ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC vs.
Revision 1.535 by sf-exg, Mon May 17 15:41:10 2021 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 133# else
134# undef EV_USE_IOURING
120# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif 136# endif
131 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
132#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
241# include <io.h>
159# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
160# include <windows.h> 244# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
163# endif 247# endif
248# undef EV_AVOID_STDIO
164#endif 249#endif
165 250
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
167 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
168#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
169# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
170#endif 305#endif
171 306
172#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 309#endif
175 310
176#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
177# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
178#endif 317#endif
179 318
180#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 321#endif
183 322
184#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
185# ifdef _WIN32 324# ifdef _WIN32
186# define EV_USE_POLL 0 325# define EV_USE_POLL 0
187# else 326# else
188# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 328# endif
190#endif 329#endif
191 330
192#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 334# else
196# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
197# endif 336# endif
198#endif 337#endif
199 338
203 342
204#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 344# define EV_USE_PORT 0
206#endif 345#endif
207 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
208#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 366# else
212# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
213# endif 368# endif
214#endif 369#endif
215 370
216#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 373#endif
223 374
224#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 377#endif
231 378
232#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 382# else
236# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
237# endif 400# endif
238#endif 401#endif
239 402
240#if 0 /* debugging */ 403#if 0 /* debugging */
241# define EV_VERIFY 3 404# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 405# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 406# define EV_HEAP_CACHE_AT 1
244#endif 407#endif
245 408
246#ifndef EV_VERIFY 409#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 411#endif
249 412
250#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 415#endif
253 416
254#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
256#endif 450#endif
257 451
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
259 453
260#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
270#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
273#endif 467#endif
274 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
275#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
277# include <sys/select.h> 480# include <sys/select.h>
278# endif 481# endif
279#endif 482#endif
280 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_register && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_register 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
281#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
282# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
283#endif 516# endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif 517#endif
288 518
289#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
291# include <stdint.h> 521# include <stdint.h>
292# ifdef __cplusplus 522# ifndef EFD_NONBLOCK
293extern "C" { 523# define EFD_NONBLOCK O_NONBLOCK
294# endif 524# endif
295int eventfd (unsigned int initval, int flags); 525# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 526# ifdef O_CLOEXEC
297} 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
298# endif 531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
299#endif 540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
300 549
301/**/ 550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
302 568
303#if EV_VERIFY >= 3 569#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 570# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 571#else
306# define EV_FREQUENT_CHECK do { } while (0) 572# define EV_FREQUENT_CHECK do { } while (0)
307#endif 573#endif
308 574
309/* 575/*
310 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 578 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 581
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
322 585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#if defined (_WIN32) && !defined (__MINGW32__)
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
323#if __GNUC__ >= 4 667 #if __GNUC__
324# define expect(expr,value) __builtin_expect ((expr),(value)) 668 typedef signed long long int64_t;
325# define noinline __attribute__ ((noinline)) 669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
326#else 685#else
327# define expect(expr,value) (expr) 686 #include <inttypes.h>
328# define noinline 687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 688 #define ECB_PTRSIZE 8
330# define inline 689 #else
690 #define ECB_PTRSIZE 4
691 #endif
331# endif 692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
332#endif 702 #endif
703#endif
333 704
334#define expect_false(expr) expect ((expr) != 0, 0) 705/* work around x32 idiocy by defining proper macros */
335#define expect_true(expr) expect ((expr) != 0, 1) 706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
336#define inline_size static inline 707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
337 713
338#if EV_MINIMAL 714/* many compilers define _GNUC_ to some versions but then only implement
339# define inline_speed static noinline 715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
340#else 723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
341# define inline_speed static inline 1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
342#endif 1776#endif
343 1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
346 1851
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */
349 1853
350typedef ev_watcher *W; 1854typedef ev_watcher *W;
351typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
352typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
353 1857
354#define ev_active(w) ((W)(w))->active 1858#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 1859#define ev_at(w) ((WT)(w))->at
356 1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
357#if EV_USE_MONOTONIC 1867#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1879#endif
362 1880
363#ifdef _WIN32 1881#ifdef _WIN32
364# include "ev_win32.c" 1882# include "ev_win32.c"
365#endif 1883#endif
366 1884
367/*****************************************************************************/ 1885/*****************************************************************************/
368 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
369static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
370 1993
1994ecb_cold
371void 1995void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
373{ 1997{
374 syserr_cb = cb; 1998 syserr_cb = cb;
375} 1999}
376 2000
377static void noinline 2001ecb_noinline ecb_cold
2002static void
378syserr (const char *msg) 2003ev_syserr (const char *msg)
379{ 2004{
380 if (!msg) 2005 if (!msg)
381 msg = "(libev) system error"; 2006 msg = "(libev) system error";
382 2007
383 if (syserr_cb) 2008 if (syserr_cb)
384 syserr_cb (msg); 2009 syserr_cb (msg);
385 else 2010 else
386 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
387 perror (msg); 2018 perror (msg);
2019#endif
388 abort (); 2020 abort ();
389 } 2021 }
390} 2022}
391 2023
392static void * 2024static void *
393ev_realloc_emul (void *ptr, long size) 2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
394{ 2026{
395 /* some systems, notably openbsd and darwin, fail to properly 2027 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 2028 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
398 */ 2032 */
399 2033
400 if (size) 2034 if (size)
401 return realloc (ptr, size); 2035 return realloc (ptr, size);
402 2036
403 free (ptr); 2037 free (ptr);
404 return 0; 2038 return 0;
405} 2039}
406 2040
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
408 2042
2043ecb_cold
409void 2044void
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
411{ 2046{
412 alloc = cb; 2047 alloc = cb;
413} 2048}
414 2049
415inline_speed void * 2050inline_speed void *
417{ 2052{
418 ptr = alloc (ptr, size); 2053 ptr = alloc (ptr, size);
419 2054
420 if (!ptr && size) 2055 if (!ptr && size)
421 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
423 abort (); 2062 abort ();
424 } 2063 }
425 2064
426 return ptr; 2065 return ptr;
427} 2066}
429#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
431 2070
432/*****************************************************************************/ 2071/*****************************************************************************/
433 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
434typedef struct 2077typedef struct
435{ 2078{
436 WL head; 2079 WL head;
437 unsigned char events; 2080 unsigned char events; /* the events watched for */
438 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
439#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 2088 SOCKET handle;
441#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
442} ANFD; 2093} ANFD;
443 2094
2095/* stores the pending event set for a given watcher */
444typedef struct 2096typedef struct
445{ 2097{
446 W w; 2098 W w;
447 int events; 2099 int events; /* the pending event set for the given watcher */
448} ANPENDING; 2100} ANPENDING;
449 2101
450#if EV_USE_INOTIFY 2102#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 2103/* hash table entry per inotify-id */
452typedef struct 2104typedef struct
455} ANFS; 2107} ANFS;
456#endif 2108#endif
457 2109
458/* Heap Entry */ 2110/* Heap Entry */
459#if EV_HEAP_CACHE_AT 2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
460 typedef struct { 2113 typedef struct {
461 ev_tstamp at; 2114 ev_tstamp at;
462 WT w; 2115 WT w;
463 } ANHE; 2116 } ANHE;
464 2117
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 2121#else
2122 /* a heap element */
469 typedef WT ANHE; 2123 typedef WT ANHE;
470 2124
471 #define ANHE_w(he) (he) 2125 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 2126 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 2127 #define ANHE_at_cache(he)
484 #undef VAR 2138 #undef VAR
485 }; 2139 };
486 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
487 2141
488 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 2144
491#else 2145#else
492 2146
493 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 2149 #include "ev_vars.h"
496 #undef VAR 2150 #undef VAR
497 2151
498 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
499 2153
500#endif 2154#endif
501 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
502/*****************************************************************************/ 2168/*****************************************************************************/
503 2169
2170#ifndef EV_HAVE_EV_TIME
504ev_tstamp 2171ev_tstamp
505ev_time (void) 2172ev_time (void) EV_NOEXCEPT
506{ 2173{
507#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
508 struct timespec ts; 2177 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
511#else 2180 }
2181#endif
2182
2183 {
512 struct timeval tv; 2184 struct timeval tv;
513 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
515#endif 2187 }
516} 2188}
2189#endif
517 2190
518ev_tstamp inline_size 2191inline_size ev_tstamp
519get_clock (void) 2192get_clock (void)
520{ 2193{
521#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
523 { 2196 {
524 struct timespec ts; 2197 struct timespec ts;
525 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
526 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
527 } 2200 }
528#endif 2201#endif
529 2202
530 return ev_time (); 2203 return ev_time ();
531} 2204}
532 2205
533#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
534ev_tstamp 2207ev_tstamp
535ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
536{ 2209{
537 return ev_rt_now; 2210 return ev_rt_now;
538} 2211}
539#endif 2212#endif
540 2213
541void 2214void
542ev_sleep (ev_tstamp delay) 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
543{ 2216{
544 if (delay > 0.) 2217 if (delay > EV_TS_CONST (0.))
545 { 2218 {
546#if EV_USE_NANOSLEEP 2219#if EV_USE_NANOSLEEP
547 struct timespec ts; 2220 struct timespec ts;
548 2221
549 ts.tv_sec = (time_t)delay; 2222 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 2223 nanosleep (&ts, 0);
553#elif defined(_WIN32) 2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
554 Sleep ((unsigned long)(delay * 1e3)); 2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
555#else 2228#else
556 struct timeval tv; 2229 struct timeval tv;
557 2230
558 tv.tv_sec = (time_t)delay; 2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2232 /* something not guaranteed by newer posix versions, but guaranteed */
560 2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 2235 select (0, 0, 0, 0, &tv);
562#endif 2236#endif
563 } 2237 }
564} 2238}
565 2239
566/*****************************************************************************/ 2240/*****************************************************************************/
567 2241
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 2243
570int inline_size 2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
571array_nextsize (int elem, int cur, int cnt) 2247array_nextsize (int elem, int cur, int cnt)
572{ 2248{
573 int ncur = cur + 1; 2249 int ncur = cur + 1;
574 2250
575 do 2251 do
576 ncur <<= 1; 2252 ncur <<= 1;
577 while (cnt > ncur); 2253 while (cnt > ncur);
578 2254
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 2257 {
582 ncur *= elem; 2258 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 2260 ncur = ncur - sizeof (void *) * 4;
586 } 2262 }
587 2263
588 return ncur; 2264 return ncur;
589} 2265}
590 2266
591static noinline void * 2267ecb_noinline ecb_cold
2268static void *
592array_realloc (int elem, void *base, int *cur, int cnt) 2269array_realloc (int elem, void *base, int *cur, int cnt)
593{ 2270{
594 *cur = array_nextsize (elem, *cur, cnt); 2271 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 2272 return ev_realloc (base, elem * *cur);
596} 2273}
597 2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
598#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
600 { \ 2282 { \
601 int ocur_ = (cur); \ 2283 ecb_unused int ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 2284 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
605 } 2287 }
606 2288
607#if 0 2289#if 0
608#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 2296 }
615#endif 2297#endif
616 2298
617#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 2301
620/*****************************************************************************/ 2302/*****************************************************************************/
621 2303
622void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
623ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
624{ 2314{
625 W w_ = (W)w; 2315 W w_ = (W)w;
626 int pri = ABSPRI (w_); 2316 int pri = ABSPRI (w_);
627 2317
628 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents; 2319 pendings [pri][w_->pending - 1].events |= revents;
630 else 2320 else
631 { 2321 {
632 w_->pending = ++pendingcnt [pri]; 2322 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
634 pendings [pri][w_->pending - 1].w = w_; 2324 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 2325 pendings [pri][w_->pending - 1].events = revents;
636 } 2326 }
637}
638 2327
639void inline_speed 2328 pendingpri = NUMPRI - 1;
2329}
2330
2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 2348{
642 int i; 2349 int i;
643 2350
644 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
646} 2353}
647 2354
648/*****************************************************************************/ 2355/*****************************************************************************/
649 2356
650void inline_size 2357inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
665{ 2359{
666 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
667 ev_io *w; 2361 ev_io *w;
668 2362
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 2367 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
675 } 2369 }
676} 2370}
677 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
678void 2383void
679ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
680{ 2385{
681 if (fd >= 0 && fd < anfdmax) 2386 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
683} 2388}
684 2389
685void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
686fd_reify (EV_P) 2393fd_reify (EV_P)
687{ 2394{
688 int i; 2395 int i;
689 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
690 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
691 { 2435 {
692 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
694 ev_io *w; 2438 ev_io *w;
695 2439
696 unsigned char events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
697 2442
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 2444
701#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 2446 {
704 unsigned long argp; 2447 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 2448
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 2450 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 2451
709 #endif 2452 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2453 o_reify = EV__IOFDSET; /* actually |= */
711 } 2454 }
712#endif
713 2455
714 { 2456 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
723 } 2458 }
724 }
725 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
726 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
727} 2468}
728 2469
2470/* something about the given fd changed */
729void inline_size 2471inline_size
2472void
730fd_change (EV_P_ int fd, int flags) 2473fd_change (EV_P_ int fd, int flags)
731{ 2474{
732 unsigned char reify = anfds [fd].reify; 2475 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 2476 anfds [fd].reify = reify | flags;
734 2477
735 if (expect_true (!reify)) 2478 if (ecb_expect_true (!reify))
736 { 2479 {
737 ++fdchangecnt; 2480 ++fdchangecnt;
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
739 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
740 } 2483 }
741} 2484}
742 2485
743void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
744fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
745{ 2489{
746 ev_io *w; 2490 ev_io *w;
747 2491
748 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 2496 }
753} 2497}
754 2498
755int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
756fd_valid (int fd) 2501fd_valid (int fd)
757{ 2502{
758#ifdef _WIN32 2503#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 2505#else
761 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
762#endif 2507#endif
763} 2508}
764 2509
765/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
766static void noinline 2511ecb_noinline ecb_cold
2512static void
767fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
768{ 2514{
769 int fd; 2515 int fd;
770 2516
771 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 2518 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
775} 2521}
776 2522
777/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 2524ecb_noinline ecb_cold
2525static void
779fd_enomem (EV_P) 2526fd_enomem (EV_P)
780{ 2527{
781 int fd; 2528 int fd;
782 2529
783 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 2531 if (anfds [fd].events)
785 { 2532 {
786 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
787 return; 2534 break;
788 } 2535 }
789} 2536}
790 2537
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 2539ecb_noinline
2540static void
793fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
794{ 2542{
795 int fd; 2543 int fd;
796 2544
797 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 2546 if (anfds [fd].events)
799 { 2547 {
800 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 2551 }
803} 2552}
804 2553
2554/* used to prepare libev internal fd's */
2555/* this is not fork-safe */
2556inline_speed void
2557fd_intern (int fd)
2558{
2559#ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562#else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565#endif
2566}
2567
805/*****************************************************************************/ 2568/*****************************************************************************/
806 2569
807/* 2570/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 2571 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 2573 * the branching factor of the d-tree.
811 */ 2574 */
812 2575
813/* 2576/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 2587#define UPHEAP_DONE(p,k) ((p) == (k))
825 2588
826/* away from the root */ 2589/* away from the root */
827void inline_speed 2590inline_speed void
828downheap (ANHE *heap, int N, int k) 2591downheap (ANHE *heap, int N, int k)
829{ 2592{
830 ANHE he = heap [k]; 2593 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 2594 ANHE *E = heap + N + HEAP0;
832 2595
835 ev_tstamp minat; 2598 ev_tstamp minat;
836 ANHE *minpos; 2599 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838 2601
839 /* find minimum child */ 2602 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E)) 2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
841 { 2604 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 } 2609 }
847 else if (pos < E) 2610 else if (pos < E)
848 { 2611 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 } 2616 }
854 else 2617 else
855 break; 2618 break;
856 2619
857 if (ANHE_at (he) <= minat) 2620 if (ANHE_at (he) <= minat)
865 2628
866 heap [k] = he; 2629 heap [k] = he;
867 ev_active (ANHE_w (he)) = k; 2630 ev_active (ANHE_w (he)) = k;
868} 2631}
869 2632
870#else /* 4HEAP */ 2633#else /* not 4HEAP */
871 2634
872#define HEAP0 1 2635#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 2636#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 2637#define UPHEAP_DONE(p,k) (!(p))
875 2638
876/* away from the root */ 2639/* away from the root */
877void inline_speed 2640inline_speed void
878downheap (ANHE *heap, int N, int k) 2641downheap (ANHE *heap, int N, int k)
879{ 2642{
880 ANHE he = heap [k]; 2643 ANHE he = heap [k];
881 2644
882 for (;;) 2645 for (;;)
883 { 2646 {
884 int c = k << 1; 2647 int c = k << 1;
885 2648
886 if (c > N + HEAP0 - 1) 2649 if (c >= N + HEAP0)
887 break; 2650 break;
888 2651
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 2653 ? 1 : 0;
891 2654
902 ev_active (ANHE_w (he)) = k; 2665 ev_active (ANHE_w (he)) = k;
903} 2666}
904#endif 2667#endif
905 2668
906/* towards the root */ 2669/* towards the root */
907void inline_speed 2670inline_speed void
908upheap (ANHE *heap, int k) 2671upheap (ANHE *heap, int k)
909{ 2672{
910 ANHE he = heap [k]; 2673 ANHE he = heap [k];
911 2674
912 for (;;) 2675 for (;;)
923 2686
924 heap [k] = he; 2687 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 2688 ev_active (ANHE_w (he)) = k;
926} 2689}
927 2690
928void inline_size 2691/* move an element suitably so it is in a correct place */
2692inline_size void
929adjustheap (ANHE *heap, int N, int k) 2693adjustheap (ANHE *heap, int N, int k)
930{ 2694{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 2696 upheap (heap, k);
933 else 2697 else
934 downheap (heap, N, k); 2698 downheap (heap, N, k);
935} 2699}
936 2700
937/* rebuild the heap: this function is used only once and executed rarely */ 2701/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 2702inline_size void
939reheap (ANHE *heap, int N) 2703reheap (ANHE *heap, int N)
940{ 2704{
941 int i; 2705 int i;
942 2706
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 2710 upheap (heap, i + HEAP0);
947} 2711}
948 2712
949/*****************************************************************************/ 2713/*****************************************************************************/
950 2714
2715/* associate signal watchers to a signal */
951typedef struct 2716typedef struct
952{ 2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
953 WL head; 2722 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 2723} ANSIG;
956 2724
957static ANSIG *signals; 2725static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 2726
974/*****************************************************************************/ 2727/*****************************************************************************/
975 2728
976void inline_speed 2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 2730
988static void noinline 2731ecb_noinline ecb_cold
2732static void
989evpipe_init (EV_P) 2733evpipe_init (EV_P)
990{ 2734{
991 if (!ev_is_active (&pipeev)) 2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
992 { 2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
993#if EV_USE_EVENTFD 2801#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0) 2802 if (evpipe [0] < 0)
995 { 2803 {
996 evpipe [0] = -1; 2804 uint64_t counter = 1;
997 fd_intern (evfd); 2805 write (evpipe [1], &counter, sizeof (uint64_t));
998 ev_io_set (&pipeev, evfd, EV_READ);
999 } 2806 }
1000 else 2807 else
1001#endif 2808#endif
1002 { 2809 {
1003 while (pipe (evpipe)) 2810#ifdef _WIN32
1004 syserr ("(libev) error creating signal/async pipe"); 2811 WSABUF buf;
1005 2812 DWORD sent;
1006 fd_intern (evpipe [0]); 2813 buf.buf = (char *)&buf;
1007 fd_intern (evpipe [1]); 2814 buf.len = 1;
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
1009 } 2819 }
1010 2820
1011 ev_io_start (EV_A_ &pipeev); 2821 errno = old_errno;
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 { 2822 }
1021 int old_errno = errno; /* save errno because write might clobber it */ 2823}
1022 2824
1023 *flag = 1; 2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
1024 2831
2832 if (revents & EV_READ)
2833 {
1025#if EV_USE_EVENTFD 2834#if EV_USE_EVENTFD
1026 if (evfd >= 0) 2835 if (evpipe [0] < 0)
1027 { 2836 {
1028 uint64_t counter = 1; 2837 uint64_t counter;
1029 write (evfd, &counter, sizeof (uint64_t)); 2838 read (evpipe [1], &counter, sizeof (uint64_t));
1030 } 2839 }
1031 else 2840 else
1032#endif 2841#endif
1033 write (evpipe [1], &old_errno, 1); 2842 {
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy; 2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
1052 read (evpipe [0], &dummy, 1); 2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
1053 } 2863 {
2864 sig_pending = 0;
1054 2865
1055 if (gotsig && ev_is_default_loop (EV_A)) 2866 ECB_MEMORY_FENCE;
1056 {
1057 int signum;
1058 gotsig = 0;
1059 2867
1060 for (signum = signalmax; signum--; ) 2868 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 2869 if (ecb_expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 2870 ev_feed_signal_event (EV_A_ i + 1);
1063 } 2871 }
2872#endif
1064 2873
1065#if EV_ASYNC_ENABLE 2874#if EV_ASYNC_ENABLE
1066 if (gotasync) 2875 if (async_pending)
1067 { 2876 {
1068 int i; 2877 async_pending = 0;
1069 gotasync = 0; 2878
2879 ECB_MEMORY_FENCE;
1070 2880
1071 for (i = asynccnt; i--; ) 2881 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 2882 if (asyncs [i]->sent)
1073 { 2883 {
1074 asyncs [i]->sent = 0; 2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 } 2887 }
1077 } 2888 }
1078#endif 2889#endif
1079} 2890}
1080 2891
1081/*****************************************************************************/ 2892/*****************************************************************************/
1082 2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
1083static void 2910static void
1084ev_sighandler (int signum) 2911ev_sighandler (int signum)
1085{ 2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
1086#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 2932 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 2933 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 2934
1090#if _WIN32 2935 if (ecb_expect_false (signals [signum].loop != EV_A))
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 2936 return;
2937#endif
1111 2938
1112 signals [signum].gotsig = 0; 2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
1113 2941
1114 for (w = signals [signum].head; w; w = w->next) 2942 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 2944}
1117 2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
1118/*****************************************************************************/ 2968/*****************************************************************************/
1119 2969
2970#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 2971static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 2972
1124static ev_signal childev; 2973static ev_signal childev;
1125 2974
1126#ifndef WIFCONTINUED 2975#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 2976# define WIFCONTINUED(status) 0
1128#endif 2977#endif
1129 2978
1130void inline_speed 2979/* handle a single child status event */
2980inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
1132{ 2982{
1133 ev_child *w; 2983 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 2985
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 { 2987 {
1138 if ((w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1))) 2989 && (!traced || (w->flags & 1)))
1140 { 2990 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1148 2998
1149#ifndef WCONTINUED 2999#ifndef WCONTINUED
1150# define WCONTINUED 0 3000# define WCONTINUED 0
1151#endif 3001#endif
1152 3002
3003/* called on sigchld etc., calls waitpid */
1153static void 3004static void
1154childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
1155{ 3006{
1156 int pid, status; 3007 int pid, status;
1157 3008
1165 /* make sure we are called again until all children have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168 3019
1169 child_reap (EV_A_ pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172} 3023}
1173 3024
1174#endif 3025#endif
1175 3026
1176/*****************************************************************************/ 3027/*****************************************************************************/
1177 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
3073 }
3074}
3075
3076#endif
3077
3078/*****************************************************************************/
3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
1178#if EV_USE_PORT 3083#if EV_USE_PORT
1179# include "ev_port.c" 3084# include "ev_port.c"
1180#endif 3085#endif
1181#if EV_USE_KQUEUE 3086#if EV_USE_KQUEUE
1182# include "ev_kqueue.c" 3087# include "ev_kqueue.c"
1183#endif 3088#endif
1184#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
1185# include "ev_epoll.c" 3090# include "ev_epoll.c"
1186#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
1187#if EV_USE_POLL 3098#if EV_USE_POLL
1188# include "ev_poll.c" 3099# include "ev_poll.c"
1189#endif 3100#endif
1190#if EV_USE_SELECT 3101#if EV_USE_SELECT
1191# include "ev_select.c" 3102# include "ev_select.c"
1192#endif 3103#endif
1193 3104
1194int 3105ecb_cold int
1195ev_version_major (void) 3106ev_version_major (void) EV_NOEXCEPT
1196{ 3107{
1197 return EV_VERSION_MAJOR; 3108 return EV_VERSION_MAJOR;
1198} 3109}
1199 3110
1200int 3111ecb_cold int
1201ev_version_minor (void) 3112ev_version_minor (void) EV_NOEXCEPT
1202{ 3113{
1203 return EV_VERSION_MINOR; 3114 return EV_VERSION_MINOR;
1204} 3115}
1205 3116
1206/* return true if we are running with elevated privileges and should ignore env variables */ 3117/* return true if we are running with elevated privileges and should ignore env variables */
1207int inline_size 3118inline_size ecb_cold int
1208enable_secure (void) 3119enable_secure (void)
1209{ 3120{
1210#ifdef _WIN32 3121#ifdef _WIN32
1211 return 0; 3122 return 0;
1212#else 3123#else
1213 return getuid () != geteuid () 3124 return getuid () != geteuid ()
1214 || getgid () != getegid (); 3125 || getgid () != getegid ();
1215#endif 3126#endif
1216} 3127}
1217 3128
3129ecb_cold
1218unsigned int 3130unsigned int
1219ev_supported_backends (void) 3131ev_supported_backends (void) EV_NOEXCEPT
1220{ 3132{
1221 unsigned int flags = 0; 3133 unsigned int flags = 0;
1222 3134
1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1226 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1228 3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
1229 return flags; 3143 return flags;
1230} 3144}
1231 3145
3146ecb_cold
1232unsigned int 3147unsigned int
1233ev_recommended_backends (void) 3148ev_recommended_backends (void) EV_NOEXCEPT
1234{ 3149{
1235 unsigned int flags = ev_supported_backends (); 3150 unsigned int flags = ev_supported_backends ();
1236 3151
1237#ifndef __NetBSD__ 3152#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */ 3153 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 3154 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 3155 flags &= ~EVBACKEND_KQUEUE;
1241#endif 3156#endif
1242#ifdef __APPLE__ 3157#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: iouring is super experimental */
3171#if !EV_RECOMMEND_IOURING
1244 flags &= ~EVBACKEND_POLL; 3172 flags &= ~EVBACKEND_IOURING;
1245#endif 3173#endif
1246 3174
1247 return flags; 3175 return flags;
1248} 3176}
1249 3177
3178ecb_cold
1250unsigned int 3179unsigned int
1251ev_embeddable_backends (void) 3180ev_embeddable_backends (void) EV_NOEXCEPT
1252{ 3181{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1254 3183
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */ 3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1257 flags &= ~EVBACKEND_EPOLL; 3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1258 3189
1259 return flags; 3190 return flags;
1260} 3191}
1261 3192
1262unsigned int 3193unsigned int
1263ev_backend (EV_P) 3194ev_backend (EV_P) EV_NOEXCEPT
1264{ 3195{
1265 return backend; 3196 return backend;
1266} 3197}
1267 3198
3199#if EV_FEATURE_API
1268unsigned int 3200unsigned int
1269ev_loop_count (EV_P) 3201ev_iteration (EV_P) EV_NOEXCEPT
1270{ 3202{
1271 return loop_count; 3203 return loop_count;
1272} 3204}
1273 3205
3206unsigned int
3207ev_depth (EV_P) EV_NOEXCEPT
3208{
3209 return loop_depth;
3210}
3211
1274void 3212void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1276{ 3214{
1277 io_blocktime = interval; 3215 io_blocktime = interval;
1278} 3216}
1279 3217
1280void 3218void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1282{ 3220{
1283 timeout_blocktime = interval; 3221 timeout_blocktime = interval;
1284} 3222}
1285 3223
1286static void noinline 3224void
3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226{
3227 userdata = data;
3228}
3229
3230void *
3231ev_userdata (EV_P) EV_NOEXCEPT
3232{
3233 return userdata;
3234}
3235
3236void
3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238{
3239 invoke_cb = invoke_pending_cb;
3240}
3241
3242void
3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244{
3245 release_cb = release;
3246 acquire_cb = acquire;
3247}
3248#endif
3249
3250/* initialise a loop structure, must be zero-initialised */
3251ecb_noinline ecb_cold
3252static void
1287loop_init (EV_P_ unsigned int flags) 3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1288{ 3254{
1289 if (!backend) 3255 if (!backend)
1290 { 3256 {
3257 origflags = flags;
3258
3259#if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267#endif
3268
1291#if EV_USE_MONOTONIC 3269#if EV_USE_MONOTONIC
3270 if (!have_monotonic)
1292 { 3271 {
1293 struct timespec ts; 3272 struct timespec ts;
3273
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 3275 have_monotonic = 1;
1296 } 3276 }
1297#endif
1298
1299 ev_rt_now = ev_time ();
1300 mn_now = get_clock ();
1301 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif 3277#endif
1312 3278
1313 /* pid check not overridable via env */ 3279 /* pid check not overridable via env */
1314#ifndef _WIN32 3280#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK) 3281 if (flags & EVFLAG_FORKCHECK)
1319 if (!(flags & EVFLAG_NOENV) 3285 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure () 3286 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS")) 3287 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS")); 3288 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 3289
1324 if (!(flags & 0x0000ffffU)) 3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294#if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296#endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303#if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310#if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312#endif
3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318#endif
3319
3320 if (!(flags & EVBACKEND_MASK))
1325 flags |= ev_recommended_backends (); 3321 flags |= ev_recommended_backends ();
1326 3322
3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
1327#if EV_USE_PORT 3326#if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1329#endif 3328#endif
1330#if EV_USE_KQUEUE 3329#if EV_USE_KQUEUE
1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1332#endif 3337#endif
1333#if EV_USE_EPOLL 3338#if EV_USE_EPOLL
1334 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1335#endif 3340#endif
1336#if EV_USE_POLL 3341#if EV_USE_POLL
1337 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1338#endif 3343#endif
1339#if EV_USE_SELECT 3344#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1341#endif 3346#endif
1342 3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 3351 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 3352 ev_set_priority (&pipe_w, EV_MAXPRI);
3353#endif
1345 } 3354 }
1346} 3355}
1347 3356
1348static void noinline 3357/* free up a loop structure */
3358ecb_cold
3359void
1349loop_destroy (EV_P) 3360ev_loop_destroy (EV_P)
1350{ 3361{
1351 int i; 3362 int i;
1352 3363
3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
3386
1353 if (ev_is_active (&pipeev)) 3387 if (ev_is_active (&pipe_w))
1354 { 3388 {
1355 ev_ref (EV_A); /* signal watcher */ 3389 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 3390 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396#if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399#endif
3400
1358#if EV_USE_EVENTFD 3401#if EV_USE_TIMERFD
1359 if (evfd >= 0) 3402 if (ev_is_active (&timerfd_w))
1360 close (evfd); 3403 close (timerfd);
1361#endif 3404#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369 3405
1370#if EV_USE_INOTIFY 3406#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 3407 if (fs_fd >= 0)
1372 close (fs_fd); 3408 close (fs_fd);
1373#endif 3409#endif
1374 3410
1375 if (backend_fd >= 0) 3411 if (backend_fd >= 0)
1376 close (backend_fd); 3412 close (backend_fd);
1377 3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
1378#if EV_USE_PORT 3417#if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1380#endif 3419#endif
1381#if EV_USE_KQUEUE 3420#if EV_USE_KQUEUE
1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1383#endif 3428#endif
1384#if EV_USE_EPOLL 3429#if EV_USE_EPOLL
1385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1386#endif 3431#endif
1387#if EV_USE_POLL 3432#if EV_USE_POLL
1388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1389#endif 3434#endif
1390#if EV_USE_SELECT 3435#if EV_USE_SELECT
1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1392#endif 3437#endif
1393 3438
1394 for (i = NUMPRI; i--; ) 3439 for (i = NUMPRI; i--; )
1395 { 3440 {
1396 array_free (pending, [i]); 3441 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE 3442#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 3443 array_free (idle, [i]);
1399#endif 3444#endif
1400 } 3445 }
1401 3446
1402 ev_free (anfds); anfdmax = 0; 3447 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 3448
1404 /* have to use the microsoft-never-gets-it-right macro */ 3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 3451 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 3452 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 3453#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 3454 array_free (periodic, EMPTY);
1409#endif 3455#endif
1410#if EV_FORK_ENABLE 3456#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY); 3457 array_free (fork, EMPTY);
1412#endif 3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
1413 array_free (prepare, EMPTY); 3462 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY); 3463 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE 3464#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY); 3465 array_free (async, EMPTY);
1417#endif 3466#endif
1418 3467
1419 backend = 0; 3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
1420} 3478}
1421 3479
1422#if EV_USE_INOTIFY 3480#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 3481inline_size void infy_fork (EV_P);
1424#endif 3482#endif
1425 3483
1426void inline_size 3484inline_size void
1427loop_fork (EV_P) 3485loop_fork (EV_P)
1428{ 3486{
1429#if EV_USE_PORT 3487#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 3489#endif
1432#if EV_USE_KQUEUE 3490#if EV_USE_KQUEUE
1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1434#endif 3498#endif
1435#if EV_USE_EPOLL 3499#if EV_USE_EPOLL
1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1437#endif 3501#endif
1438#if EV_USE_INOTIFY 3502#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 3503 infy_fork (EV_A);
1440#endif 3504#endif
1441 3505
1442 if (ev_is_active (&pipeev)) 3506 if (postfork != 2)
1443 { 3507 {
1444 /* this "locks" the handlers against writing to the pipe */ 3508 #if EV_USE_SIGNALFD
1445 /* while we modify the fd vars */ 3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
1446 gotsig = 1; 3510 #endif
1447#if EV_ASYNC_ENABLE 3511
1448 gotasync = 1; 3512 #if EV_USE_TIMERFD
1449#endif 3513 if (ev_is_active (&timerfd_w))
1450
1451 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 { 3514 {
1461 close (evpipe [0]); 3515 ev_ref (EV_A);
1462 close (evpipe [1]); 3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
1463 } 3524 }
1464 3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
1465 evpipe_init (EV_A); 3538 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 3539 /* iterate over everything, in case we missed something before */
1467 pipecb (EV_A_ &pipeev, EV_READ); 3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
1468 } 3543 }
1469 3544
1470 postfork = 0; 3545 postfork = 0;
1471} 3546}
1472 3547
1473#if EV_MULTIPLICITY 3548#if EV_MULTIPLICITY
1474 3549
3550ecb_cold
1475struct ev_loop * 3551struct ev_loop *
1476ev_loop_new (unsigned int flags) 3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
1477{ 3553{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 3555
1480 memset (loop, 0, sizeof (struct ev_loop)); 3556 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 3557 loop_init (EV_A_ flags);
1483 3558
1484 if (ev_backend (EV_A)) 3559 if (ev_backend (EV_A))
1485 return loop; 3560 return EV_A;
1486 3561
3562 ev_free (EV_A);
1487 return 0; 3563 return 0;
1488} 3564}
1489 3565
1490void 3566#endif /* multiplicity */
1491ev_loop_destroy (EV_P)
1492{
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495}
1496
1497void
1498ev_loop_fork (EV_P)
1499{
1500 postfork = 1; /* must be in line with ev_default_fork */
1501}
1502 3567
1503#if EV_VERIFY 3568#if EV_VERIFY
1504void noinline 3569ecb_noinline ecb_cold
3570static void
1505verify_watcher (EV_P_ W w) 3571verify_watcher (EV_P_ W w)
1506{ 3572{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 3574
1509 if (w->pending) 3575 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 3577}
1512 3578
1513static void noinline 3579ecb_noinline ecb_cold
3580static void
1514verify_heap (EV_P_ ANHE *heap, int N) 3581verify_heap (EV_P_ ANHE *heap, int N)
1515{ 3582{
1516 int i; 3583 int i;
1517 3584
1518 for (i = HEAP0; i < N + HEAP0; ++i) 3585 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 3586 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 3590
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 3592 }
1526} 3593}
1527 3594
1528static void noinline 3595ecb_noinline ecb_cold
3596static void
1529array_verify (EV_P_ W *ws, int cnt) 3597array_verify (EV_P_ W *ws, int cnt)
1530{ 3598{
1531 while (cnt--) 3599 while (cnt--)
1532 { 3600 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 3602 verify_watcher (EV_A_ ws [cnt]);
1535 } 3603 }
1536} 3604}
1537#endif 3605#endif
1538 3606
1539void 3607#if EV_FEATURE_API
1540ev_loop_verify (EV_P) 3608void ecb_cold
3609ev_verify (EV_P) EV_NOEXCEPT
1541{ 3610{
1542#if EV_VERIFY 3611#if EV_VERIFY
1543 int i; 3612 int i;
1544 WL w; 3613 WL w, w2;
1545 3614
1546 assert (activecnt >= -1); 3615 assert (activecnt >= -1);
1547 3616
1548 assert (fdchangemax >= fdchangecnt); 3617 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 3618 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 3620
1552 assert (anfdmax >= 0); 3621 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
1554 for (w = anfds [i].head; w; w = w->next) 3626 for (w = w2 = anfds [i].head; w; w = w->next)
1555 { 3627 {
1556 verify_watcher (EV_A_ (W)w); 3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 3638 }
3639 }
1560 3640
1561 assert (timermax >= timercnt); 3641 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 3642 verify_heap (EV_A_ timers, timercnt);
1563 3643
1564#if EV_PERIODIC_ENABLE 3644#if EV_PERIODIC_ENABLE
1568 3648
1569 for (i = NUMPRI; i--; ) 3649 for (i = NUMPRI; i--; )
1570 { 3650 {
1571 assert (pendingmax [i] >= pendingcnt [i]); 3651 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE 3652#if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]); 3654 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]); 3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif 3656#endif
1576 } 3657 }
1577 3658
1578#if EV_FORK_ENABLE 3659#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt); 3660 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt); 3661 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif 3662#endif
1582 3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
1583#if EV_ASYNC_ENABLE 3669#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt); 3670 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt); 3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif 3672#endif
1587 3673
3674#if EV_PREPARE_ENABLE
1588 assert (preparemax >= preparecnt); 3675 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt); 3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
1590 3678
3679#if EV_CHECK_ENABLE
1591 assert (checkmax >= checkcnt); 3680 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt); 3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
1593 3683
1594# if 0 3684# if 0
3685#if EV_CHILD_ENABLE
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
1597# endif 3689# endif
1598#endif 3690#endif
1599} 3691}
1600 3692#endif
1601#endif /* multiplicity */
1602 3693
1603#if EV_MULTIPLICITY 3694#if EV_MULTIPLICITY
3695ecb_cold
1604struct ev_loop * 3696struct ev_loop *
1605ev_default_loop_init (unsigned int flags)
1606#else 3697#else
1607int 3698int
3699#endif
1608ev_default_loop (unsigned int flags) 3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
1609#endif
1610{ 3701{
1611 if (!ev_default_loop_ptr) 3702 if (!ev_default_loop_ptr)
1612 { 3703 {
1613#if EV_MULTIPLICITY 3704#if EV_MULTIPLICITY
1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
1615#else 3706#else
1616 ev_default_loop_ptr = 1; 3707 ev_default_loop_ptr = 1;
1617#endif 3708#endif
1618 3709
1619 loop_init (EV_A_ flags); 3710 loop_init (EV_A_ flags);
1620 3711
1621 if (ev_backend (EV_A)) 3712 if (ev_backend (EV_A))
1622 { 3713 {
1623#ifndef _WIN32 3714#if EV_CHILD_ENABLE
1624 ev_signal_init (&childev, childcb, SIGCHLD); 3715 ev_signal_init (&childev, childcb, SIGCHLD);
1625 ev_set_priority (&childev, EV_MAXPRI); 3716 ev_set_priority (&childev, EV_MAXPRI);
1626 ev_signal_start (EV_A_ &childev); 3717 ev_signal_start (EV_A_ &childev);
1627 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
1628#endif 3719#endif
1633 3724
1634 return ev_default_loop_ptr; 3725 return ev_default_loop_ptr;
1635} 3726}
1636 3727
1637void 3728void
1638ev_default_destroy (void) 3729ev_loop_fork (EV_P) EV_NOEXCEPT
1639{ 3730{
1640#if EV_MULTIPLICITY 3731 postfork = 1;
1641 struct ev_loop *loop = ev_default_loop_ptr;
1642#endif
1643
1644#ifndef _WIN32
1645 ev_ref (EV_A); /* child watcher */
1646 ev_signal_stop (EV_A_ &childev);
1647#endif
1648
1649 loop_destroy (EV_A);
1650}
1651
1652void
1653ev_default_fork (void)
1654{
1655#if EV_MULTIPLICITY
1656 struct ev_loop *loop = ev_default_loop_ptr;
1657#endif
1658
1659 if (backend)
1660 postfork = 1; /* must be in line with ev_loop_fork */
1661} 3732}
1662 3733
1663/*****************************************************************************/ 3734/*****************************************************************************/
1664 3735
1665void 3736void
1666ev_invoke (EV_P_ void *w, int revents) 3737ev_invoke (EV_P_ void *w, int revents)
1667{ 3738{
1668 EV_CB_INVOKE ((W)w, revents); 3739 EV_CB_INVOKE ((W)w, revents);
1669} 3740}
1670 3741
1671void inline_speed 3742unsigned int
1672call_pending (EV_P) 3743ev_pending_count (EV_P) EV_NOEXCEPT
1673{ 3744{
1674 int pri; 3745 int pri;
3746 unsigned int count = 0;
1675 3747
1676 for (pri = NUMPRI; pri--; ) 3748 for (pri = NUMPRI; pri--; )
3749 count += pendingcnt [pri];
3750
3751 return count;
3752}
3753
3754ecb_noinline
3755void
3756ev_invoke_pending (EV_P)
3757{
3758 pendingpri = NUMPRI;
3759
3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
1677 while (pendingcnt [pri]) 3765 while (pendingcnt [pendingpri])
1678 {
1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1680
1681 if (expect_true (p->w))
1682 { 3766 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1684 3768
1685 p->w->pending = 0; 3769 p->w->pending = 0;
1686 EV_CB_INVOKE (p->w, p->events); 3770 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK; 3771 EV_FREQUENT_CHECK;
1688 } 3772 }
1689 } 3773 }
3774 while (pendingpri);
1690} 3775}
1691 3776
1692#if EV_IDLE_ENABLE 3777#if EV_IDLE_ENABLE
1693void inline_size 3778/* make idle watchers pending. this handles the "call-idle */
3779/* only when higher priorities are idle" logic */
3780inline_size void
1694idle_reify (EV_P) 3781idle_reify (EV_P)
1695{ 3782{
1696 if (expect_false (idleall)) 3783 if (ecb_expect_false (idleall))
1697 { 3784 {
1698 int pri; 3785 int pri;
1699 3786
1700 for (pri = NUMPRI; pri--; ) 3787 for (pri = NUMPRI; pri--; )
1701 { 3788 {
1710 } 3797 }
1711 } 3798 }
1712} 3799}
1713#endif 3800#endif
1714 3801
1715void inline_size 3802/* make timers pending */
3803inline_size void
1716timers_reify (EV_P) 3804timers_reify (EV_P)
1717{ 3805{
1718 EV_FREQUENT_CHECK; 3806 EV_FREQUENT_CHECK;
1719 3807
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 { 3809 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3810 do
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 { 3811 {
3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
1729 ev_at (w) += w->repeat; 3819 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now) 3820 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now; 3821 ev_at (w) = mn_now;
1732 3822
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1734 3824
1735 ANHE_at_cache (timers [HEAP0]); 3825 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0); 3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
1737 } 3833 }
1738 else 3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740 3835
1741 EV_FREQUENT_CHECK; 3836 feed_reverse_done (EV_A_ EV_TIMER);
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 } 3837 }
1744} 3838}
1745 3839
1746#if EV_PERIODIC_ENABLE 3840#if EV_PERIODIC_ENABLE
1747void inline_size 3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
3867/* make periodics pending */
3868inline_size void
1748periodics_reify (EV_P) 3869periodics_reify (EV_P)
1749{ 3870{
1750 EV_FREQUENT_CHECK; 3871 EV_FREQUENT_CHECK;
1751 3872
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 { 3874 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3875 do
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 { 3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878
3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880
3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762 3885
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764 3887
1765 ANHE_at_cache (periodics [HEAP0]); 3888 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0); 3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
1767 } 3902 }
1768 else if (w->interval) 3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776 3904
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3905 feed_reverse_done (EV_A_ EV_PERIODIC);
1792 } 3906 }
1793} 3907}
1794 3908
1795static void noinline 3909/* simply recalculate all periodics */
3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
3911ecb_noinline ecb_cold
3912static void
1796periodics_reschedule (EV_P) 3913periodics_reschedule (EV_P)
1797{ 3914{
1798 int i; 3915 int i;
1799 3916
1800 /* adjust periodics after time jump */ 3917 /* adjust periodics after time jump */
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804 3921
1805 if (w->reschedule_cb) 3922 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval) 3924 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3925 periodic_recalc (EV_A_ w);
1809 3926
1810 ANHE_at_cache (periodics [i]); 3927 ANHE_at_cache (periodics [i]);
1811 } 3928 }
1812 3929
1813 reheap (periodics, periodiccnt); 3930 reheap (periodics, periodiccnt);
1814} 3931}
1815#endif 3932#endif
1816 3933
1817void inline_speed 3934/* adjust all timers by a given offset */
3935ecb_noinline ecb_cold
3936static void
3937timers_reschedule (EV_P_ ev_tstamp adjust)
3938{
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
3942 {
3943 ANHE *he = timers + i + HEAP0;
3944 ANHE_w (*he)->at += adjust;
3945 ANHE_at_cache (*he);
3946 }
3947}
3948
3949/* fetch new monotonic and realtime times from the kernel */
3950/* also detect if there was a timejump, and act accordingly */
3951inline_speed void
1818time_update (EV_P_ ev_tstamp max_block) 3952time_update (EV_P_ ev_tstamp max_block)
1819{ 3953{
1820 int i;
1821
1822#if EV_USE_MONOTONIC 3954#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic)) 3955 if (ecb_expect_true (have_monotonic))
1824 { 3956 {
3957 int i;
1825 ev_tstamp odiff = rtmn_diff; 3958 ev_tstamp odiff = rtmn_diff;
1826 3959
1827 mn_now = get_clock (); 3960 mn_now = get_clock ();
1828 3961
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */ 3963 /* interpolate in the meantime */
1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1832 { 3965 {
1833 ev_rt_now = rtmn_diff + mn_now; 3966 ev_rt_now = rtmn_diff + mn_now;
1834 return; 3967 return;
1835 } 3968 }
1836 3969
1845 * doesn't hurt either as we only do this on time-jumps or 3978 * doesn't hurt either as we only do this on time-jumps or
1846 * in the unlikely event of having been preempted here. 3979 * in the unlikely event of having been preempted here.
1847 */ 3980 */
1848 for (i = 4; --i; ) 3981 for (i = 4; --i; )
1849 { 3982 {
3983 ev_tstamp diff;
1850 rtmn_diff = ev_rt_now - mn_now; 3984 rtmn_diff = ev_rt_now - mn_now;
1851 3985
1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1853 return; /* all is well */ 3989 return; /* all is well */
1854 3990
1855 ev_rt_now = ev_time (); 3991 ev_rt_now = ev_time ();
1856 mn_now = get_clock (); 3992 mn_now = get_clock ();
1857 now_floor = mn_now; 3993 now_floor = mn_now;
1858 } 3994 }
1859 3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1860# if EV_PERIODIC_ENABLE 3998# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A); 3999 periodics_reschedule (EV_A);
1862# endif 4000# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 } 4001 }
1866 else 4002 else
1867#endif 4003#endif
1868 { 4004 {
1869 ev_rt_now = ev_time (); 4005 ev_rt_now = ev_time ();
1870 4006
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1872 { 4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1873#if EV_PERIODIC_ENABLE 4011#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 4012 periodics_reschedule (EV_A);
1875#endif 4013#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1883 } 4014 }
1884 4015
1885 mn_now = ev_rt_now; 4016 mn_now = ev_rt_now;
1886 } 4017 }
1887} 4018}
1888 4019
1889void 4020int
1890ev_ref (EV_P)
1891{
1892 ++activecnt;
1893}
1894
1895void
1896ev_unref (EV_P)
1897{
1898 --activecnt;
1899}
1900
1901static int loop_done;
1902
1903void
1904ev_loop (EV_P_ int flags) 4021ev_run (EV_P_ int flags)
1905{ 4022{
4023#if EV_FEATURE_API
4024 ++loop_depth;
4025#endif
4026
4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028
1906 loop_done = EVUNLOOP_CANCEL; 4029 loop_done = EVBREAK_CANCEL;
1907 4030
1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1909 4032
1910 do 4033 do
1911 { 4034 {
1912#if EV_VERIFY >= 2 4035#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A); 4036 ev_verify (EV_A);
1914#endif 4037#endif
1915 4038
1916#ifndef _WIN32 4039#ifndef _WIN32
1917 if (expect_false (curpid)) /* penalise the forking check even more */ 4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1918 if (expect_false (getpid () != curpid)) 4041 if (ecb_expect_false (getpid () != curpid))
1919 { 4042 {
1920 curpid = getpid (); 4043 curpid = getpid ();
1921 postfork = 1; 4044 postfork = 1;
1922 } 4045 }
1923#endif 4046#endif
1924 4047
1925#if EV_FORK_ENABLE 4048#if EV_FORK_ENABLE
1926 /* we might have forked, so queue fork handlers */ 4049 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork)) 4050 if (ecb_expect_false (postfork))
1928 if (forkcnt) 4051 if (forkcnt)
1929 { 4052 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A); 4054 EV_INVOKE_PENDING;
1932 } 4055 }
1933#endif 4056#endif
1934 4057
4058#if EV_PREPARE_ENABLE
1935 /* queue prepare watchers (and execute them) */ 4059 /* queue prepare watchers (and execute them) */
1936 if (expect_false (preparecnt)) 4060 if (ecb_expect_false (preparecnt))
1937 { 4061 {
1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1939 call_pending (EV_A); 4063 EV_INVOKE_PENDING;
1940 } 4064 }
4065#endif
1941 4066
1942 if (expect_false (!activecnt)) 4067 if (ecb_expect_false (loop_done))
1943 break; 4068 break;
1944 4069
1945 /* we might have forked, so reify kernel state if necessary */ 4070 /* we might have forked, so reify kernel state if necessary */
1946 if (expect_false (postfork)) 4071 if (ecb_expect_false (postfork))
1947 loop_fork (EV_A); 4072 loop_fork (EV_A);
1948 4073
1949 /* update fd-related kernel structures */ 4074 /* update fd-related kernel structures */
1950 fd_reify (EV_A); 4075 fd_reify (EV_A);
1951 4076
1952 /* calculate blocking time */ 4077 /* calculate blocking time */
1953 { 4078 {
1954 ev_tstamp waittime = 0.; 4079 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.; 4080 ev_tstamp sleeptime = 0.;
1956 4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1958 { 4094 {
1959 /* update time to cancel out callback processing overhead */
1960 time_update (EV_A_ 1e100);
1961
1962 waittime = MAX_BLOCKTIME; 4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
4097#if EV_USE_MONOTONIC
4098 if (ecb_expect_true (have_monotonic))
4099 {
4100#if EV_USE_TIMERFD
4101 /* sleep a lot longer when we can reliably detect timejumps */
4102 if (ecb_expect_true (timerfd != -1))
4103 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4104#endif
4105#if !EV_PERIODIC_ENABLE
4106 /* without periodics but with monotonic clock there is no need */
4107 /* for any time jump detection, so sleep longer */
4108 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4109#endif
4110 }
4111#endif
1963 4112
1964 if (timercnt) 4113 if (timercnt)
1965 { 4114 {
1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 4115 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1967 if (waittime > to) waittime = to; 4116 if (waittime > to) waittime = to;
1968 } 4117 }
1969 4118
1970#if EV_PERIODIC_ENABLE 4119#if EV_PERIODIC_ENABLE
1971 if (periodiccnt) 4120 if (periodiccnt)
1972 { 4121 {
1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 4122 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1974 if (waittime > to) waittime = to; 4123 if (waittime > to) waittime = to;
1975 } 4124 }
1976#endif 4125#endif
1977 4126
4127 /* don't let timeouts decrease the waittime below timeout_blocktime */
1978 if (expect_false (waittime < timeout_blocktime)) 4128 if (ecb_expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime; 4129 waittime = timeout_blocktime;
1980 4130
1981 sleeptime = waittime - backend_fudge; 4131 /* now there are two more special cases left, either we have
4132 * already-expired timers, so we should not sleep, or we have timers
4133 * that expire very soon, in which case we need to wait for a minimum
4134 * amount of time for some event loop backends.
4135 */
4136 if (ecb_expect_false (waittime < backend_mintime))
4137 waittime = waittime <= EV_TS_CONST (0.)
4138 ? EV_TS_CONST (0.)
4139 : backend_mintime;
1982 4140
4141 /* extra check because io_blocktime is commonly 0 */
1983 if (expect_true (sleeptime > io_blocktime)) 4142 if (ecb_expect_false (io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 { 4143 {
4144 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4145
4146 if (sleeptime > waittime - backend_mintime)
4147 sleeptime = waittime - backend_mintime;
4148
4149 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4150 {
1988 ev_sleep (sleeptime); 4151 ev_sleep (sleeptime);
1989 waittime -= sleeptime; 4152 waittime -= sleeptime;
4153 }
1990 } 4154 }
1991 } 4155 }
1992 4156
4157#if EV_FEATURE_API
1993 ++loop_count; 4158 ++loop_count;
4159#endif
4160 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1994 backend_poll (EV_A_ waittime); 4161 backend_poll (EV_A_ waittime);
4162 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4163
4164 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4165
4166 ECB_MEMORY_FENCE_ACQUIRE;
4167 if (pipe_write_skipped)
4168 {
4169 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4170 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4171 }
1995 4172
1996 /* update ev_rt_now, do magic */ 4173 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime); 4174 time_update (EV_A_ waittime + sleeptime);
1998 } 4175 }
1999 4176
2006#if EV_IDLE_ENABLE 4183#if EV_IDLE_ENABLE
2007 /* queue idle watchers unless other events are pending */ 4184 /* queue idle watchers unless other events are pending */
2008 idle_reify (EV_A); 4185 idle_reify (EV_A);
2009#endif 4186#endif
2010 4187
4188#if EV_CHECK_ENABLE
2011 /* queue check watchers, to be executed first */ 4189 /* queue check watchers, to be executed first */
2012 if (expect_false (checkcnt)) 4190 if (ecb_expect_false (checkcnt))
2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4192#endif
2014 4193
2015 call_pending (EV_A); 4194 EV_INVOKE_PENDING;
2016 } 4195 }
2017 while (expect_true ( 4196 while (ecb_expect_true (
2018 activecnt 4197 activecnt
2019 && !loop_done 4198 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4199 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2021 )); 4200 ));
2022 4201
2023 if (loop_done == EVUNLOOP_ONE) 4202 if (loop_done == EVBREAK_ONE)
2024 loop_done = EVUNLOOP_CANCEL; 4203 loop_done = EVBREAK_CANCEL;
4204
4205#if EV_FEATURE_API
4206 --loop_depth;
4207#endif
4208
4209 return activecnt;
2025} 4210}
2026 4211
2027void 4212void
2028ev_unloop (EV_P_ int how) 4213ev_break (EV_P_ int how) EV_NOEXCEPT
2029{ 4214{
2030 loop_done = how; 4215 loop_done = how;
2031} 4216}
2032 4217
4218void
4219ev_ref (EV_P) EV_NOEXCEPT
4220{
4221 ++activecnt;
4222}
4223
4224void
4225ev_unref (EV_P) EV_NOEXCEPT
4226{
4227 --activecnt;
4228}
4229
4230void
4231ev_now_update (EV_P) EV_NOEXCEPT
4232{
4233 time_update (EV_A_ EV_TSTAMP_HUGE);
4234}
4235
4236void
4237ev_suspend (EV_P) EV_NOEXCEPT
4238{
4239 ev_now_update (EV_A);
4240}
4241
4242void
4243ev_resume (EV_P) EV_NOEXCEPT
4244{
4245 ev_tstamp mn_prev = mn_now;
4246
4247 ev_now_update (EV_A);
4248 timers_reschedule (EV_A_ mn_now - mn_prev);
4249#if EV_PERIODIC_ENABLE
4250 /* TODO: really do this? */
4251 periodics_reschedule (EV_A);
4252#endif
4253}
4254
2033/*****************************************************************************/ 4255/*****************************************************************************/
4256/* singly-linked list management, used when the expected list length is short */
2034 4257
2035void inline_size 4258inline_size void
2036wlist_add (WL *head, WL elem) 4259wlist_add (WL *head, WL elem)
2037{ 4260{
2038 elem->next = *head; 4261 elem->next = *head;
2039 *head = elem; 4262 *head = elem;
2040} 4263}
2041 4264
2042void inline_size 4265inline_size void
2043wlist_del (WL *head, WL elem) 4266wlist_del (WL *head, WL elem)
2044{ 4267{
2045 while (*head) 4268 while (*head)
2046 { 4269 {
2047 if (*head == elem) 4270 if (ecb_expect_true (*head == elem))
2048 { 4271 {
2049 *head = elem->next; 4272 *head = elem->next;
2050 return; 4273 break;
2051 } 4274 }
2052 4275
2053 head = &(*head)->next; 4276 head = &(*head)->next;
2054 } 4277 }
2055} 4278}
2056 4279
2057void inline_speed 4280/* internal, faster, version of ev_clear_pending */
4281inline_speed void
2058clear_pending (EV_P_ W w) 4282clear_pending (EV_P_ W w)
2059{ 4283{
2060 if (w->pending) 4284 if (w->pending)
2061 { 4285 {
2062 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4286 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2063 w->pending = 0; 4287 w->pending = 0;
2064 } 4288 }
2065} 4289}
2066 4290
2067int 4291int
2068ev_clear_pending (EV_P_ void *w) 4292ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2069{ 4293{
2070 W w_ = (W)w; 4294 W w_ = (W)w;
2071 int pending = w_->pending; 4295 int pending = w_->pending;
2072 4296
2073 if (expect_true (pending)) 4297 if (ecb_expect_true (pending))
2074 { 4298 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4299 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4300 p->w = (W)&pending_w;
2076 w_->pending = 0; 4301 w_->pending = 0;
2077 p->w = 0;
2078 return p->events; 4302 return p->events;
2079 } 4303 }
2080 else 4304 else
2081 return 0; 4305 return 0;
2082} 4306}
2083 4307
2084void inline_size 4308inline_size void
2085pri_adjust (EV_P_ W w) 4309pri_adjust (EV_P_ W w)
2086{ 4310{
2087 int pri = w->priority; 4311 int pri = ev_priority (w);
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4312 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4313 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri; 4314 ev_set_priority (w, pri);
2091} 4315}
2092 4316
2093void inline_speed 4317inline_speed void
2094ev_start (EV_P_ W w, int active) 4318ev_start (EV_P_ W w, int active)
2095{ 4319{
2096 pri_adjust (EV_A_ w); 4320 pri_adjust (EV_A_ w);
2097 w->active = active; 4321 w->active = active;
2098 ev_ref (EV_A); 4322 ev_ref (EV_A);
2099} 4323}
2100 4324
2101void inline_size 4325inline_size void
2102ev_stop (EV_P_ W w) 4326ev_stop (EV_P_ W w)
2103{ 4327{
2104 ev_unref (EV_A); 4328 ev_unref (EV_A);
2105 w->active = 0; 4329 w->active = 0;
2106} 4330}
2107 4331
2108/*****************************************************************************/ 4332/*****************************************************************************/
2109 4333
2110void noinline 4334ecb_noinline
4335void
2111ev_io_start (EV_P_ ev_io *w) 4336ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2112{ 4337{
2113 int fd = w->fd; 4338 int fd = w->fd;
2114 4339
2115 if (expect_false (ev_is_active (w))) 4340 if (ecb_expect_false (ev_is_active (w)))
2116 return; 4341 return;
2117 4342
2118 assert (("ev_io_start called with negative fd", fd >= 0)); 4343 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4344 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2119 4345
4346#if EV_VERIFY >= 2
4347 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4348#endif
2120 EV_FREQUENT_CHECK; 4349 EV_FREQUENT_CHECK;
2121 4350
2122 ev_start (EV_A_ (W)w, 1); 4351 ev_start (EV_A_ (W)w, 1);
2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4352 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2124 wlist_add (&anfds[fd].head, (WL)w); 4353 wlist_add (&anfds[fd].head, (WL)w);
2125 4354
4355 /* common bug, apparently */
4356 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4357
2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4358 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2127 w->events &= ~EV_IOFDSET; 4359 w->events &= ~EV__IOFDSET;
2128 4360
2129 EV_FREQUENT_CHECK; 4361 EV_FREQUENT_CHECK;
2130} 4362}
2131 4363
2132void noinline 4364ecb_noinline
4365void
2133ev_io_stop (EV_P_ ev_io *w) 4366ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2134{ 4367{
2135 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 4369 if (ecb_expect_false (!ev_is_active (w)))
2137 return; 4370 return;
2138 4371
2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4372 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140 4373
4374#if EV_VERIFY >= 2
4375 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4376#endif
2141 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2142 4378
2143 wlist_del (&anfds[w->fd].head, (WL)w); 4379 wlist_del (&anfds[w->fd].head, (WL)w);
2144 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2145 4381
2146 fd_change (EV_A_ w->fd, 1); 4382 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2147 4383
2148 EV_FREQUENT_CHECK; 4384 EV_FREQUENT_CHECK;
2149} 4385}
2150 4386
2151void noinline 4387ecb_noinline
4388void
2152ev_timer_start (EV_P_ ev_timer *w) 4389ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2153{ 4390{
2154 if (expect_false (ev_is_active (w))) 4391 if (ecb_expect_false (ev_is_active (w)))
2155 return; 4392 return;
2156 4393
2157 ev_at (w) += mn_now; 4394 ev_at (w) += mn_now;
2158 4395
2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4396 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2160 4397
2161 EV_FREQUENT_CHECK; 4398 EV_FREQUENT_CHECK;
2162 4399
2163 ++timercnt; 4400 ++timercnt;
2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4401 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4402 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2166 ANHE_w (timers [ev_active (w)]) = (WT)w; 4403 ANHE_w (timers [ev_active (w)]) = (WT)w;
2167 ANHE_at_cache (timers [ev_active (w)]); 4404 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w)); 4405 upheap (timers, ev_active (w));
2169 4406
2170 EV_FREQUENT_CHECK; 4407 EV_FREQUENT_CHECK;
2171 4408
2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4409 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2173} 4410}
2174 4411
2175void noinline 4412ecb_noinline
4413void
2176ev_timer_stop (EV_P_ ev_timer *w) 4414ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2177{ 4415{
2178 clear_pending (EV_A_ (W)w); 4416 clear_pending (EV_A_ (W)w);
2179 if (expect_false (!ev_is_active (w))) 4417 if (ecb_expect_false (!ev_is_active (w)))
2180 return; 4418 return;
2181 4419
2182 EV_FREQUENT_CHECK; 4420 EV_FREQUENT_CHECK;
2183 4421
2184 { 4422 {
2185 int active = ev_active (w); 4423 int active = ev_active (w);
2186 4424
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4425 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188 4426
2189 --timercnt; 4427 --timercnt;
2190 4428
2191 if (expect_true (active < timercnt + HEAP0)) 4429 if (ecb_expect_true (active < timercnt + HEAP0))
2192 { 4430 {
2193 timers [active] = timers [timercnt + HEAP0]; 4431 timers [active] = timers [timercnt + HEAP0];
2194 adjustheap (timers, timercnt, active); 4432 adjustheap (timers, timercnt, active);
2195 } 4433 }
2196 } 4434 }
2197 4435
4436 ev_at (w) -= mn_now;
4437
4438 ev_stop (EV_A_ (W)w);
4439
2198 EV_FREQUENT_CHECK; 4440 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
2201
2202 ev_stop (EV_A_ (W)w);
2203} 4441}
2204 4442
2205void noinline 4443ecb_noinline
4444void
2206ev_timer_again (EV_P_ ev_timer *w) 4445ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2207{ 4446{
2208 EV_FREQUENT_CHECK; 4447 EV_FREQUENT_CHECK;
4448
4449 clear_pending (EV_A_ (W)w);
2209 4450
2210 if (ev_is_active (w)) 4451 if (ev_is_active (w))
2211 { 4452 {
2212 if (w->repeat) 4453 if (w->repeat)
2213 { 4454 {
2225 } 4466 }
2226 4467
2227 EV_FREQUENT_CHECK; 4468 EV_FREQUENT_CHECK;
2228} 4469}
2229 4470
4471ev_tstamp
4472ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4473{
4474 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4475}
4476
2230#if EV_PERIODIC_ENABLE 4477#if EV_PERIODIC_ENABLE
2231void noinline 4478ecb_noinline
4479void
2232ev_periodic_start (EV_P_ ev_periodic *w) 4480ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2233{ 4481{
2234 if (expect_false (ev_is_active (w))) 4482 if (ecb_expect_false (ev_is_active (w)))
2235 return; 4483 return;
4484
4485#if EV_USE_TIMERFD
4486 if (timerfd == -2)
4487 evtimerfd_init (EV_A);
4488#endif
2236 4489
2237 if (w->reschedule_cb) 4490 if (w->reschedule_cb)
2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4491 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2239 else if (w->interval) 4492 else if (w->interval)
2240 { 4493 {
2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4494 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2242 /* this formula differs from the one in periodic_reify because we do not always round up */ 4495 periodic_recalc (EV_A_ w);
2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2244 } 4496 }
2245 else 4497 else
2246 ev_at (w) = w->offset; 4498 ev_at (w) = w->offset;
2247 4499
2248 EV_FREQUENT_CHECK; 4500 EV_FREQUENT_CHECK;
2249 4501
2250 ++periodiccnt; 4502 ++periodiccnt;
2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4503 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4504 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2253 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4505 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2254 ANHE_at_cache (periodics [ev_active (w)]); 4506 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w)); 4507 upheap (periodics, ev_active (w));
2256 4508
2257 EV_FREQUENT_CHECK; 4509 EV_FREQUENT_CHECK;
2258 4510
2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4511 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2260} 4512}
2261 4513
2262void noinline 4514ecb_noinline
4515void
2263ev_periodic_stop (EV_P_ ev_periodic *w) 4516ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2264{ 4517{
2265 clear_pending (EV_A_ (W)w); 4518 clear_pending (EV_A_ (W)w);
2266 if (expect_false (!ev_is_active (w))) 4519 if (ecb_expect_false (!ev_is_active (w)))
2267 return; 4520 return;
2268 4521
2269 EV_FREQUENT_CHECK; 4522 EV_FREQUENT_CHECK;
2270 4523
2271 { 4524 {
2272 int active = ev_active (w); 4525 int active = ev_active (w);
2273 4526
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4527 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275 4528
2276 --periodiccnt; 4529 --periodiccnt;
2277 4530
2278 if (expect_true (active < periodiccnt + HEAP0)) 4531 if (ecb_expect_true (active < periodiccnt + HEAP0))
2279 { 4532 {
2280 periodics [active] = periodics [periodiccnt + HEAP0]; 4533 periodics [active] = periodics [periodiccnt + HEAP0];
2281 adjustheap (periodics, periodiccnt, active); 4534 adjustheap (periodics, periodiccnt, active);
2282 } 4535 }
2283 } 4536 }
2284 4537
4538 ev_stop (EV_A_ (W)w);
4539
2285 EV_FREQUENT_CHECK; 4540 EV_FREQUENT_CHECK;
2286
2287 ev_stop (EV_A_ (W)w);
2288} 4541}
2289 4542
2290void noinline 4543ecb_noinline
4544void
2291ev_periodic_again (EV_P_ ev_periodic *w) 4545ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2292{ 4546{
2293 /* TODO: use adjustheap and recalculation */ 4547 /* TODO: use adjustheap and recalculation */
2294 ev_periodic_stop (EV_A_ w); 4548 ev_periodic_stop (EV_A_ w);
2295 ev_periodic_start (EV_A_ w); 4549 ev_periodic_start (EV_A_ w);
2296} 4550}
2298 4552
2299#ifndef SA_RESTART 4553#ifndef SA_RESTART
2300# define SA_RESTART 0 4554# define SA_RESTART 0
2301#endif 4555#endif
2302 4556
2303void noinline 4557#if EV_SIGNAL_ENABLE
4558
4559ecb_noinline
4560void
2304ev_signal_start (EV_P_ ev_signal *w) 4561ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2305{ 4562{
4563 if (ecb_expect_false (ev_is_active (w)))
4564 return;
4565
4566 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4567
2306#if EV_MULTIPLICITY 4568#if EV_MULTIPLICITY
2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4569 assert (("libev: a signal must not be attached to two different loops",
2308#endif 4570 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2309 if (expect_false (ev_is_active (w)))
2310 return;
2311 4571
2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4572 signals [w->signum - 1].loop = EV_A;
2313 4573 ECB_MEMORY_FENCE_RELEASE;
2314 evpipe_init (EV_A); 4574#endif
2315 4575
2316 EV_FREQUENT_CHECK; 4576 EV_FREQUENT_CHECK;
2317 4577
4578#if EV_USE_SIGNALFD
4579 if (sigfd == -2)
2318 { 4580 {
2319#ifndef _WIN32 4581 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2320 sigset_t full, prev; 4582 if (sigfd < 0 && errno == EINVAL)
2321 sigfillset (&full); 4583 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324 4584
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4585 if (sigfd >= 0)
4586 {
4587 fd_intern (sigfd); /* doing it twice will not hurt */
2326 4588
2327#ifndef _WIN32 4589 sigemptyset (&sigfd_set);
2328 sigprocmask (SIG_SETMASK, &prev, 0); 4590
2329#endif 4591 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4592 ev_set_priority (&sigfd_w, EV_MAXPRI);
4593 ev_io_start (EV_A_ &sigfd_w);
4594 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4595 }
2330 } 4596 }
4597
4598 if (sigfd >= 0)
4599 {
4600 /* TODO: check .head */
4601 sigaddset (&sigfd_set, w->signum);
4602 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4603
4604 signalfd (sigfd, &sigfd_set, 0);
4605 }
4606#endif
2331 4607
2332 ev_start (EV_A_ (W)w, 1); 4608 ev_start (EV_A_ (W)w, 1);
2333 wlist_add (&signals [w->signum - 1].head, (WL)w); 4609 wlist_add (&signals [w->signum - 1].head, (WL)w);
2334 4610
2335 if (!((WL)w)->next) 4611 if (!((WL)w)->next)
4612# if EV_USE_SIGNALFD
4613 if (sigfd < 0) /*TODO*/
4614# endif
2336 { 4615 {
2337#if _WIN32 4616# ifdef _WIN32
4617 evpipe_init (EV_A);
4618
2338 signal (w->signum, ev_sighandler); 4619 signal (w->signum, ev_sighandler);
2339#else 4620# else
2340 struct sigaction sa; 4621 struct sigaction sa;
4622
4623 evpipe_init (EV_A);
4624
2341 sa.sa_handler = ev_sighandler; 4625 sa.sa_handler = ev_sighandler;
2342 sigfillset (&sa.sa_mask); 4626 sigfillset (&sa.sa_mask);
2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4627 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2344 sigaction (w->signum, &sa, 0); 4628 sigaction (w->signum, &sa, 0);
4629
4630 if (origflags & EVFLAG_NOSIGMASK)
4631 {
4632 sigemptyset (&sa.sa_mask);
4633 sigaddset (&sa.sa_mask, w->signum);
4634 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4635 }
2345#endif 4636#endif
2346 } 4637 }
2347 4638
2348 EV_FREQUENT_CHECK; 4639 EV_FREQUENT_CHECK;
2349} 4640}
2350 4641
2351void noinline 4642ecb_noinline
4643void
2352ev_signal_stop (EV_P_ ev_signal *w) 4644ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2353{ 4645{
2354 clear_pending (EV_A_ (W)w); 4646 clear_pending (EV_A_ (W)w);
2355 if (expect_false (!ev_is_active (w))) 4647 if (ecb_expect_false (!ev_is_active (w)))
2356 return; 4648 return;
2357 4649
2358 EV_FREQUENT_CHECK; 4650 EV_FREQUENT_CHECK;
2359 4651
2360 wlist_del (&signals [w->signum - 1].head, (WL)w); 4652 wlist_del (&signals [w->signum - 1].head, (WL)w);
2361 ev_stop (EV_A_ (W)w); 4653 ev_stop (EV_A_ (W)w);
2362 4654
2363 if (!signals [w->signum - 1].head) 4655 if (!signals [w->signum - 1].head)
4656 {
4657#if EV_MULTIPLICITY
4658 signals [w->signum - 1].loop = 0; /* unattach from signal */
4659#endif
4660#if EV_USE_SIGNALFD
4661 if (sigfd >= 0)
4662 {
4663 sigset_t ss;
4664
4665 sigemptyset (&ss);
4666 sigaddset (&ss, w->signum);
4667 sigdelset (&sigfd_set, w->signum);
4668
4669 signalfd (sigfd, &sigfd_set, 0);
4670 sigprocmask (SIG_UNBLOCK, &ss, 0);
4671 }
4672 else
4673#endif
2364 signal (w->signum, SIG_DFL); 4674 signal (w->signum, SIG_DFL);
4675 }
2365 4676
2366 EV_FREQUENT_CHECK; 4677 EV_FREQUENT_CHECK;
2367} 4678}
2368 4679
4680#endif
4681
4682#if EV_CHILD_ENABLE
4683
2369void 4684void
2370ev_child_start (EV_P_ ev_child *w) 4685ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2371{ 4686{
2372#if EV_MULTIPLICITY 4687#if EV_MULTIPLICITY
2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4688 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2374#endif 4689#endif
2375 if (expect_false (ev_is_active (w))) 4690 if (ecb_expect_false (ev_is_active (w)))
2376 return; 4691 return;
2377 4692
2378 EV_FREQUENT_CHECK; 4693 EV_FREQUENT_CHECK;
2379 4694
2380 ev_start (EV_A_ (W)w, 1); 4695 ev_start (EV_A_ (W)w, 1);
2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4696 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2382 4697
2383 EV_FREQUENT_CHECK; 4698 EV_FREQUENT_CHECK;
2384} 4699}
2385 4700
2386void 4701void
2387ev_child_stop (EV_P_ ev_child *w) 4702ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2388{ 4703{
2389 clear_pending (EV_A_ (W)w); 4704 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 4705 if (ecb_expect_false (!ev_is_active (w)))
2391 return; 4706 return;
2392 4707
2393 EV_FREQUENT_CHECK; 4708 EV_FREQUENT_CHECK;
2394 4709
2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4710 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2396 ev_stop (EV_A_ (W)w); 4711 ev_stop (EV_A_ (W)w);
2397 4712
2398 EV_FREQUENT_CHECK; 4713 EV_FREQUENT_CHECK;
2399} 4714}
4715
4716#endif
2400 4717
2401#if EV_STAT_ENABLE 4718#if EV_STAT_ENABLE
2402 4719
2403# ifdef _WIN32 4720# ifdef _WIN32
2404# undef lstat 4721# undef lstat
2405# define lstat(a,b) _stati64 (a,b) 4722# define lstat(a,b) _stati64 (a,b)
2406# endif 4723# endif
2407 4724
2408#define DEF_STAT_INTERVAL 5.0074891 4725#define DEF_STAT_INTERVAL 5.0074891
4726#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2409#define MIN_STAT_INTERVAL 0.1074891 4727#define MIN_STAT_INTERVAL 0.1074891
2410 4728
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4729ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412 4730
2413#if EV_USE_INOTIFY 4731#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192
2415 4732
2416static void noinline 4733/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4734# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4735
4736ecb_noinline
4737static void
2417infy_add (EV_P_ ev_stat *w) 4738infy_add (EV_P_ ev_stat *w)
2418{ 4739{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4740 w->wd = inotify_add_watch (fs_fd, w->path,
4741 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4742 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4743 | IN_DONT_FOLLOW | IN_MASK_ADD);
2420 4744
2421 if (w->wd < 0) 4745 if (w->wd >= 0)
4746 {
4747 struct statfs sfs;
4748
4749 /* now local changes will be tracked by inotify, but remote changes won't */
4750 /* unless the filesystem is known to be local, we therefore still poll */
4751 /* also do poll on <2.6.25, but with normal frequency */
4752
4753 if (!fs_2625)
4754 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4755 else if (!statfs (w->path, &sfs)
4756 && (sfs.f_type == 0x1373 /* devfs */
4757 || sfs.f_type == 0x4006 /* fat */
4758 || sfs.f_type == 0x4d44 /* msdos */
4759 || sfs.f_type == 0xEF53 /* ext2/3 */
4760 || sfs.f_type == 0x72b6 /* jffs2 */
4761 || sfs.f_type == 0x858458f6 /* ramfs */
4762 || sfs.f_type == 0x5346544e /* ntfs */
4763 || sfs.f_type == 0x3153464a /* jfs */
4764 || sfs.f_type == 0x9123683e /* btrfs */
4765 || sfs.f_type == 0x52654973 /* reiser3 */
4766 || sfs.f_type == 0x01021994 /* tmpfs */
4767 || sfs.f_type == 0x58465342 /* xfs */))
4768 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4769 else
4770 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2422 { 4771 }
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4772 else
4773 {
4774 /* can't use inotify, continue to stat */
4775 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2424 4776
2425 /* monitor some parent directory for speedup hints */ 4777 /* if path is not there, monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4778 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2427 /* but an efficiency issue only */ 4779 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4780 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 { 4781 {
2430 char path [4096]; 4782 char path [4096];
2431 strcpy (path, w->path); 4783 strcpy (path, w->path);
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4787 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4788 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437 4789
2438 char *pend = strrchr (path, '/'); 4790 char *pend = strrchr (path, '/');
2439 4791
2440 if (!pend) 4792 if (!pend || pend == path)
2441 break; /* whoops, no '/', complain to your admin */ 4793 break;
2442 4794
2443 *pend = 0; 4795 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask); 4796 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 } 4797 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4798 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 } 4799 }
2448 } 4800 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451 4801
2452 if (w->wd >= 0) 4802 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4803 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2454}
2455 4804
2456static void noinline 4805 /* now re-arm timer, if required */
4806 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4807 ev_timer_again (EV_A_ &w->timer);
4808 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4809}
4810
4811ecb_noinline
4812static void
2457infy_del (EV_P_ ev_stat *w) 4813infy_del (EV_P_ ev_stat *w)
2458{ 4814{
2459 int slot; 4815 int slot;
2460 int wd = w->wd; 4816 int wd = w->wd;
2461 4817
2462 if (wd < 0) 4818 if (wd < 0)
2463 return; 4819 return;
2464 4820
2465 w->wd = -2; 4821 w->wd = -2;
2466 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4822 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2467 wlist_del (&fs_hash [slot].head, (WL)w); 4823 wlist_del (&fs_hash [slot].head, (WL)w);
2468 4824
2469 /* remove this watcher, if others are watching it, they will rearm */ 4825 /* remove this watcher, if others are watching it, they will rearm */
2470 inotify_rm_watch (fs_fd, wd); 4826 inotify_rm_watch (fs_fd, wd);
2471} 4827}
2472 4828
2473static void noinline 4829ecb_noinline
4830static void
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{ 4832{
2476 if (slot < 0) 4833 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */ 4834 /* overflow, need to check for all hash slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4835 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2479 infy_wd (EV_A_ slot, wd, ev); 4836 infy_wd (EV_A_ slot, wd, ev);
2480 else 4837 else
2481 { 4838 {
2482 WL w_; 4839 WL w_;
2483 4840
2484 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4841 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2485 { 4842 {
2486 ev_stat *w = (ev_stat *)w_; 4843 ev_stat *w = (ev_stat *)w_;
2487 w_ = w_->next; /* lets us remove this watcher and all before it */ 4844 w_ = w_->next; /* lets us remove this watcher and all before it */
2488 4845
2489 if (w->wd == wd || wd == -1) 4846 if (w->wd == wd || wd == -1)
2490 { 4847 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 { 4849 {
4850 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2493 w->wd = -1; 4851 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */ 4852 infy_add (EV_A_ w); /* re-add, no matter what */
2495 } 4853 }
2496 4854
2497 stat_timer_cb (EV_A_ &w->timer, 0); 4855 stat_timer_cb (EV_A_ &w->timer, 0);
2502 4860
2503static void 4861static void
2504infy_cb (EV_P_ ev_io *w, int revents) 4862infy_cb (EV_P_ ev_io *w, int revents)
2505{ 4863{
2506 char buf [EV_INOTIFY_BUFSIZE]; 4864 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs; 4865 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf)); 4866 int len = read (fs_fd, buf, sizeof (buf));
2510 4867
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4868 for (ofs = 0; ofs < len; )
4869 {
4870 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4871 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4872 ofs += sizeof (struct inotify_event) + ev->len;
4873 }
2513} 4874}
2514 4875
2515void inline_size 4876inline_size ecb_cold
4877void
4878ev_check_2625 (EV_P)
4879{
4880 /* kernels < 2.6.25 are borked
4881 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4882 */
4883 if (ev_linux_version () < 0x020619)
4884 return;
4885
4886 fs_2625 = 1;
4887}
4888
4889inline_size int
4890infy_newfd (void)
4891{
4892#if defined IN_CLOEXEC && defined IN_NONBLOCK
4893 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4894 if (fd >= 0)
4895 return fd;
4896#endif
4897 return inotify_init ();
4898}
4899
4900inline_size void
2516infy_init (EV_P) 4901infy_init (EV_P)
2517{ 4902{
2518 if (fs_fd != -2) 4903 if (fs_fd != -2)
2519 return; 4904 return;
2520 4905
4906 fs_fd = -1;
4907
4908 ev_check_2625 (EV_A);
4909
2521 fs_fd = inotify_init (); 4910 fs_fd = infy_newfd ();
2522 4911
2523 if (fs_fd >= 0) 4912 if (fs_fd >= 0)
2524 { 4913 {
4914 fd_intern (fs_fd);
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4915 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI); 4916 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w); 4917 ev_io_start (EV_A_ &fs_w);
4918 ev_unref (EV_A);
2528 } 4919 }
2529} 4920}
2530 4921
2531void inline_size 4922inline_size void
2532infy_fork (EV_P) 4923infy_fork (EV_P)
2533{ 4924{
2534 int slot; 4925 int slot;
2535 4926
2536 if (fs_fd < 0) 4927 if (fs_fd < 0)
2537 return; 4928 return;
2538 4929
4930 ev_ref (EV_A);
4931 ev_io_stop (EV_A_ &fs_w);
2539 close (fs_fd); 4932 close (fs_fd);
2540 fs_fd = inotify_init (); 4933 fs_fd = infy_newfd ();
2541 4934
4935 if (fs_fd >= 0)
4936 {
4937 fd_intern (fs_fd);
4938 ev_io_set (&fs_w, fs_fd, EV_READ);
4939 ev_io_start (EV_A_ &fs_w);
4940 ev_unref (EV_A);
4941 }
4942
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4943 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2543 { 4944 {
2544 WL w_ = fs_hash [slot].head; 4945 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0; 4946 fs_hash [slot].head = 0;
2546 4947
2547 while (w_) 4948 while (w_)
2552 w->wd = -1; 4953 w->wd = -1;
2553 4954
2554 if (fs_fd >= 0) 4955 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 4956 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else 4957 else
4958 {
4959 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4960 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2557 ev_timer_start (EV_A_ &w->timer); 4961 ev_timer_again (EV_A_ &w->timer);
4962 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4963 }
2558 } 4964 }
2559
2560 } 4965 }
2561} 4966}
2562 4967
4968#endif
4969
4970#ifdef _WIN32
4971# define EV_LSTAT(p,b) _stati64 (p, b)
4972#else
4973# define EV_LSTAT(p,b) lstat (p, b)
2563#endif 4974#endif
2564 4975
2565void 4976void
2566ev_stat_stat (EV_P_ ev_stat *w) 4977ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2567{ 4978{
2568 if (lstat (w->path, &w->attr) < 0) 4979 if (lstat (w->path, &w->attr) < 0)
2569 w->attr.st_nlink = 0; 4980 w->attr.st_nlink = 0;
2570 else if (!w->attr.st_nlink) 4981 else if (!w->attr.st_nlink)
2571 w->attr.st_nlink = 1; 4982 w->attr.st_nlink = 1;
2572} 4983}
2573 4984
2574static void noinline 4985ecb_noinline
4986static void
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4987stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{ 4988{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4989 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578 4990
2579 /* we copy this here each the time so that */ 4991 ev_statdata prev = w->attr;
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w); 4992 ev_stat_stat (EV_A_ w);
2583 4993
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4994 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if ( 4995 if (
2586 w->prev.st_dev != w->attr.st_dev 4996 prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino 4997 || prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode 4998 || prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink 4999 || prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid 5000 || prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid 5001 || prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev 5002 || prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size 5003 || prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime 5004 || prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime 5005 || prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime 5006 || prev.st_ctime != w->attr.st_ctime
2597 ) { 5007 ) {
5008 /* we only update w->prev on actual differences */
5009 /* in case we test more often than invoke the callback, */
5010 /* to ensure that prev is always different to attr */
5011 w->prev = prev;
5012
2598 #if EV_USE_INOTIFY 5013 #if EV_USE_INOTIFY
5014 if (fs_fd >= 0)
5015 {
2599 infy_del (EV_A_ w); 5016 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w); 5017 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */ 5018 ev_stat_stat (EV_A_ w); /* avoid race... */
5019 }
2602 #endif 5020 #endif
2603 5021
2604 ev_feed_event (EV_A_ w, EV_STAT); 5022 ev_feed_event (EV_A_ w, EV_STAT);
2605 } 5023 }
2606} 5024}
2607 5025
2608void 5026void
2609ev_stat_start (EV_P_ ev_stat *w) 5027ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2610{ 5028{
2611 if (expect_false (ev_is_active (w))) 5029 if (ecb_expect_false (ev_is_active (w)))
2612 return; 5030 return;
2613 5031
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w); 5032 ev_stat_stat (EV_A_ w);
2619 5033
5034 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2620 if (w->interval < MIN_STAT_INTERVAL) 5035 w->interval = MIN_STAT_INTERVAL;
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622 5036
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5037 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2624 ev_set_priority (&w->timer, ev_priority (w)); 5038 ev_set_priority (&w->timer, ev_priority (w));
2625 5039
2626#if EV_USE_INOTIFY 5040#if EV_USE_INOTIFY
2627 infy_init (EV_A); 5041 infy_init (EV_A);
2628 5042
2629 if (fs_fd >= 0) 5043 if (fs_fd >= 0)
2630 infy_add (EV_A_ w); 5044 infy_add (EV_A_ w);
2631 else 5045 else
2632#endif 5046#endif
5047 {
2633 ev_timer_start (EV_A_ &w->timer); 5048 ev_timer_again (EV_A_ &w->timer);
5049 ev_unref (EV_A);
5050 }
2634 5051
2635 ev_start (EV_A_ (W)w, 1); 5052 ev_start (EV_A_ (W)w, 1);
2636 5053
2637 EV_FREQUENT_CHECK; 5054 EV_FREQUENT_CHECK;
2638} 5055}
2639 5056
2640void 5057void
2641ev_stat_stop (EV_P_ ev_stat *w) 5058ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2642{ 5059{
2643 clear_pending (EV_A_ (W)w); 5060 clear_pending (EV_A_ (W)w);
2644 if (expect_false (!ev_is_active (w))) 5061 if (ecb_expect_false (!ev_is_active (w)))
2645 return; 5062 return;
2646 5063
2647 EV_FREQUENT_CHECK; 5064 EV_FREQUENT_CHECK;
2648 5065
2649#if EV_USE_INOTIFY 5066#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w); 5067 infy_del (EV_A_ w);
2651#endif 5068#endif
5069
5070 if (ev_is_active (&w->timer))
5071 {
5072 ev_ref (EV_A);
2652 ev_timer_stop (EV_A_ &w->timer); 5073 ev_timer_stop (EV_A_ &w->timer);
5074 }
2653 5075
2654 ev_stop (EV_A_ (W)w); 5076 ev_stop (EV_A_ (W)w);
2655 5077
2656 EV_FREQUENT_CHECK; 5078 EV_FREQUENT_CHECK;
2657} 5079}
2658#endif 5080#endif
2659 5081
2660#if EV_IDLE_ENABLE 5082#if EV_IDLE_ENABLE
2661void 5083void
2662ev_idle_start (EV_P_ ev_idle *w) 5084ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2663{ 5085{
2664 if (expect_false (ev_is_active (w))) 5086 if (ecb_expect_false (ev_is_active (w)))
2665 return; 5087 return;
2666 5088
2667 pri_adjust (EV_A_ (W)w); 5089 pri_adjust (EV_A_ (W)w);
2668 5090
2669 EV_FREQUENT_CHECK; 5091 EV_FREQUENT_CHECK;
2672 int active = ++idlecnt [ABSPRI (w)]; 5094 int active = ++idlecnt [ABSPRI (w)];
2673 5095
2674 ++idleall; 5096 ++idleall;
2675 ev_start (EV_A_ (W)w, active); 5097 ev_start (EV_A_ (W)w, active);
2676 5098
2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2678 idles [ABSPRI (w)][active - 1] = w; 5100 idles [ABSPRI (w)][active - 1] = w;
2679 } 5101 }
2680 5102
2681 EV_FREQUENT_CHECK; 5103 EV_FREQUENT_CHECK;
2682} 5104}
2683 5105
2684void 5106void
2685ev_idle_stop (EV_P_ ev_idle *w) 5107ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2686{ 5108{
2687 clear_pending (EV_A_ (W)w); 5109 clear_pending (EV_A_ (W)w);
2688 if (expect_false (!ev_is_active (w))) 5110 if (ecb_expect_false (!ev_is_active (w)))
2689 return; 5111 return;
2690 5112
2691 EV_FREQUENT_CHECK; 5113 EV_FREQUENT_CHECK;
2692 5114
2693 { 5115 {
2702 5124
2703 EV_FREQUENT_CHECK; 5125 EV_FREQUENT_CHECK;
2704} 5126}
2705#endif 5127#endif
2706 5128
5129#if EV_PREPARE_ENABLE
2707void 5130void
2708ev_prepare_start (EV_P_ ev_prepare *w) 5131ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2709{ 5132{
2710 if (expect_false (ev_is_active (w))) 5133 if (ecb_expect_false (ev_is_active (w)))
2711 return; 5134 return;
2712 5135
2713 EV_FREQUENT_CHECK; 5136 EV_FREQUENT_CHECK;
2714 5137
2715 ev_start (EV_A_ (W)w, ++preparecnt); 5138 ev_start (EV_A_ (W)w, ++preparecnt);
2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5139 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2717 prepares [preparecnt - 1] = w; 5140 prepares [preparecnt - 1] = w;
2718 5141
2719 EV_FREQUENT_CHECK; 5142 EV_FREQUENT_CHECK;
2720} 5143}
2721 5144
2722void 5145void
2723ev_prepare_stop (EV_P_ ev_prepare *w) 5146ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2724{ 5147{
2725 clear_pending (EV_A_ (W)w); 5148 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w))) 5149 if (ecb_expect_false (!ev_is_active (w)))
2727 return; 5150 return;
2728 5151
2729 EV_FREQUENT_CHECK; 5152 EV_FREQUENT_CHECK;
2730 5153
2731 { 5154 {
2737 5160
2738 ev_stop (EV_A_ (W)w); 5161 ev_stop (EV_A_ (W)w);
2739 5162
2740 EV_FREQUENT_CHECK; 5163 EV_FREQUENT_CHECK;
2741} 5164}
5165#endif
2742 5166
5167#if EV_CHECK_ENABLE
2743void 5168void
2744ev_check_start (EV_P_ ev_check *w) 5169ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2745{ 5170{
2746 if (expect_false (ev_is_active (w))) 5171 if (ecb_expect_false (ev_is_active (w)))
2747 return; 5172 return;
2748 5173
2749 EV_FREQUENT_CHECK; 5174 EV_FREQUENT_CHECK;
2750 5175
2751 ev_start (EV_A_ (W)w, ++checkcnt); 5176 ev_start (EV_A_ (W)w, ++checkcnt);
2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5177 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2753 checks [checkcnt - 1] = w; 5178 checks [checkcnt - 1] = w;
2754 5179
2755 EV_FREQUENT_CHECK; 5180 EV_FREQUENT_CHECK;
2756} 5181}
2757 5182
2758void 5183void
2759ev_check_stop (EV_P_ ev_check *w) 5184ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2760{ 5185{
2761 clear_pending (EV_A_ (W)w); 5186 clear_pending (EV_A_ (W)w);
2762 if (expect_false (!ev_is_active (w))) 5187 if (ecb_expect_false (!ev_is_active (w)))
2763 return; 5188 return;
2764 5189
2765 EV_FREQUENT_CHECK; 5190 EV_FREQUENT_CHECK;
2766 5191
2767 { 5192 {
2773 5198
2774 ev_stop (EV_A_ (W)w); 5199 ev_stop (EV_A_ (W)w);
2775 5200
2776 EV_FREQUENT_CHECK; 5201 EV_FREQUENT_CHECK;
2777} 5202}
5203#endif
2778 5204
2779#if EV_EMBED_ENABLE 5205#if EV_EMBED_ENABLE
2780void noinline 5206ecb_noinline
5207void
2781ev_embed_sweep (EV_P_ ev_embed *w) 5208ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2782{ 5209{
2783 ev_loop (w->other, EVLOOP_NONBLOCK); 5210 ev_run (w->other, EVRUN_NOWAIT);
2784} 5211}
2785 5212
2786static void 5213static void
2787embed_io_cb (EV_P_ ev_io *io, int revents) 5214embed_io_cb (EV_P_ ev_io *io, int revents)
2788{ 5215{
2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5216 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2790 5217
2791 if (ev_cb (w)) 5218 if (ev_cb (w))
2792 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5219 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2793 else 5220 else
2794 ev_loop (w->other, EVLOOP_NONBLOCK); 5221 ev_run (w->other, EVRUN_NOWAIT);
2795} 5222}
2796 5223
2797static void 5224static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5225embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{ 5226{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5227 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801 5228
2802 { 5229 {
2803 struct ev_loop *loop = w->other; 5230 EV_P = w->other;
2804 5231
2805 while (fdchangecnt) 5232 while (fdchangecnt)
2806 { 5233 {
2807 fd_reify (EV_A); 5234 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5235 ev_run (EV_A_ EVRUN_NOWAIT);
2809 } 5236 }
2810 } 5237 }
2811} 5238}
5239
5240#if EV_FORK_ENABLE
5241static void
5242embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5243{
5244 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5245
5246 ev_embed_stop (EV_A_ w);
5247
5248 {
5249 EV_P = w->other;
5250
5251 ev_loop_fork (EV_A);
5252 ev_run (EV_A_ EVRUN_NOWAIT);
5253 }
5254
5255 ev_embed_start (EV_A_ w);
5256}
5257#endif
2812 5258
2813#if 0 5259#if 0
2814static void 5260static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5261embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{ 5262{
2817 ev_idle_stop (EV_A_ idle); 5263 ev_idle_stop (EV_A_ idle);
2818} 5264}
2819#endif 5265#endif
2820 5266
2821void 5267void
2822ev_embed_start (EV_P_ ev_embed *w) 5268ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2823{ 5269{
2824 if (expect_false (ev_is_active (w))) 5270 if (ecb_expect_false (ev_is_active (w)))
2825 return; 5271 return;
2826 5272
2827 { 5273 {
2828 struct ev_loop *loop = w->other; 5274 EV_P = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5275 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5276 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 } 5277 }
2832 5278
2833 EV_FREQUENT_CHECK; 5279 EV_FREQUENT_CHECK;
2834 5280
2837 5283
2838 ev_prepare_init (&w->prepare, embed_prepare_cb); 5284 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI); 5285 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare); 5286 ev_prepare_start (EV_A_ &w->prepare);
2841 5287
5288#if EV_FORK_ENABLE
5289 ev_fork_init (&w->fork, embed_fork_cb);
5290 ev_fork_start (EV_A_ &w->fork);
5291#endif
5292
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843 5294
2844 ev_start (EV_A_ (W)w, 1); 5295 ev_start (EV_A_ (W)w, 1);
2845 5296
2846 EV_FREQUENT_CHECK; 5297 EV_FREQUENT_CHECK;
2847} 5298}
2848 5299
2849void 5300void
2850ev_embed_stop (EV_P_ ev_embed *w) 5301ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2851{ 5302{
2852 clear_pending (EV_A_ (W)w); 5303 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w))) 5304 if (ecb_expect_false (!ev_is_active (w)))
2854 return; 5305 return;
2855 5306
2856 EV_FREQUENT_CHECK; 5307 EV_FREQUENT_CHECK;
2857 5308
2858 ev_io_stop (EV_A_ &w->io); 5309 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare); 5310 ev_prepare_stop (EV_A_ &w->prepare);
5311#if EV_FORK_ENABLE
5312 ev_fork_stop (EV_A_ &w->fork);
5313#endif
2860 5314
2861 ev_stop (EV_A_ (W)w); 5315 ev_stop (EV_A_ (W)w);
2862 5316
2863 EV_FREQUENT_CHECK; 5317 EV_FREQUENT_CHECK;
2864} 5318}
2865#endif 5319#endif
2866 5320
2867#if EV_FORK_ENABLE 5321#if EV_FORK_ENABLE
2868void 5322void
2869ev_fork_start (EV_P_ ev_fork *w) 5323ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2870{ 5324{
2871 if (expect_false (ev_is_active (w))) 5325 if (ecb_expect_false (ev_is_active (w)))
2872 return; 5326 return;
2873 5327
2874 EV_FREQUENT_CHECK; 5328 EV_FREQUENT_CHECK;
2875 5329
2876 ev_start (EV_A_ (W)w, ++forkcnt); 5330 ev_start (EV_A_ (W)w, ++forkcnt);
2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5331 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2878 forks [forkcnt - 1] = w; 5332 forks [forkcnt - 1] = w;
2879 5333
2880 EV_FREQUENT_CHECK; 5334 EV_FREQUENT_CHECK;
2881} 5335}
2882 5336
2883void 5337void
2884ev_fork_stop (EV_P_ ev_fork *w) 5338ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2885{ 5339{
2886 clear_pending (EV_A_ (W)w); 5340 clear_pending (EV_A_ (W)w);
2887 if (expect_false (!ev_is_active (w))) 5341 if (ecb_expect_false (!ev_is_active (w)))
2888 return; 5342 return;
2889 5343
2890 EV_FREQUENT_CHECK; 5344 EV_FREQUENT_CHECK;
2891 5345
2892 { 5346 {
2900 5354
2901 EV_FREQUENT_CHECK; 5355 EV_FREQUENT_CHECK;
2902} 5356}
2903#endif 5357#endif
2904 5358
5359#if EV_CLEANUP_ENABLE
5360void
5361ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5362{
5363 if (ecb_expect_false (ev_is_active (w)))
5364 return;
5365
5366 EV_FREQUENT_CHECK;
5367
5368 ev_start (EV_A_ (W)w, ++cleanupcnt);
5369 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5370 cleanups [cleanupcnt - 1] = w;
5371
5372 /* cleanup watchers should never keep a refcount on the loop */
5373 ev_unref (EV_A);
5374 EV_FREQUENT_CHECK;
5375}
5376
5377void
5378ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5379{
5380 clear_pending (EV_A_ (W)w);
5381 if (ecb_expect_false (!ev_is_active (w)))
5382 return;
5383
5384 EV_FREQUENT_CHECK;
5385 ev_ref (EV_A);
5386
5387 {
5388 int active = ev_active (w);
5389
5390 cleanups [active - 1] = cleanups [--cleanupcnt];
5391 ev_active (cleanups [active - 1]) = active;
5392 }
5393
5394 ev_stop (EV_A_ (W)w);
5395
5396 EV_FREQUENT_CHECK;
5397}
5398#endif
5399
2905#if EV_ASYNC_ENABLE 5400#if EV_ASYNC_ENABLE
2906void 5401void
2907ev_async_start (EV_P_ ev_async *w) 5402ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2908{ 5403{
2909 if (expect_false (ev_is_active (w))) 5404 if (ecb_expect_false (ev_is_active (w)))
2910 return; 5405 return;
2911 5406
5407 w->sent = 0;
5408
2912 evpipe_init (EV_A); 5409 evpipe_init (EV_A);
2913 5410
2914 EV_FREQUENT_CHECK; 5411 EV_FREQUENT_CHECK;
2915 5412
2916 ev_start (EV_A_ (W)w, ++asynccnt); 5413 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5414 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2918 asyncs [asynccnt - 1] = w; 5415 asyncs [asynccnt - 1] = w;
2919 5416
2920 EV_FREQUENT_CHECK; 5417 EV_FREQUENT_CHECK;
2921} 5418}
2922 5419
2923void 5420void
2924ev_async_stop (EV_P_ ev_async *w) 5421ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2925{ 5422{
2926 clear_pending (EV_A_ (W)w); 5423 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w))) 5424 if (ecb_expect_false (!ev_is_active (w)))
2928 return; 5425 return;
2929 5426
2930 EV_FREQUENT_CHECK; 5427 EV_FREQUENT_CHECK;
2931 5428
2932 { 5429 {
2940 5437
2941 EV_FREQUENT_CHECK; 5438 EV_FREQUENT_CHECK;
2942} 5439}
2943 5440
2944void 5441void
2945ev_async_send (EV_P_ ev_async *w) 5442ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2946{ 5443{
2947 w->sent = 1; 5444 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync); 5445 evpipe_write (EV_A_ &async_pending);
2949} 5446}
2950#endif 5447#endif
2951 5448
2952/*****************************************************************************/ 5449/*****************************************************************************/
2953 5450
2963once_cb (EV_P_ struct ev_once *once, int revents) 5460once_cb (EV_P_ struct ev_once *once, int revents)
2964{ 5461{
2965 void (*cb)(int revents, void *arg) = once->cb; 5462 void (*cb)(int revents, void *arg) = once->cb;
2966 void *arg = once->arg; 5463 void *arg = once->arg;
2967 5464
2968 ev_io_stop (EV_A_ &once->io); 5465 ev_io_stop (EV_A_ &once->io);
2969 ev_timer_stop (EV_A_ &once->to); 5466 ev_timer_stop (EV_A_ &once->to);
2970 ev_free (once); 5467 ev_free (once);
2971 5468
2972 cb (revents, arg); 5469 cb (revents, arg);
2973} 5470}
2974 5471
2975static void 5472static void
2976once_cb_io (EV_P_ ev_io *w, int revents) 5473once_cb_io (EV_P_ ev_io *w, int revents)
2977{ 5474{
2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5476
5477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2979} 5478}
2980 5479
2981static void 5480static void
2982once_cb_to (EV_P_ ev_timer *w, int revents) 5481once_cb_to (EV_P_ ev_timer *w, int revents)
2983{ 5482{
2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5483 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5484
5485 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2985} 5486}
2986 5487
2987void 5488void
2988ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5489ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2989{ 5490{
2990 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5491 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2991
2992 if (expect_false (!once))
2993 {
2994 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2995 return;
2996 }
2997 5492
2998 once->cb = cb; 5493 once->cb = cb;
2999 once->arg = arg; 5494 once->arg = arg;
3000 5495
3001 ev_init (&once->io, once_cb_io); 5496 ev_init (&once->io, once_cb_io);
3011 ev_timer_set (&once->to, timeout, 0.); 5506 ev_timer_set (&once->to, timeout, 0.);
3012 ev_timer_start (EV_A_ &once->to); 5507 ev_timer_start (EV_A_ &once->to);
3013 } 5508 }
3014} 5509}
3015 5510
5511/*****************************************************************************/
5512
5513#if EV_WALK_ENABLE
5514ecb_cold
5515void
5516ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5517{
5518 int i, j;
5519 ev_watcher_list *wl, *wn;
5520
5521 if (types & (EV_IO | EV_EMBED))
5522 for (i = 0; i < anfdmax; ++i)
5523 for (wl = anfds [i].head; wl; )
5524 {
5525 wn = wl->next;
5526
5527#if EV_EMBED_ENABLE
5528 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5529 {
5530 if (types & EV_EMBED)
5531 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5532 }
5533 else
5534#endif
5535#if EV_USE_INOTIFY
5536 if (ev_cb ((ev_io *)wl) == infy_cb)
5537 ;
5538 else
5539#endif
5540 if ((ev_io *)wl != &pipe_w)
5541 if (types & EV_IO)
5542 cb (EV_A_ EV_IO, wl);
5543
5544 wl = wn;
5545 }
5546
5547 if (types & (EV_TIMER | EV_STAT))
5548 for (i = timercnt + HEAP0; i-- > HEAP0; )
5549#if EV_STAT_ENABLE
5550 /*TODO: timer is not always active*/
5551 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5552 {
5553 if (types & EV_STAT)
5554 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5555 }
5556 else
5557#endif
5558 if (types & EV_TIMER)
5559 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5560
5561#if EV_PERIODIC_ENABLE
5562 if (types & EV_PERIODIC)
5563 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5564 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5565#endif
5566
5567#if EV_IDLE_ENABLE
5568 if (types & EV_IDLE)
5569 for (j = NUMPRI; j--; )
5570 for (i = idlecnt [j]; i--; )
5571 cb (EV_A_ EV_IDLE, idles [j][i]);
5572#endif
5573
5574#if EV_FORK_ENABLE
5575 if (types & EV_FORK)
5576 for (i = forkcnt; i--; )
5577 if (ev_cb (forks [i]) != embed_fork_cb)
5578 cb (EV_A_ EV_FORK, forks [i]);
5579#endif
5580
5581#if EV_ASYNC_ENABLE
5582 if (types & EV_ASYNC)
5583 for (i = asynccnt; i--; )
5584 cb (EV_A_ EV_ASYNC, asyncs [i]);
5585#endif
5586
5587#if EV_PREPARE_ENABLE
5588 if (types & EV_PREPARE)
5589 for (i = preparecnt; i--; )
5590# if EV_EMBED_ENABLE
5591 if (ev_cb (prepares [i]) != embed_prepare_cb)
5592# endif
5593 cb (EV_A_ EV_PREPARE, prepares [i]);
5594#endif
5595
5596#if EV_CHECK_ENABLE
5597 if (types & EV_CHECK)
5598 for (i = checkcnt; i--; )
5599 cb (EV_A_ EV_CHECK, checks [i]);
5600#endif
5601
5602#if EV_SIGNAL_ENABLE
5603 if (types & EV_SIGNAL)
5604 for (i = 0; i < EV_NSIG - 1; ++i)
5605 for (wl = signals [i].head; wl; )
5606 {
5607 wn = wl->next;
5608 cb (EV_A_ EV_SIGNAL, wl);
5609 wl = wn;
5610 }
5611#endif
5612
5613#if EV_CHILD_ENABLE
5614 if (types & EV_CHILD)
5615 for (i = (EV_PID_HASHSIZE); i--; )
5616 for (wl = childs [i]; wl; )
5617 {
5618 wn = wl->next;
5619 cb (EV_A_ EV_CHILD, wl);
5620 wl = wn;
5621 }
5622#endif
5623/* EV_STAT 0x00001000 /* stat data changed */
5624/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5625}
5626#endif
5627
3016#if EV_MULTIPLICITY 5628#if EV_MULTIPLICITY
3017 #include "ev_wrap.h" 5629 #include "ev_wrap.h"
3018#endif 5630#endif
3019 5631
3020#ifdef __cplusplus
3021}
3022#endif
3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines