 2757
2512void 2758void
2513ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2514{ 2760{
2515 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2517 return; 2763 return;
2518 2764
2765 EV_FREQUENT_CHECK;
2766
2519 { 2767 {
2520 int active = ev_active (w); 2768 int active = ev_active (w);
2521 2769
2522 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active; 2771 ev_active (checks [active - 1]) = active;
2524 } 2772 }
2525 2773
2526 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2527} 2777}
2528 2778
2529#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2530void noinline 2780void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2578 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 } 2831 }
2582 2832
2833 EV_FREQUENT_CHECK;
2834
2583 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2585 2837
2586 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2589 2841
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591 2843
2592 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2593} 2847}
2594 2848
2595void 2849void
2596ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2597{ 2851{
2598 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2600 return; 2854 return;
2601 2855
2856 EV_FREQUENT_CHECK;
2857
2602 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2604 2860
2605 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2606} 2864}
2607#endif 2865#endif
2608 2866
2609#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2610void 2868void
2611ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2612{ 2870{
2613 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2614 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2615 2875
2616 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2619} 2881}
2620 2882
2621void 2883void
2622ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2623{ 2885{
2624 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2626 return; 2888 return;
2627 2889
2890 EV_FREQUENT_CHECK;
2891
2628 { 2892 {
2629 int active = ev_active (w); 2893 int active = ev_active (w);
2630 2894
2631 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active; 2896 ev_active (forks [active - 1]) = active;
2633 } 2897 }
2634 2898
2635 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2636} 2902}
2637#endif 2903#endif
2638 2904
2639#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2640void 2906void
2642{ 2908{
2643 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2644 return; 2910 return;
2645 2911
2646 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2647 2915
2648 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2651} 2921}
2652 2922
2653void 2923void
2654ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2655{ 2925{
2656 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2658 return; 2928 return;
2659 2929
2930 EV_FREQUENT_CHECK;
2931
2660 { 2932 {
2661 int active = ev_active (w); 2933 int active = ev_active (w);
2662 2934
2663 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active; 2936 ev_active (asyncs [active - 1]) = active;
2665 } 2937 }
2666 2938
2667 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2668} 2942}
2669 2943
2670void 2944void
2671ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2672{ 2946{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines