ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.203 by root, Fri Jan 18 11:31:02 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 259
217#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
220#endif 263#endif
241 284
242#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 286# include <winsock.h>
244#endif 287#endif
245 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
246/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
247 308
248/* 309/*
249 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
265#else 326#else
266# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
267# define noinline 328# define noinline
268# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 330# define inline
270# endif 331# endif
271#endif 332#endif
272 333
273#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
288 349
289typedef ev_watcher *W; 350typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
292 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
293#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 361#endif
298 362
299#ifdef _WIN32 363#ifdef _WIN32
300# include "ev_win32.c" 364# include "ev_win32.c"
301#endif 365#endif
323 perror (msg); 387 perror (msg);
324 abort (); 388 abort ();
325 } 389 }
326} 390}
327 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
328static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 408
330void 409void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 411{
333 alloc = cb; 412 alloc = cb;
334} 413}
335 414
336inline_speed void * 415inline_speed void *
337ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
338{ 417{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
340 419
341 if (!ptr && size) 420 if (!ptr && size)
342 { 421 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 423 abort ();
367 W w; 446 W w;
368 int events; 447 int events;
369} ANPENDING; 448} ANPENDING;
370 449
371#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
372typedef struct 452typedef struct
373{ 453{
374 WL head; 454 WL head;
375} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
376#endif 474#endif
377 475
378#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
379 477
380 struct ev_loop 478 struct ev_loop
451 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 551
454 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
455#elif defined(_WIN32) 553#elif defined(_WIN32)
456 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
457#else 555#else
458 struct timeval tv; 556 struct timeval tv;
459 557
460 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 562#endif
465 } 563 }
466} 564}
467 565
468/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 569
470int inline_size 570int inline_size
471array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
472{ 572{
473 int ncur = cur + 1; 573 int ncur = cur + 1;
474 574
475 do 575 do
476 ncur <<= 1; 576 ncur <<= 1;
477 while (cnt > ncur); 577 while (cnt > ncur);
478 578
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 581 {
482 ncur *= elem; 582 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 585 ncur /= elem;
486 } 586 }
487 587
488 return ncur; 588 return ncur;
702 } 802 }
703} 803}
704 804
705/*****************************************************************************/ 805/*****************************************************************************/
706 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
707void inline_speed 827void inline_speed
708upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
709{ 829{
710 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
711 832
712 while (k) 833 for (;;)
713 { 834 {
714 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
715 838
716 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
717 break; 855 break;
718 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
719 heap [k] = heap [p]; 919 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 921 k = p;
722 } 922 }
723 923
724 heap [k] = w; 924 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754} 926}
755 927
756void inline_size 928void inline_size
757adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
758{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 932 upheap (heap, k);
933 else
760 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
761} 947}
762 948
763/*****************************************************************************/ 949/*****************************************************************************/
764 950
765typedef struct 951typedef struct
766{ 952{
767 WL head; 953 WL head;
768 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
769} ANSIG; 955} ANSIG;
770 956
771static ANSIG *signals; 957static ANSIG *signals;
772static int signalmax; 958static int signalmax;
773 959
774static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 961
778void inline_size 962void inline_size
779signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
780{ 964{
781 while (count--) 965 while (count--)
785 969
786 ++base; 970 ++base;
787 } 971 }
788} 972}
789 973
790static void 974/*****************************************************************************/
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840 975
841void inline_speed 976void inline_speed
842fd_intern (int fd) 977fd_intern (int fd)
843{ 978{
844#ifdef _WIN32 979#ifdef _WIN32
849 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 985#endif
851} 986}
852 987
853static void noinline 988static void noinline
854siginit (EV_P) 989evpipe_init (EV_P)
855{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
856 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
858 1010
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
862} 1079}
863 1080
864/*****************************************************************************/ 1081/*****************************************************************************/
865 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
866static WL childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
867 1121
868#ifndef _WIN32 1122#ifndef _WIN32
869 1123
870static ev_signal childev; 1124static ev_signal childev;
871 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
872void inline_speed 1130void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
874{ 1132{
875 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1135
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
878 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
879 { 1140 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1142 w->rpid = pid;
882 w->rstatus = status; 1143 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1145 }
1146 }
885} 1147}
886 1148
887#ifndef WCONTINUED 1149#ifndef WCONTINUED
888# define WCONTINUED 0 1150# define WCONTINUED 0
889#endif 1151#endif
898 if (!WCONTINUED 1160 if (!WCONTINUED
899 || errno != EINVAL 1161 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1163 return;
902 1164
903 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1168
907 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1172}
911 1173
912#endif 1174#endif
913 1175
914/*****************************************************************************/ 1176/*****************************************************************************/
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1295 have_monotonic = 1;
1034 } 1296 }
1035#endif 1297#endif
1036 1298
1037 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1300 mn_now = get_clock ();
1039 now_floor = mn_now; 1301 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1041 1303
1042 io_blocktime = 0.; 1304 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1044 1312
1045 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
1046#ifndef _WIN32 1314#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1316 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1320 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1323
1056 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1326
1065#if EV_USE_PORT 1327#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1329#endif
1068#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
1076#endif 1338#endif
1077#if EV_USE_SELECT 1339#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1341#endif
1080 1342
1081 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
1083 } 1345 }
1084} 1346}
1085 1347
1086static void noinline 1348static void noinline
1087loop_destroy (EV_P) 1349loop_destroy (EV_P)
1088{ 1350{
1089 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1090 1369
1091#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1093 close (fs_fd); 1372 close (fs_fd);
1094#endif 1373#endif
1131#if EV_FORK_ENABLE 1410#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1411 array_free (fork, EMPTY);
1133#endif 1412#endif
1134 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1136 1418
1137 backend = 0; 1419 backend = 0;
1138} 1420}
1139 1421
1422#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1141 1425
1142void inline_size 1426void inline_size
1143loop_fork (EV_P) 1427loop_fork (EV_P)
1144{ 1428{
1145#if EV_USE_PORT 1429#if EV_USE_PORT
1153#endif 1437#endif
1154#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1439 infy_fork (EV_A);
1156#endif 1440#endif
1157 1441
1158 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1159 { 1443 {
1160 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1161 1450
1162 ev_ref (EV_A); 1451 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1164 close (sigpipe [0]); 1461 close (evpipe [0]);
1165 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1166 1464
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1467 pipecb (EV_A_ &pipeev, EV_READ);
1172 } 1468 }
1173 1469
1174 postfork = 0; 1470 postfork = 0;
1175} 1471}
1176 1472
1177#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1178struct ev_loop * 1475struct ev_loop *
1179ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1180{ 1477{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1479
1198} 1495}
1199 1496
1200void 1497void
1201ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1202{ 1499{
1203 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1204} 1501}
1205 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1206#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1207 1603
1208#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1209struct ev_loop * 1605struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1211#else 1607#else
1212int 1608int
1213ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
1214#endif 1610#endif
1215{ 1611{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
1221 { 1613 {
1222#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1224#else 1616#else
1227 1619
1228 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
1229 1621
1230 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
1231 { 1623 {
1232 siginit (EV_A);
1233
1234#ifndef _WIN32 1624#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1255#ifndef _WIN32 1645#ifndef _WIN32
1256 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1258#endif 1648#endif
1259 1649
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1267} 1651}
1268 1652
1269void 1653void
1270ev_default_fork (void) 1654ev_default_fork (void)
1272#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1274#endif 1658#endif
1275 1659
1276 if (backend) 1660 if (backend)
1277 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1278} 1662}
1279 1663
1280/*****************************************************************************/ 1664/*****************************************************************************/
1281 1665
1282void 1666void
1299 { 1683 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301 1685
1302 p->w->pending = 0; 1686 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1304 } 1689 }
1305 } 1690 }
1306} 1691}
1307
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387 1692
1388#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1389void inline_size 1694void inline_size
1390idle_reify (EV_P) 1695idle_reify (EV_P)
1391{ 1696{
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break; 1709 break;
1405 } 1710 }
1406 } 1711 }
1407 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1408} 1815}
1409#endif 1816#endif
1410 1817
1411void inline_speed 1818void inline_speed
1412time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1441 */ 1848 */
1442 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1443 { 1850 {
1444 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1445 1852
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 1854 return; /* all is well */
1448 1855
1449 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 1857 mn_now = get_clock ();
1451 now_floor = mn_now; 1858 now_floor = mn_now;
1467#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1469#endif 1876#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1472 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1473 } 1884 }
1474 1885
1475 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1476 } 1887 }
1477} 1888}
1491static int loop_done; 1902static int loop_done;
1492 1903
1493void 1904void
1494ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1495{ 1906{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499 1908
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1501 1910
1502 do 1911 do
1503 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1504#ifndef _WIN32 1917#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1507 { 1920 {
1508 curpid = getpid (); 1921 curpid = getpid ();
1549 1962
1550 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1551 1964
1552 if (timercnt) 1965 if (timercnt)
1553 { 1966 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1556 } 1969 }
1557 1970
1558#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 1972 if (periodiccnt)
1560 { 1973 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1563 } 1976 }
1564#endif 1977#endif
1565 1978
1566 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1599 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1602 2015
1603 call_pending (EV_A); 2016 call_pending (EV_A);
1604
1605 } 2017 }
1606 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1607 2023
1608 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1610} 2026}
1611 2027
1700 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1701 return; 2117 return;
1702 2118
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1704 2120
2121 EV_FREQUENT_CHECK;
2122
1705 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1707 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1708 2126
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1711} 2131}
1712 2132
1713void noinline 2133void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1715{ 2135{
1716 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1718 return; 2138 return;
1719 2139
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1721 2143
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1724 2146
1725 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1726} 2150}
1727 2151
1728void noinline 2152void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1730{ 2154{
1731 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1732 return; 2156 return;
1733 2157
1734 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1735 2159
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1742 2170
2171 EV_FREQUENT_CHECK;
2172
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2174}
1745 2175
1746void noinline 2176void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2178{
1749 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1751 return; 2181 return;
1752 2182
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2183 EV_FREQUENT_CHECK;
1754 2184
1755 { 2185 {
1756 int active = ((W)w)->active; 2186 int active = ev_active (w);
1757 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1758 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1759 { 2193 {
1760 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1762 } 2196 }
1763 } 2197 }
1764 2198
1765 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1766 2202
1767 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1768} 2204}
1769 2205
1770void noinline 2206void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1772{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1773 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1774 { 2212 {
1775 if (w->repeat) 2213 if (w->repeat)
1776 { 2214 {
1777 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1779 } 2218 }
1780 else 2219 else
1781 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1782 } 2221 }
1783 else if (w->repeat) 2222 else if (w->repeat)
1784 { 2223 {
1785 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1787 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1788} 2229}
1789 2230
1790#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1791void noinline 2232void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2234{
1794 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1795 return; 2236 return;
1796 2237
1797 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2240 else if (w->interval)
1800 { 2241 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2245 }
1805 else 2246 else
1806 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1807 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1812 2257
2258 EV_FREQUENT_CHECK;
2259
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2261}
1815 2262
1816void noinline 2263void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2265{
1819 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1821 return; 2268 return;
1822 2269
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2270 EV_FREQUENT_CHECK;
1824 2271
1825 { 2272 {
1826 int active = ((W)w)->active; 2273 int active = ev_active (w);
1827 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1828 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2280 {
1830 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1832 } 2283 }
1833 } 2284 }
1834 2285
2286 EV_FREQUENT_CHECK;
2287
1835 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1836} 2289}
1837 2290
1838void noinline 2291void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1856#endif 2309#endif
1857 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1858 return; 2311 return;
1859 2312
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
1861 2318
1862 { 2319 {
1863#ifndef _WIN32 2320#ifndef _WIN32
1864 sigset_t full, prev; 2321 sigset_t full, prev;
1865 sigfillset (&full); 2322 sigfillset (&full);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2335
1879 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1880 { 2337 {
1881#if _WIN32 2338#if _WIN32
1882 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1883#else 2340#else
1884 struct sigaction sa; 2341 struct sigaction sa;
1885 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1889#endif 2346#endif
1890 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
1891} 2350}
1892 2351
1893void noinline 2352void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2354{
1896 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1898 return; 2357 return;
1899 2358
2359 EV_FREQUENT_CHECK;
2360
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1902 2363
1903 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1904 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1905} 2368}
1906 2369
1907void 2370void
1908ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1909{ 2372{
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2375#endif
1913 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1914 return; 2377 return;
1915 2378
2379 EV_FREQUENT_CHECK;
2380
1916 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1918} 2385}
1919 2386
1920void 2387void
1921ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1922{ 2389{
1923 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1925 return; 2392 return;
1926 2393
2394 EV_FREQUENT_CHECK;
2395
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1929} 2400}
1930 2401
1931#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1932 2403
1933# ifdef _WIN32 2404# ifdef _WIN32
1951 if (w->wd < 0) 2422 if (w->wd < 0)
1952 { 2423 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954 2425
1955 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2430 {
1958 char path [4096]; 2431 char path [4096];
1959 strcpy (path, w->path); 2432 strcpy (path, w->path);
1960 2433
2159 else 2632 else
2160#endif 2633#endif
2161 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2162 2635
2163 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2164} 2639}
2165 2640
2166void 2641void
2167ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2168{ 2643{
2169 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2171 return; 2646 return;
2172 2647
2648 EV_FREQUENT_CHECK;
2649
2173#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2175#endif 2652#endif
2176 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2177 2654
2178 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2179} 2658}
2180#endif 2659#endif
2181 2660
2182#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2183void 2662void
2185{ 2664{
2186 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2187 return; 2666 return;
2188 2667
2189 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2190 2671
2191 { 2672 {
2192 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2193 2674
2194 ++idleall; 2675 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2196 2677
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2199 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2200} 2683}
2201 2684
2202void 2685void
2203ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2204{ 2687{
2205 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2207 return; 2690 return;
2208 2691
2692 EV_FREQUENT_CHECK;
2693
2209 { 2694 {
2210 int active = ((W)w)->active; 2695 int active = ev_active (w);
2211 2696
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 2699
2215 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2216 --idleall; 2701 --idleall;
2217 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2218} 2705}
2219#endif 2706#endif
2220 2707
2221void 2708void
2222ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 2710{
2224 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2225 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2226 2715
2227 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2230} 2721}
2231 2722
2232void 2723void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 2725{
2235 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2237 return; 2728 return;
2238 2729
2730 EV_FREQUENT_CHECK;
2731
2239 { 2732 {
2240 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2241 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2243 } 2737 }
2244 2738
2245 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2246} 2742}
2247 2743
2248void 2744void
2249ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2250{ 2746{
2251 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2252 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2253 2751
2254 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2257} 2757}
2258 2758
2259void 2759void
2260ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2261{ 2761{
2262 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2264 return; 2764 return;
2265 2765
2766 EV_FREQUENT_CHECK;
2767
2266 { 2768 {
2267 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2268 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2270 } 2773 }
2271 2774
2272 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2273} 2778}
2274 2779
2275#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2276void noinline 2781void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2324 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 2832 }
2328 2833
2834 EV_FREQUENT_CHECK;
2835
2329 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2331 2838
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2335 2842
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 2844
2338 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2339} 2848}
2340 2849
2341void 2850void
2342ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2343{ 2852{
2344 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2346 return; 2855 return;
2347 2856
2857 EV_FREQUENT_CHECK;
2858
2348 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2350 2861
2351 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2352} 2865}
2353#endif 2866#endif
2354 2867
2355#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2356void 2869void
2357ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2358{ 2871{
2359 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2360 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2361 2876
2362 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2365} 2882}
2366 2883
2367void 2884void
2368ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2369{ 2886{
2370 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2372 return; 2889 return;
2373 2890
2891 EV_FREQUENT_CHECK;
2892
2374 { 2893 {
2375 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2376 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2378 } 2898 }
2379 2899
2380 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2381} 2950}
2382#endif 2951#endif
2383 2952
2384/*****************************************************************************/ 2953/*****************************************************************************/
2385 2954

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines