ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC vs.
Revision 1.355 by root, Fri Oct 22 10:09:12 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
237# endif 322# endif
238#endif 323#endif
239 324
240#if 0 /* debugging */ 325#if 0 /* debugging */
241# define EV_VERIFY 3 326# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
244#endif 329#endif
245 330
246#ifndef EV_VERIFY 331#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 333#endif
249 334
250#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 337#endif
253 338
254#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
256#endif 355#endif
257 356
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
259 364
260#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
263#endif 368#endif
277# include <sys/select.h> 382# include <sys/select.h>
278# endif 383# endif
279#endif 384#endif
280 385
281#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
282# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
283#endif 395#endif
284 396
285#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 398# include <winsock.h>
287#endif 399#endif
288 400
289#if EV_USE_EVENTFD 401#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 403# include <stdint.h>
292# ifdef __cplusplus 404# ifndef EFD_NONBLOCK
293extern "C" { 405# define EFD_NONBLOCK O_NONBLOCK
294# endif 406# endif
295int eventfd (unsigned int initval, int flags); 407# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 408# ifdef O_CLOEXEC
297} 409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
298# endif 413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
299#endif 437#endif
300 438
301/**/ 439/**/
302 440
303#if EV_VERIFY >= 3 441#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 442# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 443#else
306# define EV_FREQUENT_CHECK do { } while (0) 444# define EV_FREQUENT_CHECK do { } while (0)
307#endif 445#endif
308 446
309/* 447/*
316 */ 454 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318 456
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
322 462
323#if __GNUC__ >= 4 463#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
326#else 466#else
333 473
334#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline 476#define inline_size static inline
337 477
338#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
339# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
340#else 488#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
346 491
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
349 494
350typedef ev_watcher *W; 495typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
353 498
354#define ev_active(w) ((W)(w))->active 499#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 500#define ev_at(w) ((WT)(w))->at
356 501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
357#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 520#endif
362 521
363#ifdef _WIN32 522#ifdef _WIN32
364# include "ev_win32.c" 523# include "ev_win32.c"
365#endif 524#endif
366 525
367/*****************************************************************************/ 526/*****************************************************************************/
368 527
528static unsigned int noinline
529ev_linux_version (void)
530{
531#ifdef __linux
532 struct utsname buf;
533 unsigned int v;
534 int i;
535 char *p = buf.release;
536
537 if (uname (&buf))
538 return 0;
539
540 for (i = 3+1; --i; )
541 {
542 unsigned int c = 0;
543
544 for (;;)
545 {
546 if (*p >= '0' && *p <= '9')
547 c = c * 10 + *p++ - '0';
548 else
549 {
550 p += *p == '.';
551 break;
552 }
553 }
554
555 v = (v << 8) | c;
556 }
557
558 return v;
559#else
560 return 0;
561#endif
562}
563
564/*****************************************************************************/
565
566#if EV_AVOID_STDIO
567static void noinline
568ev_printerr (const char *msg)
569{
570 write (STDERR_FILENO, msg, strlen (msg));
571}
572#endif
573
369static void (*syserr_cb)(const char *msg); 574static void (*syserr_cb)(const char *msg);
370 575
371void 576void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 577ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 578{
374 syserr_cb = cb; 579 syserr_cb = cb;
375} 580}
376 581
377static void noinline 582static void noinline
378syserr (const char *msg) 583ev_syserr (const char *msg)
379{ 584{
380 if (!msg) 585 if (!msg)
381 msg = "(libev) system error"; 586 msg = "(libev) system error";
382 587
383 if (syserr_cb) 588 if (syserr_cb)
384 syserr_cb (msg); 589 syserr_cb (msg);
385 else 590 else
386 { 591 {
592#if EV_AVOID_STDIO
593 const char *err = strerror (errno);
594
595 ev_printerr (msg);
596 ev_printerr (": ");
597 ev_printerr (err);
598 ev_printerr ("\n");
599#else
387 perror (msg); 600 perror (msg);
601#endif
388 abort (); 602 abort ();
389 } 603 }
390} 604}
391 605
392static void * 606static void *
393ev_realloc_emul (void *ptr, long size) 607ev_realloc_emul (void *ptr, long size)
394{ 608{
609#if __GLIBC__
610 return realloc (ptr, size);
611#else
395 /* some systems, notably openbsd and darwin, fail to properly 612 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 613 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 614 * the single unix specification, so work around them here.
398 */ 615 */
399 616
400 if (size) 617 if (size)
401 return realloc (ptr, size); 618 return realloc (ptr, size);
402 619
403 free (ptr); 620 free (ptr);
404 return 0; 621 return 0;
622#endif
405} 623}
406 624
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 625static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408 626
409void 627void
417{ 635{
418 ptr = alloc (ptr, size); 636 ptr = alloc (ptr, size);
419 637
420 if (!ptr && size) 638 if (!ptr && size)
421 { 639 {
640#if EV_AVOID_STDIO
641 ev_printerr ("libev: memory allocation failed, aborting.\n");
642#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 643 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
644#endif
423 abort (); 645 abort ();
424 } 646 }
425 647
426 return ptr; 648 return ptr;
427} 649}
429#define ev_malloc(size) ev_realloc (0, (size)) 651#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 652#define ev_free(ptr) ev_realloc ((ptr), 0)
431 653
432/*****************************************************************************/ 654/*****************************************************************************/
433 655
656/* set in reify when reification needed */
657#define EV_ANFD_REIFY 1
658
659/* file descriptor info structure */
434typedef struct 660typedef struct
435{ 661{
436 WL head; 662 WL head;
437 unsigned char events; 663 unsigned char events; /* the events watched for */
664 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
665 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 666 unsigned char unused;
667#if EV_USE_EPOLL
668 unsigned int egen; /* generation counter to counter epoll bugs */
669#endif
439#if EV_SELECT_IS_WINSOCKET 670#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle; 671 SOCKET handle;
441#endif 672#endif
442} ANFD; 673} ANFD;
443 674
675/* stores the pending event set for a given watcher */
444typedef struct 676typedef struct
445{ 677{
446 W w; 678 W w;
447 int events; 679 int events; /* the pending event set for the given watcher */
448} ANPENDING; 680} ANPENDING;
449 681
450#if EV_USE_INOTIFY 682#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 683/* hash table entry per inotify-id */
452typedef struct 684typedef struct
455} ANFS; 687} ANFS;
456#endif 688#endif
457 689
458/* Heap Entry */ 690/* Heap Entry */
459#if EV_HEAP_CACHE_AT 691#if EV_HEAP_CACHE_AT
692 /* a heap element */
460 typedef struct { 693 typedef struct {
461 ev_tstamp at; 694 ev_tstamp at;
462 WT w; 695 WT w;
463 } ANHE; 696 } ANHE;
464 697
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 698 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 699 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 700 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 701#else
702 /* a heap element */
469 typedef WT ANHE; 703 typedef WT ANHE;
470 704
471 #define ANHE_w(he) (he) 705 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 706 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 707 #define ANHE_at_cache(he)
497 731
498 static int ev_default_loop_ptr; 732 static int ev_default_loop_ptr;
499 733
500#endif 734#endif
501 735
736#if EV_FEATURE_API
737# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
738# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
739# define EV_INVOKE_PENDING invoke_cb (EV_A)
740#else
741# define EV_RELEASE_CB (void)0
742# define EV_ACQUIRE_CB (void)0
743# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
744#endif
745
746#define EVBREAK_RECURSE 0x80
747
502/*****************************************************************************/ 748/*****************************************************************************/
503 749
750#ifndef EV_HAVE_EV_TIME
504ev_tstamp 751ev_tstamp
505ev_time (void) 752ev_time (void)
506{ 753{
507#if EV_USE_REALTIME 754#if EV_USE_REALTIME
755 if (expect_true (have_realtime))
756 {
508 struct timespec ts; 757 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 758 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 759 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 760 }
761#endif
762
512 struct timeval tv; 763 struct timeval tv;
513 gettimeofday (&tv, 0); 764 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 765 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 766}
767#endif
517 768
518ev_tstamp inline_size 769inline_size ev_tstamp
519get_clock (void) 770get_clock (void)
520{ 771{
521#if EV_USE_MONOTONIC 772#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 773 if (expect_true (have_monotonic))
523 { 774 {
544 if (delay > 0.) 795 if (delay > 0.)
545 { 796 {
546#if EV_USE_NANOSLEEP 797#if EV_USE_NANOSLEEP
547 struct timespec ts; 798 struct timespec ts;
548 799
549 ts.tv_sec = (time_t)delay; 800 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 801 nanosleep (&ts, 0);
553#elif defined(_WIN32) 802#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3)); 803 Sleep ((unsigned long)(delay * 1e3));
555#else 804#else
556 struct timeval tv; 805 struct timeval tv;
557 806
558 tv.tv_sec = (time_t)delay; 807 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 808 /* something not guaranteed by newer posix versions, but guaranteed */
560 809 /* by older ones */
810 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 811 select (0, 0, 0, 0, &tv);
562#endif 812#endif
563 } 813 }
564} 814}
565 815
566/*****************************************************************************/ 816/*****************************************************************************/
567 817
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 818#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 819
570int inline_size 820/* find a suitable new size for the given array, */
821/* hopefully by rounding to a nice-to-malloc size */
822inline_size int
571array_nextsize (int elem, int cur, int cnt) 823array_nextsize (int elem, int cur, int cnt)
572{ 824{
573 int ncur = cur + 1; 825 int ncur = cur + 1;
574 826
575 do 827 do
592array_realloc (int elem, void *base, int *cur, int cnt) 844array_realloc (int elem, void *base, int *cur, int cnt)
593{ 845{
594 *cur = array_nextsize (elem, *cur, cnt); 846 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 847 return ev_realloc (base, elem * *cur);
596} 848}
849
850#define array_init_zero(base,count) \
851 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 852
598#define array_needsize(type,base,cur,cnt,init) \ 853#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 854 if (expect_false ((cnt) > (cur))) \
600 { \ 855 { \
601 int ocur_ = (cur); \ 856 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 868 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 869 }
615#endif 870#endif
616 871
617#define array_free(stem, idx) \ 872#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 873 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 874
620/*****************************************************************************/ 875/*****************************************************************************/
876
877/* dummy callback for pending events */
878static void noinline
879pendingcb (EV_P_ ev_prepare *w, int revents)
880{
881}
621 882
622void noinline 883void noinline
623ev_feed_event (EV_P_ void *w, int revents) 884ev_feed_event (EV_P_ void *w, int revents)
624{ 885{
625 W w_ = (W)w; 886 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 895 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 896 pendings [pri][w_->pending - 1].events = revents;
636 } 897 }
637} 898}
638 899
639void inline_speed 900inline_speed void
901feed_reverse (EV_P_ W w)
902{
903 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
904 rfeeds [rfeedcnt++] = w;
905}
906
907inline_size void
908feed_reverse_done (EV_P_ int revents)
909{
910 do
911 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
912 while (rfeedcnt);
913}
914
915inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 916queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 917{
642 int i; 918 int i;
643 919
644 for (i = 0; i < eventcnt; ++i) 920 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 921 ev_feed_event (EV_A_ events [i], type);
646} 922}
647 923
648/*****************************************************************************/ 924/*****************************************************************************/
649 925
650void inline_size 926inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 927fd_event_nocheck (EV_P_ int fd, int revents)
665{ 928{
666 ANFD *anfd = anfds + fd; 929 ANFD *anfd = anfds + fd;
667 ev_io *w; 930 ev_io *w;
668 931
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 932 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 936 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 937 ev_feed_event (EV_A_ (W)w, ev);
675 } 938 }
676} 939}
677 940
941/* do not submit kernel events for fds that have reify set */
942/* because that means they changed while we were polling for new events */
943inline_speed void
944fd_event (EV_P_ int fd, int revents)
945{
946 ANFD *anfd = anfds + fd;
947
948 if (expect_true (!anfd->reify))
949 fd_event_nocheck (EV_A_ fd, revents);
950}
951
678void 952void
679ev_feed_fd_event (EV_P_ int fd, int revents) 953ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 954{
681 if (fd >= 0 && fd < anfdmax) 955 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 956 fd_event_nocheck (EV_A_ fd, revents);
683} 957}
684 958
685void inline_size 959/* make sure the external fd watch events are in-sync */
960/* with the kernel/libev internal state */
961inline_size void
686fd_reify (EV_P) 962fd_reify (EV_P)
687{ 963{
688 int i; 964 int i;
689 965
690 for (i = 0; i < fdchangecnt; ++i) 966 for (i = 0; i < fdchangecnt; ++i)
691 { 967 {
692 int fd = fdchanges [i]; 968 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 969 ANFD *anfd = anfds + fd;
694 ev_io *w; 970 ev_io *w;
695 971
696 unsigned char events = 0; 972 unsigned char o_events = anfd->events;
973 unsigned char o_reify = anfd->reify;
697 974
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 975 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 976
701#if EV_SELECT_IS_WINSOCKET 977#if EV_SELECT_IS_WINSOCKET
702 if (events) 978 if (o_reify & EV__IOFDSET)
703 { 979 {
704 unsigned long argp; 980 unsigned long arg;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 981 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 982 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
711 } 983 }
712#endif 984#endif
713 985
986 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 { 987 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events; 988 anfd->events = 0;
720 989
721 if (o_events != events || o_reify & EV_IOFDSET) 990 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
991 anfd->events |= (unsigned char)w->events;
992
993 if (o_events != anfd->events)
994 o_reify = EV__IOFDSET; /* actually |= */
995 }
996
997 if (o_reify & EV__IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 998 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 999 }
725 1000
726 fdchangecnt = 0; 1001 fdchangecnt = 0;
727} 1002}
728 1003
729void inline_size 1004/* something about the given fd changed */
1005inline_size void
730fd_change (EV_P_ int fd, int flags) 1006fd_change (EV_P_ int fd, int flags)
731{ 1007{
732 unsigned char reify = anfds [fd].reify; 1008 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1009 anfds [fd].reify |= flags;
734 1010
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1014 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1015 fdchanges [fdchangecnt - 1] = fd;
740 } 1016 }
741} 1017}
742 1018
743void inline_speed 1019/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1020inline_speed void
744fd_kill (EV_P_ int fd) 1021fd_kill (EV_P_ int fd)
745{ 1022{
746 ev_io *w; 1023 ev_io *w;
747 1024
748 while ((w = (ev_io *)anfds [fd].head)) 1025 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1027 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1028 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1029 }
753} 1030}
754 1031
755int inline_size 1032/* check whether the given fd is actually valid, for error recovery */
1033inline_size int
756fd_valid (int fd) 1034fd_valid (int fd)
757{ 1035{
758#ifdef _WIN32 1036#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1037 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1038#else
761 return fcntl (fd, F_GETFD) != -1; 1039 return fcntl (fd, F_GETFD) != -1;
762#endif 1040#endif
763} 1041}
764 1042
768{ 1046{
769 int fd; 1047 int fd;
770 1048
771 for (fd = 0; fd < anfdmax; ++fd) 1049 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1050 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1051 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1052 fd_kill (EV_A_ fd);
775} 1053}
776 1054
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1055/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1056static void noinline
782 1060
783 for (fd = anfdmax; fd--; ) 1061 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1062 if (anfds [fd].events)
785 { 1063 {
786 fd_kill (EV_A_ fd); 1064 fd_kill (EV_A_ fd);
787 return; 1065 break;
788 } 1066 }
789} 1067}
790 1068
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1069/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1070static void noinline
796 1074
797 for (fd = 0; fd < anfdmax; ++fd) 1075 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1076 if (anfds [fd].events)
799 { 1077 {
800 anfds [fd].events = 0; 1078 anfds [fd].events = 0;
1079 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1080 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1081 }
803} 1082}
804 1083
1084/* used to prepare libev internal fd's */
1085/* this is not fork-safe */
1086inline_speed void
1087fd_intern (int fd)
1088{
1089#ifdef _WIN32
1090 unsigned long arg = 1;
1091 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1092#else
1093 fcntl (fd, F_SETFD, FD_CLOEXEC);
1094 fcntl (fd, F_SETFL, O_NONBLOCK);
1095#endif
1096}
1097
805/*****************************************************************************/ 1098/*****************************************************************************/
806 1099
807/* 1100/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1101 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1102 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1103 * the branching factor of the d-tree.
811 */ 1104 */
812 1105
813/* 1106/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1115#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1116#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1117#define UPHEAP_DONE(p,k) ((p) == (k))
825 1118
826/* away from the root */ 1119/* away from the root */
827void inline_speed 1120inline_speed void
828downheap (ANHE *heap, int N, int k) 1121downheap (ANHE *heap, int N, int k)
829{ 1122{
830 ANHE he = heap [k]; 1123 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1124 ANHE *E = heap + N + HEAP0;
832 1125
872#define HEAP0 1 1165#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1166#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1167#define UPHEAP_DONE(p,k) (!(p))
875 1168
876/* away from the root */ 1169/* away from the root */
877void inline_speed 1170inline_speed void
878downheap (ANHE *heap, int N, int k) 1171downheap (ANHE *heap, int N, int k)
879{ 1172{
880 ANHE he = heap [k]; 1173 ANHE he = heap [k];
881 1174
882 for (;;) 1175 for (;;)
883 { 1176 {
884 int c = k << 1; 1177 int c = k << 1;
885 1178
886 if (c > N + HEAP0 - 1) 1179 if (c >= N + HEAP0)
887 break; 1180 break;
888 1181
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1182 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1183 ? 1 : 0;
891 1184
902 ev_active (ANHE_w (he)) = k; 1195 ev_active (ANHE_w (he)) = k;
903} 1196}
904#endif 1197#endif
905 1198
906/* towards the root */ 1199/* towards the root */
907void inline_speed 1200inline_speed void
908upheap (ANHE *heap, int k) 1201upheap (ANHE *heap, int k)
909{ 1202{
910 ANHE he = heap [k]; 1203 ANHE he = heap [k];
911 1204
912 for (;;) 1205 for (;;)
923 1216
924 heap [k] = he; 1217 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1218 ev_active (ANHE_w (he)) = k;
926} 1219}
927 1220
928void inline_size 1221/* move an element suitably so it is in a correct place */
1222inline_size void
929adjustheap (ANHE *heap, int N, int k) 1223adjustheap (ANHE *heap, int N, int k)
930{ 1224{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1225 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1226 upheap (heap, k);
933 else 1227 else
934 downheap (heap, N, k); 1228 downheap (heap, N, k);
935} 1229}
936 1230
937/* rebuild the heap: this function is used only once and executed rarely */ 1231/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1232inline_size void
939reheap (ANHE *heap, int N) 1233reheap (ANHE *heap, int N)
940{ 1234{
941 int i; 1235 int i;
942 1236
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1237 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 1240 upheap (heap, i + HEAP0);
947} 1241}
948 1242
949/*****************************************************************************/ 1243/*****************************************************************************/
950 1244
1245/* associate signal watchers to a signal signal */
951typedef struct 1246typedef struct
952{ 1247{
1248 EV_ATOMIC_T pending;
1249#if EV_MULTIPLICITY
1250 EV_P;
1251#endif
953 WL head; 1252 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 1253} ANSIG;
956 1254
957static ANSIG *signals; 1255static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 1256
974/*****************************************************************************/ 1257/*****************************************************************************/
975 1258
976void inline_speed 1259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 1260
988static void noinline 1261static void noinline
989evpipe_init (EV_P) 1262evpipe_init (EV_P)
990{ 1263{
991 if (!ev_is_active (&pipeev)) 1264 if (!ev_is_active (&pipe_w))
992 { 1265 {
993#if EV_USE_EVENTFD 1266# if EV_USE_EVENTFD
1267 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1268 if (evfd < 0 && errno == EINVAL)
994 if ((evfd = eventfd (0, 0)) >= 0) 1269 evfd = eventfd (0, 0);
1270
1271 if (evfd >= 0)
995 { 1272 {
996 evpipe [0] = -1; 1273 evpipe [0] = -1;
997 fd_intern (evfd); 1274 fd_intern (evfd); /* doing it twice doesn't hurt */
998 ev_io_set (&pipeev, evfd, EV_READ); 1275 ev_io_set (&pipe_w, evfd, EV_READ);
999 } 1276 }
1000 else 1277 else
1001#endif 1278# endif
1002 { 1279 {
1003 while (pipe (evpipe)) 1280 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe"); 1281 ev_syserr ("(libev) error creating signal/async pipe");
1005 1282
1006 fd_intern (evpipe [0]); 1283 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]); 1284 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 1285 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1009 } 1286 }
1010 1287
1011 ev_io_start (EV_A_ &pipeev); 1288 ev_io_start (EV_A_ &pipe_w);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */ 1289 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 } 1290 }
1014} 1291}
1015 1292
1016void inline_size 1293inline_size void
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{ 1295{
1019 if (!*flag) 1296 if (!*flag)
1020 { 1297 {
1021 int old_errno = errno; /* save errno because write might clobber it */ 1298 int old_errno = errno; /* save errno because write might clobber it */
1299 char dummy;
1022 1300
1023 *flag = 1; 1301 *flag = 1;
1024 1302
1025#if EV_USE_EVENTFD 1303#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1304 if (evfd >= 0)
1028 uint64_t counter = 1; 1306 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t)); 1307 write (evfd, &counter, sizeof (uint64_t));
1030 } 1308 }
1031 else 1309 else
1032#endif 1310#endif
1311 /* win32 people keep sending patches that change this write() to send() */
1312 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1313 /* so when you think this write should be a send instead, please find out */
1314 /* where your send() is from - it's definitely not the microsoft send, and */
1315 /* tell me. thank you. */
1033 write (evpipe [1], &old_errno, 1); 1316 write (evpipe [1], &dummy, 1);
1034 1317
1035 errno = old_errno; 1318 errno = old_errno;
1036 } 1319 }
1037} 1320}
1038 1321
1322/* called whenever the libev signal pipe */
1323/* got some events (signal, async) */
1039static void 1324static void
1040pipecb (EV_P_ ev_io *iow, int revents) 1325pipecb (EV_P_ ev_io *iow, int revents)
1041{ 1326{
1327 int i;
1328
1042#if EV_USE_EVENTFD 1329#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1330 if (evfd >= 0)
1044 { 1331 {
1045 uint64_t counter; 1332 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t)); 1333 read (evfd, &counter, sizeof (uint64_t));
1047 } 1334 }
1048 else 1335 else
1049#endif 1336#endif
1050 { 1337 {
1051 char dummy; 1338 char dummy;
1339 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1052 read (evpipe [0], &dummy, 1); 1340 read (evpipe [0], &dummy, 1);
1053 } 1341 }
1054 1342
1055 if (gotsig && ev_is_default_loop (EV_A)) 1343 if (sig_pending)
1056 { 1344 {
1057 int signum; 1345 sig_pending = 0;
1058 gotsig = 0;
1059 1346
1060 for (signum = signalmax; signum--; ) 1347 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 1348 if (expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 1349 ev_feed_signal_event (EV_A_ i + 1);
1063 } 1350 }
1064 1351
1065#if EV_ASYNC_ENABLE 1352#if EV_ASYNC_ENABLE
1066 if (gotasync) 1353 if (async_pending)
1067 { 1354 {
1068 int i; 1355 async_pending = 0;
1069 gotasync = 0;
1070 1356
1071 for (i = asynccnt; i--; ) 1357 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 1358 if (asyncs [i]->sent)
1073 { 1359 {
1074 asyncs [i]->sent = 0; 1360 asyncs [i]->sent = 0;
1082 1368
1083static void 1369static void
1084ev_sighandler (int signum) 1370ev_sighandler (int signum)
1085{ 1371{
1086#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 1373 EV_P = signals [signum - 1].loop;
1088#endif 1374#endif
1089 1375
1090#if _WIN32 1376#ifdef _WIN32
1091 signal (signum, ev_sighandler); 1377 signal (signum, ev_sighandler);
1092#endif 1378#endif
1093 1379
1094 signals [signum - 1].gotsig = 1; 1380 signals [signum - 1].pending = 1;
1095 evpipe_write (EV_A_ &gotsig); 1381 evpipe_write (EV_A_ &sig_pending);
1096} 1382}
1097 1383
1098void noinline 1384void noinline
1099ev_feed_signal_event (EV_P_ int signum) 1385ev_feed_signal_event (EV_P_ int signum)
1100{ 1386{
1101 WL w; 1387 WL w;
1102 1388
1389 if (expect_false (signum <= 0 || signum > EV_NSIG))
1390 return;
1391
1392 --signum;
1393
1103#if EV_MULTIPLICITY 1394#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1395 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 1396 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 1397
1107 --signum; 1398 if (expect_false (signals [signum].loop != EV_A))
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 1399 return;
1400#endif
1111 1401
1112 signals [signum].gotsig = 0; 1402 signals [signum].pending = 0;
1113 1403
1114 for (w = signals [signum].head; w; w = w->next) 1404 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1405 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 1406}
1117 1407
1408#if EV_USE_SIGNALFD
1409static void
1410sigfdcb (EV_P_ ev_io *iow, int revents)
1411{
1412 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1413
1414 for (;;)
1415 {
1416 ssize_t res = read (sigfd, si, sizeof (si));
1417
1418 /* not ISO-C, as res might be -1, but works with SuS */
1419 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1420 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1421
1422 if (res < (ssize_t)sizeof (si))
1423 break;
1424 }
1425}
1426#endif
1427
1428#endif
1429
1118/*****************************************************************************/ 1430/*****************************************************************************/
1119 1431
1432#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 1433static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 1434
1124static ev_signal childev; 1435static ev_signal childev;
1125 1436
1126#ifndef WIFCONTINUED 1437#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 1438# define WIFCONTINUED(status) 0
1128#endif 1439#endif
1129 1440
1130void inline_speed 1441/* handle a single child status event */
1442inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 1443child_reap (EV_P_ int chain, int pid, int status)
1132{ 1444{
1133 ev_child *w; 1445 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1446 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 1447
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1448 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 { 1449 {
1138 if ((w->pid == pid || !w->pid) 1450 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1))) 1451 && (!traced || (w->flags & 1)))
1140 { 1452 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1453 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1148 1460
1149#ifndef WCONTINUED 1461#ifndef WCONTINUED
1150# define WCONTINUED 0 1462# define WCONTINUED 0
1151#endif 1463#endif
1152 1464
1465/* called on sigchld etc., calls waitpid */
1153static void 1466static void
1154childcb (EV_P_ ev_signal *sw, int revents) 1467childcb (EV_P_ ev_signal *sw, int revents)
1155{ 1468{
1156 int pid, status; 1469 int pid, status;
1157 1470
1165 /* make sure we are called again until all children have been reaped */ 1478 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */ 1479 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1480 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168 1481
1169 child_reap (EV_A_ pid, pid, status); 1482 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1) 1483 if ((EV_PID_HASHSIZE) > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1484 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172} 1485}
1173 1486
1174#endif 1487#endif
1175 1488
1238 /* kqueue is borked on everything but netbsd apparently */ 1551 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 1552 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 1553 flags &= ~EVBACKEND_KQUEUE;
1241#endif 1554#endif
1242#ifdef __APPLE__ 1555#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 1556 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 1557 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1558 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1559#endif
1560#ifdef __FreeBSD__
1561 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1245#endif 1562#endif
1246 1563
1247 return flags; 1564 return flags;
1248} 1565}
1249 1566
1251ev_embeddable_backends (void) 1568ev_embeddable_backends (void)
1252{ 1569{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1570 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254 1571
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1572 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */ 1573 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1257 flags &= ~EVBACKEND_EPOLL; 1574 flags &= ~EVBACKEND_EPOLL;
1258 1575
1259 return flags; 1576 return flags;
1260} 1577}
1261 1578
1262unsigned int 1579unsigned int
1263ev_backend (EV_P) 1580ev_backend (EV_P)
1264{ 1581{
1265 return backend; 1582 return backend;
1266} 1583}
1267 1584
1585#if EV_FEATURE_API
1268unsigned int 1586unsigned int
1269ev_loop_count (EV_P) 1587ev_iteration (EV_P)
1270{ 1588{
1271 return loop_count; 1589 return loop_count;
1272} 1590}
1273 1591
1592unsigned int
1593ev_depth (EV_P)
1594{
1595 return loop_depth;
1596}
1597
1274void 1598void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1599ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{ 1600{
1277 io_blocktime = interval; 1601 io_blocktime = interval;
1278} 1602}
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1605ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{ 1606{
1283 timeout_blocktime = interval; 1607 timeout_blocktime = interval;
1284} 1608}
1285 1609
1610void
1611ev_set_userdata (EV_P_ void *data)
1612{
1613 userdata = data;
1614}
1615
1616void *
1617ev_userdata (EV_P)
1618{
1619 return userdata;
1620}
1621
1622void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1623{
1624 invoke_cb = invoke_pending_cb;
1625}
1626
1627void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1628{
1629 release_cb = release;
1630 acquire_cb = acquire;
1631}
1632#endif
1633
1634/* initialise a loop structure, must be zero-initialised */
1286static void noinline 1635static void noinline
1287loop_init (EV_P_ unsigned int flags) 1636loop_init (EV_P_ unsigned int flags)
1288{ 1637{
1289 if (!backend) 1638 if (!backend)
1290 { 1639 {
1640#if EV_USE_REALTIME
1641 if (!have_realtime)
1642 {
1643 struct timespec ts;
1644
1645 if (!clock_gettime (CLOCK_REALTIME, &ts))
1646 have_realtime = 1;
1647 }
1648#endif
1649
1291#if EV_USE_MONOTONIC 1650#if EV_USE_MONOTONIC
1651 if (!have_monotonic)
1292 { 1652 {
1293 struct timespec ts; 1653 struct timespec ts;
1654
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1655 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 1656 have_monotonic = 1;
1296 } 1657 }
1297#endif 1658#endif
1659
1660 /* pid check not overridable via env */
1661#ifndef _WIN32
1662 if (flags & EVFLAG_FORKCHECK)
1663 curpid = getpid ();
1664#endif
1665
1666 if (!(flags & EVFLAG_NOENV)
1667 && !enable_secure ()
1668 && getenv ("LIBEV_FLAGS"))
1669 flags = atoi (getenv ("LIBEV_FLAGS"));
1298 1670
1299 ev_rt_now = ev_time (); 1671 ev_rt_now = ev_time ();
1300 mn_now = get_clock (); 1672 mn_now = get_clock ();
1301 now_floor = mn_now; 1673 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now; 1674 rtmn_diff = ev_rt_now - mn_now;
1675#if EV_FEATURE_API
1676 invoke_cb = ev_invoke_pending;
1677#endif
1303 1678
1304 io_blocktime = 0.; 1679 io_blocktime = 0.;
1305 timeout_blocktime = 0.; 1680 timeout_blocktime = 0.;
1306 backend = 0; 1681 backend = 0;
1307 backend_fd = -1; 1682 backend_fd = -1;
1308 gotasync = 0; 1683 sig_pending = 0;
1684#if EV_ASYNC_ENABLE
1685 async_pending = 0;
1686#endif
1309#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1310 fs_fd = -2; 1688 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1311#endif 1689#endif
1312 1690#if EV_USE_SIGNALFD
1313 /* pid check not overridable via env */ 1691 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif 1692#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 1693
1324 if (!(flags & 0x0000ffffU)) 1694 if (!(flags & 0x0000ffffU))
1325 flags |= ev_recommended_backends (); 1695 flags |= ev_recommended_backends ();
1326 1696
1327#if EV_USE_PORT 1697#if EV_USE_PORT
1338#endif 1708#endif
1339#if EV_USE_SELECT 1709#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 1711#endif
1342 1712
1713 ev_prepare_init (&pending_w, pendingcb);
1714
1715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 1716 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 1717 ev_set_priority (&pipe_w, EV_MAXPRI);
1718#endif
1345 } 1719 }
1346} 1720}
1347 1721
1722/* free up a loop structure */
1348static void noinline 1723static void noinline
1349loop_destroy (EV_P) 1724loop_destroy (EV_P)
1350{ 1725{
1351 int i; 1726 int i;
1352 1727
1353 if (ev_is_active (&pipeev)) 1728 if (ev_is_active (&pipe_w))
1354 { 1729 {
1355 ev_ref (EV_A); /* signal watcher */ 1730 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 1731 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 1732
1358#if EV_USE_EVENTFD 1733#if EV_USE_EVENTFD
1359 if (evfd >= 0) 1734 if (evfd >= 0)
1360 close (evfd); 1735 close (evfd);
1361#endif 1736#endif
1362 1737
1363 if (evpipe [0] >= 0) 1738 if (evpipe [0] >= 0)
1364 { 1739 {
1365 close (evpipe [0]); 1740 EV_WIN32_CLOSE_FD (evpipe [0]);
1366 close (evpipe [1]); 1741 EV_WIN32_CLOSE_FD (evpipe [1]);
1367 } 1742 }
1368 } 1743 }
1744
1745#if EV_USE_SIGNALFD
1746 if (ev_is_active (&sigfd_w))
1747 close (sigfd);
1748#endif
1369 1749
1370#if EV_USE_INOTIFY 1750#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 1751 if (fs_fd >= 0)
1372 close (fs_fd); 1752 close (fs_fd);
1373#endif 1753#endif
1397#if EV_IDLE_ENABLE 1777#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 1778 array_free (idle, [i]);
1399#endif 1779#endif
1400 } 1780 }
1401 1781
1402 ev_free (anfds); anfdmax = 0; 1782 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 1783
1404 /* have to use the microsoft-never-gets-it-right macro */ 1784 /* have to use the microsoft-never-gets-it-right macro */
1785 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 1786 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 1787 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 1788#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 1789 array_free (periodic, EMPTY);
1409#endif 1790#endif
1418 1799
1419 backend = 0; 1800 backend = 0;
1420} 1801}
1421 1802
1422#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 1804inline_size void infy_fork (EV_P);
1424#endif 1805#endif
1425 1806
1426void inline_size 1807inline_size void
1427loop_fork (EV_P) 1808loop_fork (EV_P)
1428{ 1809{
1429#if EV_USE_PORT 1810#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1811 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 1812#endif
1437#endif 1818#endif
1438#if EV_USE_INOTIFY 1819#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 1820 infy_fork (EV_A);
1440#endif 1821#endif
1441 1822
1442 if (ev_is_active (&pipeev)) 1823 if (ev_is_active (&pipe_w))
1443 { 1824 {
1444 /* this "locks" the handlers against writing to the pipe */ 1825 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */ 1826 /* while we modify the fd vars */
1446 gotsig = 1; 1827 sig_pending = 1;
1447#if EV_ASYNC_ENABLE 1828#if EV_ASYNC_ENABLE
1448 gotasync = 1; 1829 async_pending = 1;
1449#endif 1830#endif
1450 1831
1451 ev_ref (EV_A); 1832 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 1833 ev_io_stop (EV_A_ &pipe_w);
1453 1834
1454#if EV_USE_EVENTFD 1835#if EV_USE_EVENTFD
1455 if (evfd >= 0) 1836 if (evfd >= 0)
1456 close (evfd); 1837 close (evfd);
1457#endif 1838#endif
1458 1839
1459 if (evpipe [0] >= 0) 1840 if (evpipe [0] >= 0)
1460 { 1841 {
1461 close (evpipe [0]); 1842 EV_WIN32_CLOSE_FD (evpipe [0]);
1462 close (evpipe [1]); 1843 EV_WIN32_CLOSE_FD (evpipe [1]);
1463 } 1844 }
1464 1845
1846#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1465 evpipe_init (EV_A); 1847 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 1848 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ); 1849 pipecb (EV_A_ &pipe_w, EV_READ);
1850#endif
1468 } 1851 }
1469 1852
1470 postfork = 0; 1853 postfork = 0;
1471} 1854}
1472 1855
1473#if EV_MULTIPLICITY 1856#if EV_MULTIPLICITY
1474 1857
1475struct ev_loop * 1858struct ev_loop *
1476ev_loop_new (unsigned int flags) 1859ev_loop_new (unsigned int flags)
1477{ 1860{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1861 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 1862
1480 memset (loop, 0, sizeof (struct ev_loop)); 1863 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 1864 loop_init (EV_A_ flags);
1483 1865
1484 if (ev_backend (EV_A)) 1866 if (ev_backend (EV_A))
1485 return loop; 1867 return EV_A;
1486 1868
1487 return 0; 1869 return 0;
1488} 1870}
1489 1871
1490void 1872void
1497void 1879void
1498ev_loop_fork (EV_P) 1880ev_loop_fork (EV_P)
1499{ 1881{
1500 postfork = 1; /* must be in line with ev_default_fork */ 1882 postfork = 1; /* must be in line with ev_default_fork */
1501} 1883}
1884#endif /* multiplicity */
1502 1885
1503#if EV_VERIFY 1886#if EV_VERIFY
1504void noinline 1887static void noinline
1505verify_watcher (EV_P_ W w) 1888verify_watcher (EV_P_ W w)
1506{ 1889{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1890 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 1891
1509 if (w->pending) 1892 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1893 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 1894}
1512 1895
1513static void noinline 1896static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N) 1897verify_heap (EV_P_ ANHE *heap, int N)
1515{ 1898{
1516 int i; 1899 int i;
1517 1900
1518 for (i = HEAP0; i < N + HEAP0; ++i) 1901 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 1902 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1903 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1904 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1905 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 1906
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1907 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 1908 }
1526} 1909}
1527 1910
1528static void noinline 1911static void noinline
1529array_verify (EV_P_ W *ws, int cnt) 1912array_verify (EV_P_ W *ws, int cnt)
1530{ 1913{
1531 while (cnt--) 1914 while (cnt--)
1532 { 1915 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1916 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 1917 verify_watcher (EV_A_ ws [cnt]);
1535 } 1918 }
1536} 1919}
1537#endif 1920#endif
1538 1921
1922#if EV_FEATURE_API
1539void 1923void
1540ev_loop_verify (EV_P) 1924ev_verify (EV_P)
1541{ 1925{
1542#if EV_VERIFY 1926#if EV_VERIFY
1543 int i; 1927 int i;
1544 WL w; 1928 WL w;
1545 1929
1546 assert (activecnt >= -1); 1930 assert (activecnt >= -1);
1547 1931
1548 assert (fdchangemax >= fdchangecnt); 1932 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 1933 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1934 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 1935
1552 assert (anfdmax >= 0); 1936 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 1937 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next) 1938 for (w = anfds [i].head; w; w = w->next)
1555 { 1939 {
1556 verify_watcher (EV_A_ (W)w); 1940 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 1943 }
1560 1944
1561 assert (timermax >= timercnt); 1945 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 1946 verify_heap (EV_A_ timers, timercnt);
1563 1947
1568 1952
1569 for (i = NUMPRI; i--; ) 1953 for (i = NUMPRI; i--; )
1570 { 1954 {
1571 assert (pendingmax [i] >= pendingcnt [i]); 1955 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE 1956#if EV_IDLE_ENABLE
1957 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]); 1958 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]); 1959 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif 1960#endif
1576 } 1961 }
1577 1962
1583#if EV_ASYNC_ENABLE 1968#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt); 1969 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt); 1970 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif 1971#endif
1587 1972
1973#if EV_PREPARE_ENABLE
1588 assert (preparemax >= preparecnt); 1974 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt); 1975 array_verify (EV_A_ (W *)prepares, preparecnt);
1976#endif
1590 1977
1978#if EV_CHECK_ENABLE
1591 assert (checkmax >= checkcnt); 1979 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt); 1980 array_verify (EV_A_ (W *)checks, checkcnt);
1981#endif
1593 1982
1594# if 0 1983# if 0
1984#if EV_CHILD_ENABLE
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1985 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1986 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1987#endif
1597# endif 1988# endif
1598#endif 1989#endif
1599} 1990}
1600 1991#endif
1601#endif /* multiplicity */
1602 1992
1603#if EV_MULTIPLICITY 1993#if EV_MULTIPLICITY
1604struct ev_loop * 1994struct ev_loop *
1605ev_default_loop_init (unsigned int flags) 1995ev_default_loop_init (unsigned int flags)
1606#else 1996#else
1609#endif 1999#endif
1610{ 2000{
1611 if (!ev_default_loop_ptr) 2001 if (!ev_default_loop_ptr)
1612 { 2002 {
1613#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2004 EV_P = ev_default_loop_ptr = &default_loop_struct;
1615#else 2005#else
1616 ev_default_loop_ptr = 1; 2006 ev_default_loop_ptr = 1;
1617#endif 2007#endif
1618 2008
1619 loop_init (EV_A_ flags); 2009 loop_init (EV_A_ flags);
1620 2010
1621 if (ev_backend (EV_A)) 2011 if (ev_backend (EV_A))
1622 { 2012 {
1623#ifndef _WIN32 2013#if EV_CHILD_ENABLE
1624 ev_signal_init (&childev, childcb, SIGCHLD); 2014 ev_signal_init (&childev, childcb, SIGCHLD);
1625 ev_set_priority (&childev, EV_MAXPRI); 2015 ev_set_priority (&childev, EV_MAXPRI);
1626 ev_signal_start (EV_A_ &childev); 2016 ev_signal_start (EV_A_ &childev);
1627 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2017 ev_unref (EV_A); /* child watcher should not keep loop alive */
1628#endif 2018#endif
1636 2026
1637void 2027void
1638ev_default_destroy (void) 2028ev_default_destroy (void)
1639{ 2029{
1640#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
1641 struct ev_loop *loop = ev_default_loop_ptr; 2031 EV_P = ev_default_loop_ptr;
1642#endif 2032#endif
1643 2033
1644#ifndef _WIN32 2034 ev_default_loop_ptr = 0;
2035
2036#if EV_CHILD_ENABLE
1645 ev_ref (EV_A); /* child watcher */ 2037 ev_ref (EV_A); /* child watcher */
1646 ev_signal_stop (EV_A_ &childev); 2038 ev_signal_stop (EV_A_ &childev);
1647#endif 2039#endif
1648 2040
1649 loop_destroy (EV_A); 2041 loop_destroy (EV_A);
1651 2043
1652void 2044void
1653ev_default_fork (void) 2045ev_default_fork (void)
1654{ 2046{
1655#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1656 struct ev_loop *loop = ev_default_loop_ptr; 2048 EV_P = ev_default_loop_ptr;
1657#endif 2049#endif
1658 2050
1659 if (backend)
1660 postfork = 1; /* must be in line with ev_loop_fork */ 2051 postfork = 1; /* must be in line with ev_loop_fork */
1661} 2052}
1662 2053
1663/*****************************************************************************/ 2054/*****************************************************************************/
1664 2055
1665void 2056void
1666ev_invoke (EV_P_ void *w, int revents) 2057ev_invoke (EV_P_ void *w, int revents)
1667{ 2058{
1668 EV_CB_INVOKE ((W)w, revents); 2059 EV_CB_INVOKE ((W)w, revents);
1669} 2060}
1670 2061
1671void inline_speed 2062unsigned int
1672call_pending (EV_P) 2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
2067
2068 for (pri = NUMPRI; pri--; )
2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
1673{ 2076{
1674 int pri; 2077 int pri;
1675 2078
1676 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1677 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1678 { 2081 {
1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1680 2083
1681 if (expect_true (p->w))
1682 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1684 2086
1685 p->w->pending = 0; 2087 p->w->pending = 0;
1686 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK; 2089 EV_FREQUENT_CHECK;
1688 }
1689 } 2090 }
1690} 2091}
1691 2092
1692#if EV_IDLE_ENABLE 2093#if EV_IDLE_ENABLE
1693void inline_size 2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
1694idle_reify (EV_P) 2097idle_reify (EV_P)
1695{ 2098{
1696 if (expect_false (idleall)) 2099 if (expect_false (idleall))
1697 { 2100 {
1698 int pri; 2101 int pri;
1710 } 2113 }
1711 } 2114 }
1712} 2115}
1713#endif 2116#endif
1714 2117
1715void inline_size 2118/* make timers pending */
2119inline_size void
1716timers_reify (EV_P) 2120timers_reify (EV_P)
1717{ 2121{
1718 EV_FREQUENT_CHECK; 2122 EV_FREQUENT_CHECK;
1719 2123
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 { 2125 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2126 do
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 { 2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
1729 ev_at (w) += w->repeat; 2135 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now) 2136 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now; 2137 ev_at (w) = mn_now;
1732 2138
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734 2140
1735 ANHE_at_cache (timers [HEAP0]); 2141 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0); 2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1737 } 2149 }
1738 else 2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740 2151
1741 EV_FREQUENT_CHECK; 2152 feed_reverse_done (EV_A_ EV_TIMER);
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 } 2153 }
1744} 2154}
1745 2155
1746#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1747void inline_size 2157/* make periodics pending */
2158inline_size void
1748periodics_reify (EV_P) 2159periodics_reify (EV_P)
1749{ 2160{
1750 EV_FREQUENT_CHECK; 2161 EV_FREQUENT_CHECK;
1751 2162
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 { 2164 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2165 int feed_count = 0;
1755 2166
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2167 do
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 { 2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762 2177
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764 2179
1765 ANHE_at_cache (periodics [HEAP0]); 2180 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0); 2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
1767 } 2207 }
1768 else if (w->interval) 2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776 2209
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2210 feed_reverse_done (EV_A_ EV_PERIODIC);
1792 } 2211 }
1793} 2212}
1794 2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
1795static void noinline 2216static void noinline
1796periodics_reschedule (EV_P) 2217periodics_reschedule (EV_P)
1797{ 2218{
1798 int i; 2219 int i;
1799 2220
1812 2233
1813 reheap (periodics, periodiccnt); 2234 reheap (periodics, periodiccnt);
1814} 2235}
1815#endif 2236#endif
1816 2237
1817void inline_speed 2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
1818time_update (EV_P_ ev_tstamp max_block) 2255time_update (EV_P_ ev_tstamp max_block)
1819{ 2256{
1820 int i;
1821
1822#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1824 { 2259 {
2260 int i;
1825 ev_tstamp odiff = rtmn_diff; 2261 ev_tstamp odiff = rtmn_diff;
1826 2262
1827 mn_now = get_clock (); 2263 mn_now = get_clock ();
1828 2264
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1855 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1856 mn_now = get_clock (); 2292 mn_now = get_clock ();
1857 now_floor = mn_now; 2293 now_floor = mn_now;
1858 } 2294 }
1859 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1860# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1862# endif 2300# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 } 2301 }
1866 else 2302 else
1867#endif 2303#endif
1868 { 2304 {
1869 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1870 2306
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1872 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1873#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1875#endif 2313#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1883 } 2314 }
1884 2315
1885 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1886 } 2317 }
1887} 2318}
1888 2319
1889void 2320void
1890ev_ref (EV_P)
1891{
1892 ++activecnt;
1893}
1894
1895void
1896ev_unref (EV_P)
1897{
1898 --activecnt;
1899}
1900
1901static int loop_done;
1902
1903void
1904ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1905{ 2322{
2323#if EV_FEATURE_API
2324 ++loop_depth;
2325#endif
2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
1906 loop_done = EVUNLOOP_CANCEL; 2329 loop_done = EVBREAK_CANCEL;
1907 2330
1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1909 2332
1910 do 2333 do
1911 { 2334 {
1912#if EV_VERIFY >= 2 2335#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A); 2336 ev_verify (EV_A);
1914#endif 2337#endif
1915 2338
1916#ifndef _WIN32 2339#ifndef _WIN32
1917 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1918 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1926 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1928 if (forkcnt) 2351 if (forkcnt)
1929 { 2352 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1932 } 2355 }
1933#endif 2356#endif
1934 2357
2358#if EV_PREPARE_ENABLE
1935 /* queue prepare watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1936 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1937 { 2361 {
1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1939 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1940 } 2364 }
2365#endif
1941 2366
1942 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1943 break; 2368 break;
1944 2369
1945 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1946 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1947 loop_fork (EV_A); 2372 loop_fork (EV_A);
1952 /* calculate blocking time */ 2377 /* calculate blocking time */
1953 { 2378 {
1954 ev_tstamp waittime = 0.; 2379 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.; 2380 ev_tstamp sleeptime = 0.;
1956 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1958 { 2389 {
1959 /* update time to cancel out callback processing overhead */
1960 time_update (EV_A_ 1e100);
1961
1962 waittime = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1963 2391
1964 if (timercnt) 2392 if (timercnt)
1965 { 2393 {
1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1974 if (waittime > to) waittime = to; 2402 if (waittime > to) waittime = to;
1975 } 2403 }
1976#endif 2404#endif
1977 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
1978 if (expect_false (waittime < timeout_blocktime)) 2407 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime; 2408 waittime = timeout_blocktime;
1980 2409
1981 sleeptime = waittime - backend_fudge; 2410 /* extra check because io_blocktime is commonly 0 */
1982
1983 if (expect_true (sleeptime > io_blocktime)) 2411 if (expect_false (io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 { 2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
1988 ev_sleep (sleeptime); 2420 ev_sleep (sleeptime);
1989 waittime -= sleeptime; 2421 waittime -= sleeptime;
2422 }
1990 } 2423 }
1991 } 2424 }
1992 2425
2426#if EV_FEATURE_API
1993 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1994 backend_poll (EV_A_ waittime); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1995 2432
1996 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime); 2434 time_update (EV_A_ waittime + sleeptime);
1998 } 2435 }
1999 2436
2006#if EV_IDLE_ENABLE 2443#if EV_IDLE_ENABLE
2007 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
2008 idle_reify (EV_A); 2445 idle_reify (EV_A);
2009#endif 2446#endif
2010 2447
2448#if EV_CHECK_ENABLE
2011 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
2012 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
2014 2453
2015 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
2016 } 2455 }
2017 while (expect_true ( 2456 while (expect_true (
2018 activecnt 2457 activecnt
2019 && !loop_done 2458 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2021 )); 2460 ));
2022 2461
2023 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
2024 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
2025}
2026 2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
2468}
2469
2027void 2470void
2028ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
2029{ 2472{
2030 loop_done = how; 2473 loop_done = how;
2031} 2474}
2032 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
2033/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
2034 2515
2035void inline_size 2516inline_size void
2036wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
2037{ 2518{
2038 elem->next = *head; 2519 elem->next = *head;
2039 *head = elem; 2520 *head = elem;
2040} 2521}
2041 2522
2042void inline_size 2523inline_size void
2043wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
2044{ 2525{
2045 while (*head) 2526 while (*head)
2046 { 2527 {
2047 if (*head == elem) 2528 if (expect_true (*head == elem))
2048 { 2529 {
2049 *head = elem->next; 2530 *head = elem->next;
2050 return; 2531 break;
2051 } 2532 }
2052 2533
2053 head = &(*head)->next; 2534 head = &(*head)->next;
2054 } 2535 }
2055} 2536}
2056 2537
2057void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
2058clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
2059{ 2541{
2060 if (w->pending) 2542 if (w->pending)
2061 { 2543 {
2062 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2063 w->pending = 0; 2545 w->pending = 0;
2064 } 2546 }
2065} 2547}
2066 2548
2067int 2549int
2071 int pending = w_->pending; 2553 int pending = w_->pending;
2072 2554
2073 if (expect_true (pending)) 2555 if (expect_true (pending))
2074 { 2556 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
2076 w_->pending = 0; 2559 w_->pending = 0;
2077 p->w = 0;
2078 return p->events; 2560 return p->events;
2079 } 2561 }
2080 else 2562 else
2081 return 0; 2563 return 0;
2082} 2564}
2083 2565
2084void inline_size 2566inline_size void
2085pri_adjust (EV_P_ W w) 2567pri_adjust (EV_P_ W w)
2086{ 2568{
2087 int pri = w->priority; 2569 int pri = ev_priority (w);
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri; 2572 ev_set_priority (w, pri);
2091} 2573}
2092 2574
2093void inline_speed 2575inline_speed void
2094ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
2095{ 2577{
2096 pri_adjust (EV_A_ w); 2578 pri_adjust (EV_A_ w);
2097 w->active = active; 2579 w->active = active;
2098 ev_ref (EV_A); 2580 ev_ref (EV_A);
2099} 2581}
2100 2582
2101void inline_size 2583inline_size void
2102ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
2103{ 2585{
2104 ev_unref (EV_A); 2586 ev_unref (EV_A);
2105 w->active = 0; 2587 w->active = 0;
2106} 2588}
2113 int fd = w->fd; 2595 int fd = w->fd;
2114 2596
2115 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
2116 return; 2598 return;
2117 2599
2118 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2119 2602
2120 EV_FREQUENT_CHECK; 2603 EV_FREQUENT_CHECK;
2121 2604
2122 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2124 wlist_add (&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
2125 2608
2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2127 w->events &= ~EV_IOFDSET; 2610 w->events &= ~EV__IOFDSET;
2128 2611
2129 EV_FREQUENT_CHECK; 2612 EV_FREQUENT_CHECK;
2130} 2613}
2131 2614
2132void noinline 2615void noinline
2134{ 2617{
2135 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
2137 return; 2620 return;
2138 2621
2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140 2623
2141 EV_FREQUENT_CHECK; 2624 EV_FREQUENT_CHECK;
2142 2625
2143 wlist_del (&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
2144 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
2145 2628
2146 fd_change (EV_A_ w->fd, 1); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2147 2630
2148 EV_FREQUENT_CHECK; 2631 EV_FREQUENT_CHECK;
2149} 2632}
2150 2633
2151void noinline 2634void noinline
2154 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
2155 return; 2638 return;
2156 2639
2157 ev_at (w) += mn_now; 2640 ev_at (w) += mn_now;
2158 2641
2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2160 2643
2161 EV_FREQUENT_CHECK; 2644 EV_FREQUENT_CHECK;
2162 2645
2163 ++timercnt; 2646 ++timercnt;
2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2167 ANHE_at_cache (timers [ev_active (w)]); 2650 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w)); 2651 upheap (timers, ev_active (w));
2169 2652
2170 EV_FREQUENT_CHECK; 2653 EV_FREQUENT_CHECK;
2171 2654
2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2173} 2656}
2174 2657
2175void noinline 2658void noinline
2176ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
2177{ 2660{
2182 EV_FREQUENT_CHECK; 2665 EV_FREQUENT_CHECK;
2183 2666
2184 { 2667 {
2185 int active = ev_active (w); 2668 int active = ev_active (w);
2186 2669
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188 2671
2189 --timercnt; 2672 --timercnt;
2190 2673
2191 if (expect_true (active < timercnt + HEAP0)) 2674 if (expect_true (active < timercnt + HEAP0))
2192 { 2675 {
2193 timers [active] = timers [timercnt + HEAP0]; 2676 timers [active] = timers [timercnt + HEAP0];
2194 adjustheap (timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
2195 } 2678 }
2196 } 2679 }
2197 2680
2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now; 2681 ev_at (w) -= mn_now;
2201 2682
2202 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2203} 2686}
2204 2687
2205void noinline 2688void noinline
2206ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
2207{ 2690{
2225 } 2708 }
2226 2709
2227 EV_FREQUENT_CHECK; 2710 EV_FREQUENT_CHECK;
2228} 2711}
2229 2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2717}
2718
2230#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
2231void noinline 2720void noinline
2232ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
2233{ 2722{
2234 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
2236 2725
2237 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2239 else if (w->interval) 2728 else if (w->interval)
2240 { 2729 {
2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2242 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2244 } 2733 }
2245 else 2734 else
2246 ev_at (w) = w->offset; 2735 ev_at (w) = w->offset;
2254 ANHE_at_cache (periodics [ev_active (w)]); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w)); 2744 upheap (periodics, ev_active (w));
2256 2745
2257 EV_FREQUENT_CHECK; 2746 EV_FREQUENT_CHECK;
2258 2747
2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2260} 2749}
2261 2750
2262void noinline 2751void noinline
2263ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
2264{ 2753{
2269 EV_FREQUENT_CHECK; 2758 EV_FREQUENT_CHECK;
2270 2759
2271 { 2760 {
2272 int active = ev_active (w); 2761 int active = ev_active (w);
2273 2762
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275 2764
2276 --periodiccnt; 2765 --periodiccnt;
2277 2766
2278 if (expect_true (active < periodiccnt + HEAP0)) 2767 if (expect_true (active < periodiccnt + HEAP0))
2279 { 2768 {
2280 periodics [active] = periodics [periodiccnt + HEAP0]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
2281 adjustheap (periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
2282 } 2771 }
2283 } 2772 }
2284 2773
2285 EV_FREQUENT_CHECK;
2286
2287 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2288} 2777}
2289 2778
2290void noinline 2779void noinline
2291ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
2292{ 2781{
2298 2787
2299#ifndef SA_RESTART 2788#ifndef SA_RESTART
2300# define SA_RESTART 0 2789# define SA_RESTART 0
2301#endif 2790#endif
2302 2791
2792#if EV_SIGNAL_ENABLE
2793
2303void noinline 2794void noinline
2304ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
2305{ 2796{
2306#if EV_MULTIPLICITY
2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2308#endif
2309 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
2310 return; 2798 return;
2311 2799
2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2313 2801
2314 evpipe_init (EV_A); 2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2315 2805
2316 EV_FREQUENT_CHECK; 2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2317 2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2318 { 2813 {
2319#ifndef _WIN32 2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2320 sigset_t full, prev; 2815 if (sigfd < 0 && errno == EINVAL)
2321 sigfillset (&full); 2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324 2817
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2326 2821
2327#ifndef _WIN32 2822 sigemptyset (&sigfd_set);
2328 sigprocmask (SIG_SETMASK, &prev, 0); 2823
2329#endif 2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2330 } 2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2331 2840
2332 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
2333 wlist_add (&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
2334 2843
2335 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2336 { 2848 {
2337#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2338 signal (w->signum, ev_sighandler); 2852 signal (w->signum, ev_sighandler);
2339#else 2853# else
2340 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2341 sa.sa_handler = ev_sighandler; 2858 sa.sa_handler = ev_sighandler;
2342 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2344 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2345#endif 2866#endif
2346 } 2867 }
2347 2868
2348 EV_FREQUENT_CHECK; 2869 EV_FREQUENT_CHECK;
2349} 2870}
2350 2871
2351void noinline 2872void noinline
2359 2880
2360 wlist_del (&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
2361 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2362 2883
2363 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2364 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2365 2905
2366 EV_FREQUENT_CHECK; 2906 EV_FREQUENT_CHECK;
2367} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2368 2912
2369void 2913void
2370ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
2371{ 2915{
2372#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2374#endif 2918#endif
2375 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
2376 return; 2920 return;
2377 2921
2378 EV_FREQUENT_CHECK; 2922 EV_FREQUENT_CHECK;
2379 2923
2380 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2382 2926
2383 EV_FREQUENT_CHECK; 2927 EV_FREQUENT_CHECK;
2384} 2928}
2385 2929
2386void 2930void
2390 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
2391 return; 2935 return;
2392 2936
2393 EV_FREQUENT_CHECK; 2937 EV_FREQUENT_CHECK;
2394 2938
2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2396 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2397 2941
2398 EV_FREQUENT_CHECK; 2942 EV_FREQUENT_CHECK;
2399} 2943}
2944
2945#endif
2400 2946
2401#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
2402 2948
2403# ifdef _WIN32 2949# ifdef _WIN32
2404# undef lstat 2950# undef lstat
2405# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
2406# endif 2952# endif
2407 2953
2408#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2409#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
2410 2957
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412 2959
2413#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2415 2964
2416static void noinline 2965static void noinline
2417infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
2418{ 2967{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2420 2969
2421 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2422 { 2990 }
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2424 2995
2425 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2427 /* but an efficiency issue only */ 2998 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 { 3000 {
2430 char path [4096]; 3001 char path [4096];
2431 strcpy (path, w->path); 3002 strcpy (path, w->path);
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437 3008
2438 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
2439 3010
2440 if (!pend) 3011 if (!pend || pend == path)
2441 break; /* whoops, no '/', complain to your admin */ 3012 break;
2442 3013
2443 *pend = 0; 3014 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 } 3016 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 } 3018 }
2448 } 3019 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451 3020
2452 if (w->wd >= 0) 3021 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2454} 3028}
2455 3029
2456static void noinline 3030static void noinline
2457infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
2458{ 3032{
2461 3035
2462 if (wd < 0) 3036 if (wd < 0)
2463 return; 3037 return;
2464 3038
2465 w->wd = -2; 3039 w->wd = -2;
2466 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2467 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
2468 3042
2469 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
2470 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
2471} 3045}
2472 3046
2473static void noinline 3047static void noinline
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{ 3049{
2476 if (slot < 0) 3050 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2479 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
2480 else 3054 else
2481 { 3055 {
2482 WL w_; 3056 WL w_;
2483 3057
2484 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2485 { 3059 {
2486 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
2487 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
2488 3062
2489 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
2490 { 3064 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2493 w->wd = -1; 3068 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
2495 } 3070 }
2496 3071
2497 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
2502 3077
2503static void 3078static void
2504infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
2505{ 3080{
2506 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs; 3082 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
2510 3084
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
2513} 3091}
2514 3092
2515void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
2516infy_init (EV_P) 3117infy_init (EV_P)
2517{ 3118{
2518 if (fs_fd != -2) 3119 if (fs_fd != -2)
2519 return; 3120 return;
2520 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
2521 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
2522 3127
2523 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2524 { 3129 {
3130 fd_intern (fs_fd);
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
2528 } 3135 }
2529} 3136}
2530 3137
2531void inline_size 3138inline_size void
2532infy_fork (EV_P) 3139infy_fork (EV_P)
2533{ 3140{
2534 int slot; 3141 int slot;
2535 3142
2536 if (fs_fd < 0) 3143 if (fs_fd < 0)
2537 return; 3144 return;
2538 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
2539 close (fs_fd); 3148 close (fs_fd);
2540 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2541 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2543 { 3160 {
2544 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
2546 3163
2547 while (w_) 3164 while (w_)
2552 w->wd = -1; 3169 w->wd = -1;
2553 3170
2554 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2557 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
2558 } 3180 }
2559
2560 } 3181 }
2561} 3182}
2562 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
2563#endif 3190#endif
2564 3191
2565void 3192void
2566ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
2567{ 3194{
2574static void noinline 3201static void noinline
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{ 3203{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578 3205
2579 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
2583 3208
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if ( 3210 if (
2586 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
2597 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
2598 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
2599 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
2602 #endif 3235 #endif
2603 3236
2604 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
2605 } 3238 }
2606} 3239}
2609ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
2610{ 3243{
2611 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2612 return; 3245 return;
2613 3246
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2619 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2620 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622 3251
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2624 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
2625 3254
2626#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
2627 infy_init (EV_A); 3256 infy_init (EV_A);
2628 3257
2629 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
2630 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
2631 else 3260 else
2632#endif 3261#endif
3262 {
2633 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
2634 3266
2635 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
2636 3268
2637 EV_FREQUENT_CHECK; 3269 EV_FREQUENT_CHECK;
2638} 3270}
2647 EV_FREQUENT_CHECK; 3279 EV_FREQUENT_CHECK;
2648 3280
2649#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
2651#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
2652 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
2653 3290
2654 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
2655 3292
2656 EV_FREQUENT_CHECK; 3293 EV_FREQUENT_CHECK;
2657} 3294}
2702 3339
2703 EV_FREQUENT_CHECK; 3340 EV_FREQUENT_CHECK;
2704} 3341}
2705#endif 3342#endif
2706 3343
3344#if EV_PREPARE_ENABLE
2707void 3345void
2708ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2709{ 3347{
2710 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2711 return; 3349 return;
2737 3375
2738 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2739 3377
2740 EV_FREQUENT_CHECK; 3378 EV_FREQUENT_CHECK;
2741} 3379}
3380#endif
2742 3381
3382#if EV_CHECK_ENABLE
2743void 3383void
2744ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2745{ 3385{
2746 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2747 return; 3387 return;
2773 3413
2774 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
2775 3415
2776 EV_FREQUENT_CHECK; 3416 EV_FREQUENT_CHECK;
2777} 3417}
3418#endif
2778 3419
2779#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2780void noinline 3421void noinline
2781ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2782{ 3423{
2783 ev_loop (w->other, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2784} 3425}
2785 3426
2786static void 3427static void
2787embed_io_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2788{ 3429{
2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2790 3431
2791 if (ev_cb (w)) 3432 if (ev_cb (w))
2792 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2793 else 3434 else
2794 ev_loop (w->other, EVLOOP_NONBLOCK); 3435 ev_run (w->other, EVRUN_NOWAIT);
2795} 3436}
2796 3437
2797static void 3438static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{ 3440{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801 3442
2802 { 3443 {
2803 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2804 3445
2805 while (fdchangecnt) 3446 while (fdchangecnt)
2806 { 3447 {
2807 fd_reify (EV_A); 3448 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3449 ev_run (EV_A_ EVRUN_NOWAIT);
2809 } 3450 }
2810 } 3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
2811} 3469}
2812 3470
2813#if 0 3471#if 0
2814static void 3472static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2823{ 3481{
2824 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2825 return; 3483 return;
2826 3484
2827 { 3485 {
2828 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 } 3489 }
2832 3490
2833 EV_FREQUENT_CHECK; 3491 EV_FREQUENT_CHECK;
2834 3492
2837 3495
2838 ev_prepare_init (&w->prepare, embed_prepare_cb); 3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI); 3497 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare); 3498 ev_prepare_start (EV_A_ &w->prepare);
2841 3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843 3504
2844 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
2845 3506
2846 EV_FREQUENT_CHECK; 3507 EV_FREQUENT_CHECK;
2853 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2854 return; 3515 return;
2855 3516
2856 EV_FREQUENT_CHECK; 3517 EV_FREQUENT_CHECK;
2857 3518
2858 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare); 3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2860 3522
2861 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
2862 3524
2863 EV_FREQUENT_CHECK; 3525 EV_FREQUENT_CHECK;
2864} 3526}
2907ev_async_start (EV_P_ ev_async *w) 3569ev_async_start (EV_P_ ev_async *w)
2908{ 3570{
2909 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2910 return; 3572 return;
2911 3573
3574 w->sent = 0;
3575
2912 evpipe_init (EV_A); 3576 evpipe_init (EV_A);
2913 3577
2914 EV_FREQUENT_CHECK; 3578 EV_FREQUENT_CHECK;
2915 3579
2916 ev_start (EV_A_ (W)w, ++asynccnt); 3580 ev_start (EV_A_ (W)w, ++asynccnt);
2943 3607
2944void 3608void
2945ev_async_send (EV_P_ ev_async *w) 3609ev_async_send (EV_P_ ev_async *w)
2946{ 3610{
2947 w->sent = 1; 3611 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync); 3612 evpipe_write (EV_A_ &async_pending);
2949} 3613}
2950#endif 3614#endif
2951 3615
2952/*****************************************************************************/ 3616/*****************************************************************************/
2953 3617
2963once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2964{ 3628{
2965 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2966 void *arg = once->arg; 3630 void *arg = once->arg;
2967 3631
2968 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2969 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2970 ev_free (once); 3634 ev_free (once);
2971 3635
2972 cb (revents, arg); 3636 cb (revents, arg);
2973} 3637}
2974 3638
2975static void 3639static void
2976once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2977{ 3641{
2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2979} 3645}
2980 3646
2981static void 3647static void
2982once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2983{ 3649{
2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2985} 3653}
2986 3654
2987void 3655void
2988ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2989{ 3657{
2990 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2991 3659
2992 if (expect_false (!once)) 3660 if (expect_false (!once))
2993 { 3661 {
2994 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2995 return; 3663 return;
2996 } 3664 }
2997 3665
2998 once->cb = cb; 3666 once->cb = cb;
2999 once->arg = arg; 3667 once->arg = arg;
3011 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
3012 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
3013 } 3681 }
3014} 3682}
3015 3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
3016#if EV_MULTIPLICITY 3800#if EV_MULTIPLICITY
3017 #include "ev_wrap.h" 3801 #include "ev_wrap.h"
3018#endif 3802#endif
3019 3803
3020#ifdef __cplusplus 3804EV_CPP(})
3021}
3022#endif
3023 3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines