ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
269#endif 287#endif
270 288
271#if EV_USE_EVENTFD 289#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
274int eventfd (unsigned int initval, int flags); 295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
275#endif 299#endif
276 300
277/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
278 308
279/* 309/*
280 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
294# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
296#else 326#else
297# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
298# define noinline 328# define noinline
299# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 330# define inline
301# endif 331# endif
302#endif 332#endif
303 333
304#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
319 349
320typedef ev_watcher *W; 350typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
323 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
324#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 361#endif
354 perror (msg); 387 perror (msg);
355 abort (); 388 abort ();
356 } 389 }
357} 390}
358 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
359static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 408
361void 409void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 411{
364 alloc = cb; 412 alloc = cb;
365} 413}
366 414
367inline_speed void * 415inline_speed void *
368ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
369{ 417{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
371 419
372 if (!ptr && size) 420 if (!ptr && size)
373 { 421 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 423 abort ();
398 W w; 446 W w;
399 int events; 447 int events;
400} ANPENDING; 448} ANPENDING;
401 449
402#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
403typedef struct 452typedef struct
404{ 453{
405 WL head; 454 WL head;
406} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
407#endif 474#endif
408 475
409#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
410 477
411 struct ev_loop 478 struct ev_loop
496 } 563 }
497} 564}
498 565
499/*****************************************************************************/ 566/*****************************************************************************/
500 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
501int inline_size 570int inline_size
502array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
503{ 572{
504 int ncur = cur + 1; 573 int ncur = cur + 1;
505 574
506 do 575 do
507 ncur <<= 1; 576 ncur <<= 1;
508 while (cnt > ncur); 577 while (cnt > ncur);
509 578
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 581 {
513 ncur *= elem; 582 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 585 ncur /= elem;
517 } 586 }
518 587
519 return ncur; 588 return ncur;
733 } 802 }
734} 803}
735 804
736/*****************************************************************************/ 805/*****************************************************************************/
737 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
738void inline_speed 827void inline_speed
739upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
740{ 829{
741 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
742 832
743 while (k) 833 for (;;)
744 { 834 {
745 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
746 838
747 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
748 break; 855 break;
749 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
750 heap [k] = heap [p]; 919 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 921 k = p;
753 } 922 }
754 923
755 heap [k] = w; 924 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785} 926}
786 927
787void inline_size 928void inline_size
788adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
789{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
790 upheap (heap, k); 932 upheap (heap, k);
933 else
791 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
792} 947}
793 948
794/*****************************************************************************/ 949/*****************************************************************************/
795 950
796typedef struct 951typedef struct
885pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
886{ 1041{
887#if EV_USE_EVENTFD 1042#if EV_USE_EVENTFD
888 if (evfd >= 0) 1043 if (evfd >= 0)
889 { 1044 {
890 uint64_t counter = 1; 1045 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1046 read (evfd, &counter, sizeof (uint64_t));
892 } 1047 }
893 else 1048 else
894#endif 1049#endif
895 { 1050 {
1164 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1320 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1323
1169 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1171 1326
1172#if EV_USE_PORT 1327#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1329#endif
1262#endif 1417#endif
1263 1418
1264 backend = 0; 1419 backend = 0;
1265} 1420}
1266 1421
1422#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1268 1425
1269void inline_size 1426void inline_size
1270loop_fork (EV_P) 1427loop_fork (EV_P)
1271{ 1428{
1272#if EV_USE_PORT 1429#if EV_USE_PORT
1312 1469
1313 postfork = 0; 1470 postfork = 0;
1314} 1471}
1315 1472
1316#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1317struct ev_loop * 1475struct ev_loop *
1318ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1319{ 1477{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 1479
1340ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1341{ 1499{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1343} 1501}
1344 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1345#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1346 1603
1347#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1348struct ev_loop * 1605struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1350#else 1607#else
1426 { 1683 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428 1685
1429 p->w->pending = 0; 1686 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1431 } 1689 }
1432 } 1690 }
1433} 1691}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 1692
1515#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1516void inline_size 1694void inline_size
1517idle_reify (EV_P) 1695idle_reify (EV_P)
1518{ 1696{
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break; 1709 break;
1532 } 1710 }
1533 } 1711 }
1534 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1535} 1815}
1536#endif 1816#endif
1537 1817
1538void inline_speed 1818void inline_speed
1539time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1568 */ 1848 */
1569 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1570 { 1850 {
1571 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1572 1852
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 1854 return; /* all is well */
1575 1855
1576 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 1857 mn_now = get_clock ();
1578 now_floor = mn_now; 1858 now_floor = mn_now;
1594#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1596#endif 1876#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1599 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1600 } 1884 }
1601 1885
1602 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1603 } 1887 }
1604} 1888}
1624 1908
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626 1910
1627 do 1911 do
1628 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1629#ifndef _WIN32 1917#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1632 { 1920 {
1633 curpid = getpid (); 1921 curpid = getpid ();
1674 1962
1675 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1676 1964
1677 if (timercnt) 1965 if (timercnt)
1678 { 1966 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1681 } 1969 }
1682 1970
1683#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 1972 if (periodiccnt)
1685 { 1973 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1688 } 1976 }
1689#endif 1977#endif
1690 1978
1691 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1828 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1829 return; 2117 return;
1830 2118
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1832 2120
2121 EV_FREQUENT_CHECK;
2122
1833 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1835 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1836 2126
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1839} 2131}
1840 2132
1841void noinline 2133void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1843{ 2135{
1844 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1846 return; 2138 return;
1847 2139
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1849 2143
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1852 2146
1853 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1854} 2150}
1855 2151
1856void noinline 2152void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1858{ 2154{
1859 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1860 return; 2156 return;
1861 2157
1862 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1863 2159
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1870 2170
2171 EV_FREQUENT_CHECK;
2172
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2174}
1873 2175
1874void noinline 2176void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2178{
1877 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1879 return; 2181 return;
1880 2182
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2183 EV_FREQUENT_CHECK;
1882 2184
1883 { 2185 {
1884 int active = ((W)w)->active; 2186 int active = ev_active (w);
1885 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1886 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1887 { 2193 {
1888 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1890 } 2196 }
1891 } 2197 }
1892 2198
1893 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1894 2202
1895 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1896} 2204}
1897 2205
1898void noinline 2206void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1900{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1901 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1902 { 2212 {
1903 if (w->repeat) 2213 if (w->repeat)
1904 { 2214 {
1905 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1907 } 2218 }
1908 else 2219 else
1909 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1910 } 2221 }
1911 else if (w->repeat) 2222 else if (w->repeat)
1912 { 2223 {
1913 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1915 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1916} 2229}
1917 2230
1918#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1919void noinline 2232void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2234{
1922 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1923 return; 2236 return;
1924 2237
1925 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2240 else if (w->interval)
1928 { 2241 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2245 }
1933 else 2246 else
1934 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1935 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1940 2257
2258 EV_FREQUENT_CHECK;
2259
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2261}
1943 2262
1944void noinline 2263void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2265{
1947 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1949 return; 2268 return;
1950 2269
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2270 EV_FREQUENT_CHECK;
1952 2271
1953 { 2272 {
1954 int active = ((W)w)->active; 2273 int active = ev_active (w);
1955 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1956 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2280 {
1958 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1960 } 2283 }
1961 } 2284 }
1962 2285
2286 EV_FREQUENT_CHECK;
2287
1963 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1964} 2289}
1965 2290
1966void noinline 2291void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1986 return; 2311 return;
1987 2312
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1989 2314
1990 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
1991 2318
1992 { 2319 {
1993#ifndef _WIN32 2320#ifndef _WIN32
1994 sigset_t full, prev; 2321 sigset_t full, prev;
1995 sigfillset (&full); 2322 sigfillset (&full);
2016 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
2019#endif 2346#endif
2020 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
2021} 2350}
2022 2351
2023void noinline 2352void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2354{
2026 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2028 return; 2357 return;
2029 2358
2359 EV_FREQUENT_CHECK;
2360
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
2032 2363
2033 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
2034 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2035} 2368}
2036 2369
2037void 2370void
2038ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
2039{ 2372{
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2375#endif
2043 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2044 return; 2377 return;
2045 2378
2379 EV_FREQUENT_CHECK;
2380
2046 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2048} 2385}
2049 2386
2050void 2387void
2051ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
2052{ 2389{
2053 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
2055 return; 2392 return;
2056 2393
2394 EV_FREQUENT_CHECK;
2395
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2059} 2400}
2060 2401
2061#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
2062 2403
2063# ifdef _WIN32 2404# ifdef _WIN32
2081 if (w->wd < 0) 2422 if (w->wd < 0)
2082 { 2423 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2425
2085 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2430 {
2088 char path [4096]; 2431 char path [4096];
2089 strcpy (path, w->path); 2432 strcpy (path, w->path);
2090 2433
2289 else 2632 else
2290#endif 2633#endif
2291 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2292 2635
2293 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2294} 2639}
2295 2640
2296void 2641void
2297ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2298{ 2643{
2299 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2301 return; 2646 return;
2302 2647
2648 EV_FREQUENT_CHECK;
2649
2303#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2305#endif 2652#endif
2306 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2307 2654
2308 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2309} 2658}
2310#endif 2659#endif
2311 2660
2312#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2313void 2662void
2315{ 2664{
2316 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2317 return; 2666 return;
2318 2667
2319 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2320 2671
2321 { 2672 {
2322 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2323 2674
2324 ++idleall; 2675 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2326 2677
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2329 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2330} 2683}
2331 2684
2332void 2685void
2333ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2334{ 2687{
2335 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2337 return; 2690 return;
2338 2691
2692 EV_FREQUENT_CHECK;
2693
2339 { 2694 {
2340 int active = ((W)w)->active; 2695 int active = ev_active (w);
2341 2696
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2699
2345 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2346 --idleall; 2701 --idleall;
2347 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2348} 2705}
2349#endif 2706#endif
2350 2707
2351void 2708void
2352ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 2710{
2354 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2355 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2356 2715
2357 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2360} 2721}
2361 2722
2362void 2723void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 2725{
2365 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2367 return; 2728 return;
2368 2729
2730 EV_FREQUENT_CHECK;
2731
2369 { 2732 {
2370 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2371 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2373 } 2737 }
2374 2738
2375 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2376} 2742}
2377 2743
2378void 2744void
2379ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2380{ 2746{
2381 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2382 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2383 2751
2384 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2387} 2757}
2388 2758
2389void 2759void
2390ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2391{ 2761{
2392 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2394 return; 2764 return;
2395 2765
2766 EV_FREQUENT_CHECK;
2767
2396 { 2768 {
2397 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2398 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2400 } 2773 }
2401 2774
2402 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2403} 2778}
2404 2779
2405#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2406void noinline 2781void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2454 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 2832 }
2458 2833
2834 EV_FREQUENT_CHECK;
2835
2459 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2461 2838
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2465 2842
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 2844
2468 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2469} 2848}
2470 2849
2471void 2850void
2472ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2473{ 2852{
2474 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2476 return; 2855 return;
2477 2856
2857 EV_FREQUENT_CHECK;
2858
2478 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2480 2861
2481 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2482} 2865}
2483#endif 2866#endif
2484 2867
2485#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2486void 2869void
2487ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2488{ 2871{
2489 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2490 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2491 2876
2492 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2495} 2882}
2496 2883
2497void 2884void
2498ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2499{ 2886{
2500 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2502 return; 2889 return;
2503 2890
2891 EV_FREQUENT_CHECK;
2892
2504 { 2893 {
2505 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2506 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2508 } 2898 }
2509 2899
2510 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2511} 2903}
2512#endif 2904#endif
2513 2905
2514#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2515void 2907void
2517{ 2909{
2518 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2519 return; 2911 return;
2520 2912
2521 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2522 2916
2523 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2526} 2922}
2527 2923
2528void 2924void
2529ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2530{ 2926{
2531 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2533 return; 2929 return;
2534 2930
2931 EV_FREQUENT_CHECK;
2932
2535 { 2933 {
2536 int active = ((W)w)->active; 2934 int active = ev_active (w);
2935
2537 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 2937 ev_active (asyncs [active - 1]) = active;
2539 } 2938 }
2540 2939
2541 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2542} 2943}
2543 2944
2544void 2945void
2545ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2546{ 2947{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines