ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC vs.
Revision 1.465 by root, Tue Mar 25 17:44:13 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
168#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
169# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
170#endif 267#endif
171 268
172#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 271#endif
175 272
176#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
177# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
278# endif
178#endif 279#endif
179 280
180#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 283#endif
183 284
184#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
185# ifdef _WIN32 286# ifdef _WIN32
186# define EV_USE_POLL 0 287# define EV_USE_POLL 0
187# else 288# else
188# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 290# endif
190#endif 291#endif
191 292
192#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 296# else
196# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
197# endif 298# endif
198#endif 299#endif
199 300
205# define EV_USE_PORT 0 306# define EV_USE_PORT 0
206#endif 307#endif
207 308
208#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 312# else
212# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
213# endif 314# endif
214#endif 315#endif
215 316
216#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 319#endif
223 320
224#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 323#endif
231 324
232#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 328# else
236# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
237# endif 338# endif
238#endif 339#endif
239 340
240#if 0 /* debugging */ 341#if 0 /* debugging */
241# define EV_VERIFY 3 342# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
244#endif 345#endif
245 346
246#ifndef EV_VERIFY 347#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 349#endif
249 350
250#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 353#endif
253 354
254#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
256#endif 387#endif
257 388
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
259 390
260#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
271# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
273#endif 404#endif
274 405
275#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
277# include <sys/select.h> 409# include <sys/select.h>
278# endif 410# endif
279#endif 411#endif
280 412
281#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
282# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
283#endif 420# endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif 421#endif
288 422
289#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 425# include <stdint.h>
292# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
293extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
294# endif 428# endif
295int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 430# ifdef O_CLOEXEC
297} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
298# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
299#endif 459#endif
300 460
301/**/ 461/**/
302 462
303#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 465#else
306# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
307#endif 467#endif
308 468
309/* 469/*
310 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 472 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 475
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
323#if __GNUC__ >= 4 526 #if __GNUC__
324# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
325# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
326#else 542#else
327# define expect(expr,value) (expr) 543 #include <inttypes.h>
328# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
330# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
331# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
332#endif 557 #endif
558#endif
333 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_CPP (__cplusplus+0)
576#define ECB_CPP11 (__cplusplus >= 201103L)
577
578#if ECB_CPP
579 #define ECB_C 0
580 #define ECB_STDC_VERSION 0
581#else
582 #define ECB_C 1
583 #define ECB_STDC_VERSION __STDC_VERSION__
584#endif
585
586#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
587#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
588
589#if ECB_CPP
590 #define ECB_EXTERN_C extern "C"
591 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
592 #define ECB_EXTERN_C_END }
593#else
594 #define ECB_EXTERN_C extern
595 #define ECB_EXTERN_C_BEG
596 #define ECB_EXTERN_C_END
597#endif
598
599/*****************************************************************************/
600
601/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
602/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
603
604#if ECB_NO_THREADS
605 #define ECB_NO_SMP 1
606#endif
607
608#if ECB_NO_SMP
609 #define ECB_MEMORY_FENCE do { } while (0)
610#endif
611
612#ifndef ECB_MEMORY_FENCE
613 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
614 #if __i386 || __i386__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
616 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
617 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
618 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
619 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
620 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
621 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
622 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
625 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
627 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
628 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
629 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
630 #elif __aarch64__
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
632 #elif (__sparc || __sparc__) && !__sparcv8
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
634 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
635 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
636 #elif defined __s390__ || defined __s390x__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
638 #elif defined __mips__
639 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
640 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
642 #elif defined __alpha__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
644 #elif defined __hppa__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
647 #elif defined __ia64__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
649 #elif defined __m68k__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
651 #elif defined __m88k__
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
653 #elif defined __sh__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
655 #endif
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_GCC_VERSION(4,7)
661 /* see comment below (stdatomic.h) about the C11 memory model. */
662 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
663 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
664 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
665
666 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
667 * without risking compile time errors with other compilers. We *could*
668 * define our own ecb_clang_has_feature, but I just can't be bothered to work
669 * around this shit time and again.
670 * #elif defined __clang && __has_feature (cxx_atomic)
671 * // see comment below (stdatomic.h) about the C11 memory model.
672 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
673 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
674 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
675 */
676
677 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
678 #define ECB_MEMORY_FENCE __sync_synchronize ()
679 #elif _MSC_VER >= 1500 /* VC++ 2008 */
680 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
681 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
682 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
683 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
684 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
685 #elif _MSC_VER >= 1400 /* VC++ 2005 */
686 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
687 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
688 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
689 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
690 #elif defined _WIN32
691 #include <WinNT.h>
692 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
693 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
694 #include <mbarrier.h>
695 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
696 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
697 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
698 #elif __xlC__
699 #define ECB_MEMORY_FENCE __sync ()
700 #endif
701#endif
702
703#ifndef ECB_MEMORY_FENCE
704 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
705 /* we assume that these memory fences work on all variables/all memory accesses, */
706 /* not just C11 atomics and atomic accesses */
707 #include <stdatomic.h>
708 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
709 /* any fence other than seq_cst, which isn't very efficient for us. */
710 /* Why that is, we don't know - either the C11 memory model is quite useless */
711 /* for most usages, or gcc and clang have a bug */
712 /* I *currently* lean towards the latter, and inefficiently implement */
713 /* all three of ecb's fences as a seq_cst fence */
714 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
715 /* for all __atomic_thread_fence's except seq_cst */
716 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
717 #endif
718#endif
719
720#ifndef ECB_MEMORY_FENCE
721 #if !ECB_AVOID_PTHREADS
722 /*
723 * if you get undefined symbol references to pthread_mutex_lock,
724 * or failure to find pthread.h, then you should implement
725 * the ECB_MEMORY_FENCE operations for your cpu/compiler
726 * OR provide pthread.h and link against the posix thread library
727 * of your system.
728 */
729 #include <pthread.h>
730 #define ECB_NEEDS_PTHREADS 1
731 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
732
733 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
734 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
735 #endif
736#endif
737
738#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
739 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
740#endif
741
742#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
743 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
744#endif
745
746/*****************************************************************************/
747
748#if __cplusplus
749 #define ecb_inline static inline
750#elif ECB_GCC_VERSION(2,5)
751 #define ecb_inline static __inline__
752#elif ECB_C99
753 #define ecb_inline static inline
754#else
755 #define ecb_inline static
756#endif
757
758#if ECB_GCC_VERSION(3,3)
759 #define ecb_restrict __restrict__
760#elif ECB_C99
761 #define ecb_restrict restrict
762#else
763 #define ecb_restrict
764#endif
765
766typedef int ecb_bool;
767
768#define ECB_CONCAT_(a, b) a ## b
769#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
770#define ECB_STRINGIFY_(a) # a
771#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
772
773#define ecb_function_ ecb_inline
774
775#if ECB_GCC_VERSION(3,1)
776 #define ecb_attribute(attrlist) __attribute__(attrlist)
777 #define ecb_is_constant(expr) __builtin_constant_p (expr)
778 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
779 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
780#else
781 #define ecb_attribute(attrlist)
782
783 /* possible C11 impl for integral types
784 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
785 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
786
787 #define ecb_is_constant(expr) 0
788 #define ecb_expect(expr,value) (expr)
789 #define ecb_prefetch(addr,rw,locality)
790#endif
791
792/* no emulation for ecb_decltype */
793#if ECB_GCC_VERSION(4,5)
794 #define ecb_decltype(x) __decltype(x)
795#elif ECB_GCC_VERSION(3,0)
796 #define ecb_decltype(x) __typeof(x)
797#endif
798
799#define ecb_noinline ecb_attribute ((__noinline__))
800#define ecb_unused ecb_attribute ((__unused__))
801#define ecb_const ecb_attribute ((__const__))
802#define ecb_pure ecb_attribute ((__pure__))
803
804#if ECB_C11
805 #define ecb_noreturn _Noreturn
806#else
807 #define ecb_noreturn ecb_attribute ((__noreturn__))
808#endif
809
810#if ECB_GCC_VERSION(4,3)
811 #define ecb_artificial ecb_attribute ((__artificial__))
812 #define ecb_hot ecb_attribute ((__hot__))
813 #define ecb_cold ecb_attribute ((__cold__))
814#else
815 #define ecb_artificial
816 #define ecb_hot
817 #define ecb_cold
818#endif
819
820/* put around conditional expressions if you are very sure that the */
821/* expression is mostly true or mostly false. note that these return */
822/* booleans, not the expression. */
334#define expect_false(expr) expect ((expr) != 0, 0) 823#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 824#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
825/* for compatibility to the rest of the world */
826#define ecb_likely(expr) ecb_expect_true (expr)
827#define ecb_unlikely(expr) ecb_expect_false (expr)
828
829/* count trailing zero bits and count # of one bits */
830#if ECB_GCC_VERSION(3,4)
831 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
832 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
833 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
834 #define ecb_ctz32(x) __builtin_ctz (x)
835 #define ecb_ctz64(x) __builtin_ctzll (x)
836 #define ecb_popcount32(x) __builtin_popcount (x)
837 /* no popcountll */
838#else
839 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
840 ecb_function_ int
841 ecb_ctz32 (uint32_t x)
842 {
843 int r = 0;
844
845 x &= ~x + 1; /* this isolates the lowest bit */
846
847#if ECB_branchless_on_i386
848 r += !!(x & 0xaaaaaaaa) << 0;
849 r += !!(x & 0xcccccccc) << 1;
850 r += !!(x & 0xf0f0f0f0) << 2;
851 r += !!(x & 0xff00ff00) << 3;
852 r += !!(x & 0xffff0000) << 4;
853#else
854 if (x & 0xaaaaaaaa) r += 1;
855 if (x & 0xcccccccc) r += 2;
856 if (x & 0xf0f0f0f0) r += 4;
857 if (x & 0xff00ff00) r += 8;
858 if (x & 0xffff0000) r += 16;
859#endif
860
861 return r;
862 }
863
864 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
865 ecb_function_ int
866 ecb_ctz64 (uint64_t x)
867 {
868 int shift = x & 0xffffffffU ? 0 : 32;
869 return ecb_ctz32 (x >> shift) + shift;
870 }
871
872 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
873 ecb_function_ int
874 ecb_popcount32 (uint32_t x)
875 {
876 x -= (x >> 1) & 0x55555555;
877 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
878 x = ((x >> 4) + x) & 0x0f0f0f0f;
879 x *= 0x01010101;
880
881 return x >> 24;
882 }
883
884 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
885 ecb_function_ int ecb_ld32 (uint32_t x)
886 {
887 int r = 0;
888
889 if (x >> 16) { x >>= 16; r += 16; }
890 if (x >> 8) { x >>= 8; r += 8; }
891 if (x >> 4) { x >>= 4; r += 4; }
892 if (x >> 2) { x >>= 2; r += 2; }
893 if (x >> 1) { r += 1; }
894
895 return r;
896 }
897
898 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
899 ecb_function_ int ecb_ld64 (uint64_t x)
900 {
901 int r = 0;
902
903 if (x >> 32) { x >>= 32; r += 32; }
904
905 return r + ecb_ld32 (x);
906 }
907#endif
908
909ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
910ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
911ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
912ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
913
914ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
915ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
916{
917 return ( (x * 0x0802U & 0x22110U)
918 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
919}
920
921ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
922ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
923{
924 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
925 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
926 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
927 x = ( x >> 8 ) | ( x << 8);
928
929 return x;
930}
931
932ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
933ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
934{
935 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
936 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
937 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
938 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
939 x = ( x >> 16 ) | ( x << 16);
940
941 return x;
942}
943
944/* popcount64 is only available on 64 bit cpus as gcc builtin */
945/* so for this version we are lazy */
946ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
947ecb_function_ int
948ecb_popcount64 (uint64_t x)
949{
950 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
951}
952
953ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
954ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
955ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
956ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
957ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
958ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
959ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
960ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
961
962ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
963ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
964ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
965ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
966ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
967ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
968ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
969ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
970
971#if ECB_GCC_VERSION(4,3)
972 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
973 #define ecb_bswap32(x) __builtin_bswap32 (x)
974 #define ecb_bswap64(x) __builtin_bswap64 (x)
975#else
976 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
977 ecb_function_ uint16_t
978 ecb_bswap16 (uint16_t x)
979 {
980 return ecb_rotl16 (x, 8);
981 }
982
983 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
984 ecb_function_ uint32_t
985 ecb_bswap32 (uint32_t x)
986 {
987 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
988 }
989
990 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
991 ecb_function_ uint64_t
992 ecb_bswap64 (uint64_t x)
993 {
994 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
995 }
996#endif
997
998#if ECB_GCC_VERSION(4,5)
999 #define ecb_unreachable() __builtin_unreachable ()
1000#else
1001 /* this seems to work fine, but gcc always emits a warning for it :/ */
1002 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1003 ecb_inline void ecb_unreachable (void) { }
1004#endif
1005
1006/* try to tell the compiler that some condition is definitely true */
1007#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1008
1009ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1010ecb_inline unsigned char
1011ecb_byteorder_helper (void)
1012{
1013 /* the union code still generates code under pressure in gcc, */
1014 /* but less than using pointers, and always seems to */
1015 /* successfully return a constant. */
1016 /* the reason why we have this horrible preprocessor mess */
1017 /* is to avoid it in all cases, at least on common architectures */
1018 /* or when using a recent enough gcc version (>= 4.6) */
1019#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1020 return 0x44;
1021#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1022 return 0x44;
1023#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1024 return 0x11;
1025#else
1026 union
1027 {
1028 uint32_t i;
1029 uint8_t c;
1030 } u = { 0x11223344 };
1031 return u.c;
1032#endif
1033}
1034
1035ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1036ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1037ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1038ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1039
1040#if ECB_GCC_VERSION(3,0) || ECB_C99
1041 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1042#else
1043 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1044#endif
1045
1046#if __cplusplus
1047 template<typename T>
1048 static inline T ecb_div_rd (T val, T div)
1049 {
1050 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1051 }
1052 template<typename T>
1053 static inline T ecb_div_ru (T val, T div)
1054 {
1055 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1056 }
1057#else
1058 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1059 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1060#endif
1061
1062#if ecb_cplusplus_does_not_suck
1063 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1064 template<typename T, int N>
1065 static inline int ecb_array_length (const T (&arr)[N])
1066 {
1067 return N;
1068 }
1069#else
1070 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1071#endif
1072
1073/*******************************************************************************/
1074/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1075
1076/* basically, everything uses "ieee pure-endian" floating point numbers */
1077/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1078#if 0 \
1079 || __i386 || __i386__ \
1080 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1081 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1082 || defined __s390__ || defined __s390x__ \
1083 || defined __mips__ \
1084 || defined __alpha__ \
1085 || defined __hppa__ \
1086 || defined __ia64__ \
1087 || defined __m68k__ \
1088 || defined __m88k__ \
1089 || defined __sh__ \
1090 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1091 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1092 | defined __aarch64__
1093 #define ECB_STDFP 1
1094 #include <string.h> /* for memcpy */
1095#else
1096 #define ECB_STDFP 0
1097#endif
1098
1099#ifndef ECB_NO_LIBM
1100
1101 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1102
1103 /* only the oldest of old doesn't have this one. solaris. */
1104 #ifdef INFINITY
1105 #define ECB_INFINITY INFINITY
1106 #else
1107 #define ECB_INFINITY HUGE_VAL
1108 #endif
1109
1110 #ifdef NAN
1111 #define ECB_NAN NAN
1112 #else
1113 #define ECB_NAN ECB_INFINITY
1114 #endif
1115
1116 /* converts an ieee half/binary16 to a float */
1117 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1118 ecb_function_ float
1119 ecb_binary16_to_float (uint16_t x)
1120 {
1121 int e = (x >> 10) & 0x1f;
1122 int m = x & 0x3ff;
1123 float r;
1124
1125 if (!e ) r = ldexpf (m , -24);
1126 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1127 else if (m ) r = ECB_NAN;
1128 else r = ECB_INFINITY;
1129
1130 return x & 0x8000 ? -r : r;
1131 }
1132
1133 /* convert a float to ieee single/binary32 */
1134 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1135 ecb_function_ uint32_t
1136 ecb_float_to_binary32 (float x)
1137 {
1138 uint32_t r;
1139
1140 #if ECB_STDFP
1141 memcpy (&r, &x, 4);
1142 #else
1143 /* slow emulation, works for anything but -0 */
1144 uint32_t m;
1145 int e;
1146
1147 if (x == 0e0f ) return 0x00000000U;
1148 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1149 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1150 if (x != x ) return 0x7fbfffffU;
1151
1152 m = frexpf (x, &e) * 0x1000000U;
1153
1154 r = m & 0x80000000U;
1155
1156 if (r)
1157 m = -m;
1158
1159 if (e <= -126)
1160 {
1161 m &= 0xffffffU;
1162 m >>= (-125 - e);
1163 e = -126;
1164 }
1165
1166 r |= (e + 126) << 23;
1167 r |= m & 0x7fffffU;
1168 #endif
1169
1170 return r;
1171 }
1172
1173 /* converts an ieee single/binary32 to a float */
1174 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1175 ecb_function_ float
1176 ecb_binary32_to_float (uint32_t x)
1177 {
1178 float r;
1179
1180 #if ECB_STDFP
1181 memcpy (&r, &x, 4);
1182 #else
1183 /* emulation, only works for normals and subnormals and +0 */
1184 int neg = x >> 31;
1185 int e = (x >> 23) & 0xffU;
1186
1187 x &= 0x7fffffU;
1188
1189 if (e)
1190 x |= 0x800000U;
1191 else
1192 e = 1;
1193
1194 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1195 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1196
1197 r = neg ? -r : r;
1198 #endif
1199
1200 return r;
1201 }
1202
1203 /* convert a double to ieee double/binary64 */
1204 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1205 ecb_function_ uint64_t
1206 ecb_double_to_binary64 (double x)
1207 {
1208 uint64_t r;
1209
1210 #if ECB_STDFP
1211 memcpy (&r, &x, 8);
1212 #else
1213 /* slow emulation, works for anything but -0 */
1214 uint64_t m;
1215 int e;
1216
1217 if (x == 0e0 ) return 0x0000000000000000U;
1218 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1219 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1220 if (x != x ) return 0X7ff7ffffffffffffU;
1221
1222 m = frexp (x, &e) * 0x20000000000000U;
1223
1224 r = m & 0x8000000000000000;;
1225
1226 if (r)
1227 m = -m;
1228
1229 if (e <= -1022)
1230 {
1231 m &= 0x1fffffffffffffU;
1232 m >>= (-1021 - e);
1233 e = -1022;
1234 }
1235
1236 r |= ((uint64_t)(e + 1022)) << 52;
1237 r |= m & 0xfffffffffffffU;
1238 #endif
1239
1240 return r;
1241 }
1242
1243 /* converts an ieee double/binary64 to a double */
1244 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1245 ecb_function_ double
1246 ecb_binary64_to_double (uint64_t x)
1247 {
1248 double r;
1249
1250 #if ECB_STDFP
1251 memcpy (&r, &x, 8);
1252 #else
1253 /* emulation, only works for normals and subnormals and +0 */
1254 int neg = x >> 63;
1255 int e = (x >> 52) & 0x7ffU;
1256
1257 x &= 0xfffffffffffffU;
1258
1259 if (e)
1260 x |= 0x10000000000000U;
1261 else
1262 e = 1;
1263
1264 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1265 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1266
1267 r = neg ? -r : r;
1268 #endif
1269
1270 return r;
1271 }
1272
1273#endif
1274
1275#endif
1276
1277/* ECB.H END */
1278
1279#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1280/* if your architecture doesn't need memory fences, e.g. because it is
1281 * single-cpu/core, or if you use libev in a project that doesn't use libev
1282 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1283 * libev, in which cases the memory fences become nops.
1284 * alternatively, you can remove this #error and link against libpthread,
1285 * which will then provide the memory fences.
1286 */
1287# error "memory fences not defined for your architecture, please report"
1288#endif
1289
1290#ifndef ECB_MEMORY_FENCE
1291# define ECB_MEMORY_FENCE do { } while (0)
1292# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1293# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1294#endif
1295
1296#define expect_false(cond) ecb_expect_false (cond)
1297#define expect_true(cond) ecb_expect_true (cond)
1298#define noinline ecb_noinline
1299
336#define inline_size static inline 1300#define inline_size ecb_inline
337 1301
338#if EV_MINIMAL 1302#if EV_FEATURE_CODE
1303# define inline_speed ecb_inline
1304#else
339# define inline_speed static noinline 1305# define inline_speed static noinline
1306#endif
1307
1308#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1309
1310#if EV_MINPRI == EV_MAXPRI
1311# define ABSPRI(w) (((W)w), 0)
340#else 1312#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1313# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1314#endif
346 1315
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1316#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 1317#define EMPTY2(a,b) /* used to suppress some warnings */
349 1318
350typedef ev_watcher *W; 1319typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 1321typedef ev_watcher_time *WT;
353 1322
354#define ev_active(w) ((W)(w))->active 1323#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 1324#define ev_at(w) ((WT)(w))->at
356 1325
1326#if EV_USE_REALTIME
1327/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1328/* giving it a reasonably high chance of working on typical architectures */
1329static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1330#endif
1331
357#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1334#endif
1335
1336#ifndef EV_FD_TO_WIN32_HANDLE
1337# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1338#endif
1339#ifndef EV_WIN32_HANDLE_TO_FD
1340# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1341#endif
1342#ifndef EV_WIN32_CLOSE_FD
1343# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1344#endif
362 1345
363#ifdef _WIN32 1346#ifdef _WIN32
364# include "ev_win32.c" 1347# include "ev_win32.c"
365#endif 1348#endif
366 1349
367/*****************************************************************************/ 1350/*****************************************************************************/
368 1351
1352/* define a suitable floor function (only used by periodics atm) */
1353
1354#if EV_USE_FLOOR
1355# include <math.h>
1356# define ev_floor(v) floor (v)
1357#else
1358
1359#include <float.h>
1360
1361/* a floor() replacement function, should be independent of ev_tstamp type */
1362static ev_tstamp noinline
1363ev_floor (ev_tstamp v)
1364{
1365 /* the choice of shift factor is not terribly important */
1366#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1367 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1368#else
1369 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1370#endif
1371
1372 /* argument too large for an unsigned long? */
1373 if (expect_false (v >= shift))
1374 {
1375 ev_tstamp f;
1376
1377 if (v == v - 1.)
1378 return v; /* very large number */
1379
1380 f = shift * ev_floor (v * (1. / shift));
1381 return f + ev_floor (v - f);
1382 }
1383
1384 /* special treatment for negative args? */
1385 if (expect_false (v < 0.))
1386 {
1387 ev_tstamp f = -ev_floor (-v);
1388
1389 return f - (f == v ? 0 : 1);
1390 }
1391
1392 /* fits into an unsigned long */
1393 return (unsigned long)v;
1394}
1395
1396#endif
1397
1398/*****************************************************************************/
1399
1400#ifdef __linux
1401# include <sys/utsname.h>
1402#endif
1403
1404static unsigned int noinline ecb_cold
1405ev_linux_version (void)
1406{
1407#ifdef __linux
1408 unsigned int v = 0;
1409 struct utsname buf;
1410 int i;
1411 char *p = buf.release;
1412
1413 if (uname (&buf))
1414 return 0;
1415
1416 for (i = 3+1; --i; )
1417 {
1418 unsigned int c = 0;
1419
1420 for (;;)
1421 {
1422 if (*p >= '0' && *p <= '9')
1423 c = c * 10 + *p++ - '0';
1424 else
1425 {
1426 p += *p == '.';
1427 break;
1428 }
1429 }
1430
1431 v = (v << 8) | c;
1432 }
1433
1434 return v;
1435#else
1436 return 0;
1437#endif
1438}
1439
1440/*****************************************************************************/
1441
1442#if EV_AVOID_STDIO
1443static void noinline ecb_cold
1444ev_printerr (const char *msg)
1445{
1446 write (STDERR_FILENO, msg, strlen (msg));
1447}
1448#endif
1449
369static void (*syserr_cb)(const char *msg); 1450static void (*syserr_cb)(const char *msg) EV_THROW;
370 1451
371void 1452void ecb_cold
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1453ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
373{ 1454{
374 syserr_cb = cb; 1455 syserr_cb = cb;
375} 1456}
376 1457
377static void noinline 1458static void noinline ecb_cold
378syserr (const char *msg) 1459ev_syserr (const char *msg)
379{ 1460{
380 if (!msg) 1461 if (!msg)
381 msg = "(libev) system error"; 1462 msg = "(libev) system error";
382 1463
383 if (syserr_cb) 1464 if (syserr_cb)
384 syserr_cb (msg); 1465 syserr_cb (msg);
385 else 1466 else
386 { 1467 {
1468#if EV_AVOID_STDIO
1469 ev_printerr (msg);
1470 ev_printerr (": ");
1471 ev_printerr (strerror (errno));
1472 ev_printerr ("\n");
1473#else
387 perror (msg); 1474 perror (msg);
1475#endif
388 abort (); 1476 abort ();
389 } 1477 }
390} 1478}
391 1479
392static void * 1480static void *
393ev_realloc_emul (void *ptr, long size) 1481ev_realloc_emul (void *ptr, long size) EV_THROW
394{ 1482{
395 /* some systems, notably openbsd and darwin, fail to properly 1483 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 1484 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 1485 * the single unix specification, so work around them here.
1486 * recently, also (at least) fedora and debian started breaking it,
1487 * despite documenting it otherwise.
398 */ 1488 */
399 1489
400 if (size) 1490 if (size)
401 return realloc (ptr, size); 1491 return realloc (ptr, size);
402 1492
403 free (ptr); 1493 free (ptr);
404 return 0; 1494 return 0;
405} 1495}
406 1496
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1497static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
408 1498
409void 1499void ecb_cold
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 1500ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
411{ 1501{
412 alloc = cb; 1502 alloc = cb;
413} 1503}
414 1504
415inline_speed void * 1505inline_speed void *
417{ 1507{
418 ptr = alloc (ptr, size); 1508 ptr = alloc (ptr, size);
419 1509
420 if (!ptr && size) 1510 if (!ptr && size)
421 { 1511 {
1512#if EV_AVOID_STDIO
1513 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1514#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1515 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1516#endif
423 abort (); 1517 abort ();
424 } 1518 }
425 1519
426 return ptr; 1520 return ptr;
427} 1521}
429#define ev_malloc(size) ev_realloc (0, (size)) 1523#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 1524#define ev_free(ptr) ev_realloc ((ptr), 0)
431 1525
432/*****************************************************************************/ 1526/*****************************************************************************/
433 1527
1528/* set in reify when reification needed */
1529#define EV_ANFD_REIFY 1
1530
1531/* file descriptor info structure */
434typedef struct 1532typedef struct
435{ 1533{
436 WL head; 1534 WL head;
437 unsigned char events; 1535 unsigned char events; /* the events watched for */
1536 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1537 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 1538 unsigned char unused;
1539#if EV_USE_EPOLL
1540 unsigned int egen; /* generation counter to counter epoll bugs */
1541#endif
439#if EV_SELECT_IS_WINSOCKET 1542#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 1543 SOCKET handle;
441#endif 1544#endif
1545#if EV_USE_IOCP
1546 OVERLAPPED or, ow;
1547#endif
442} ANFD; 1548} ANFD;
443 1549
1550/* stores the pending event set for a given watcher */
444typedef struct 1551typedef struct
445{ 1552{
446 W w; 1553 W w;
447 int events; 1554 int events; /* the pending event set for the given watcher */
448} ANPENDING; 1555} ANPENDING;
449 1556
450#if EV_USE_INOTIFY 1557#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 1558/* hash table entry per inotify-id */
452typedef struct 1559typedef struct
455} ANFS; 1562} ANFS;
456#endif 1563#endif
457 1564
458/* Heap Entry */ 1565/* Heap Entry */
459#if EV_HEAP_CACHE_AT 1566#if EV_HEAP_CACHE_AT
1567 /* a heap element */
460 typedef struct { 1568 typedef struct {
461 ev_tstamp at; 1569 ev_tstamp at;
462 WT w; 1570 WT w;
463 } ANHE; 1571 } ANHE;
464 1572
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1573 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1574 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1575 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 1576#else
1577 /* a heap element */
469 typedef WT ANHE; 1578 typedef WT ANHE;
470 1579
471 #define ANHE_w(he) (he) 1580 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 1581 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 1582 #define ANHE_at_cache(he)
484 #undef VAR 1593 #undef VAR
485 }; 1594 };
486 #include "ev_wrap.h" 1595 #include "ev_wrap.h"
487 1596
488 static struct ev_loop default_loop_struct; 1597 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 1598 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 1599
491#else 1600#else
492 1601
493 ev_tstamp ev_rt_now; 1602 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 1603 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 1604 #include "ev_vars.h"
496 #undef VAR 1605 #undef VAR
497 1606
498 static int ev_default_loop_ptr; 1607 static int ev_default_loop_ptr;
499 1608
500#endif 1609#endif
501 1610
1611#if EV_FEATURE_API
1612# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1613# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1614# define EV_INVOKE_PENDING invoke_cb (EV_A)
1615#else
1616# define EV_RELEASE_CB (void)0
1617# define EV_ACQUIRE_CB (void)0
1618# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1619#endif
1620
1621#define EVBREAK_RECURSE 0x80
1622
502/*****************************************************************************/ 1623/*****************************************************************************/
503 1624
1625#ifndef EV_HAVE_EV_TIME
504ev_tstamp 1626ev_tstamp
505ev_time (void) 1627ev_time (void) EV_THROW
506{ 1628{
507#if EV_USE_REALTIME 1629#if EV_USE_REALTIME
1630 if (expect_true (have_realtime))
1631 {
508 struct timespec ts; 1632 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 1633 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 1634 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 1635 }
1636#endif
1637
512 struct timeval tv; 1638 struct timeval tv;
513 gettimeofday (&tv, 0); 1639 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 1640 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 1641}
1642#endif
517 1643
518ev_tstamp inline_size 1644inline_size ev_tstamp
519get_clock (void) 1645get_clock (void)
520{ 1646{
521#if EV_USE_MONOTONIC 1647#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 1648 if (expect_true (have_monotonic))
523 { 1649 {
530 return ev_time (); 1656 return ev_time ();
531} 1657}
532 1658
533#if EV_MULTIPLICITY 1659#if EV_MULTIPLICITY
534ev_tstamp 1660ev_tstamp
535ev_now (EV_P) 1661ev_now (EV_P) EV_THROW
536{ 1662{
537 return ev_rt_now; 1663 return ev_rt_now;
538} 1664}
539#endif 1665#endif
540 1666
541void 1667void
542ev_sleep (ev_tstamp delay) 1668ev_sleep (ev_tstamp delay) EV_THROW
543{ 1669{
544 if (delay > 0.) 1670 if (delay > 0.)
545 { 1671 {
546#if EV_USE_NANOSLEEP 1672#if EV_USE_NANOSLEEP
547 struct timespec ts; 1673 struct timespec ts;
548 1674
549 ts.tv_sec = (time_t)delay; 1675 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 1676 nanosleep (&ts, 0);
553#elif defined(_WIN32) 1677#elif defined _WIN32
554 Sleep ((unsigned long)(delay * 1e3)); 1678 Sleep ((unsigned long)(delay * 1e3));
555#else 1679#else
556 struct timeval tv; 1680 struct timeval tv;
557 1681
558 tv.tv_sec = (time_t)delay; 1682 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1683 /* something not guaranteed by newer posix versions, but guaranteed */
560 1684 /* by older ones */
1685 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 1686 select (0, 0, 0, 0, &tv);
562#endif 1687#endif
563 } 1688 }
564} 1689}
565 1690
566/*****************************************************************************/ 1691/*****************************************************************************/
567 1692
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1693#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 1694
570int inline_size 1695/* find a suitable new size for the given array, */
1696/* hopefully by rounding to a nice-to-malloc size */
1697inline_size int
571array_nextsize (int elem, int cur, int cnt) 1698array_nextsize (int elem, int cur, int cnt)
572{ 1699{
573 int ncur = cur + 1; 1700 int ncur = cur + 1;
574 1701
575 do 1702 do
576 ncur <<= 1; 1703 ncur <<= 1;
577 while (cnt > ncur); 1704 while (cnt > ncur);
578 1705
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1706 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1707 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 1708 {
582 ncur *= elem; 1709 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1710 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 1711 ncur = ncur - sizeof (void *) * 4;
586 } 1713 }
587 1714
588 return ncur; 1715 return ncur;
589} 1716}
590 1717
591static noinline void * 1718static void * noinline ecb_cold
592array_realloc (int elem, void *base, int *cur, int cnt) 1719array_realloc (int elem, void *base, int *cur, int cnt)
593{ 1720{
594 *cur = array_nextsize (elem, *cur, cnt); 1721 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 1722 return ev_realloc (base, elem * *cur);
596} 1723}
1724
1725#define array_init_zero(base,count) \
1726 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 1727
598#define array_needsize(type,base,cur,cnt,init) \ 1728#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 1729 if (expect_false ((cnt) > (cur))) \
600 { \ 1730 { \
601 int ocur_ = (cur); \ 1731 int ecb_unused ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 1732 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 1733 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 1734 init ((base) + (ocur_), (cur) - ocur_); \
605 } 1735 }
606 1736
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1743 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 1744 }
615#endif 1745#endif
616 1746
617#define array_free(stem, idx) \ 1747#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1748 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 1749
620/*****************************************************************************/ 1750/*****************************************************************************/
621 1751
1752/* dummy callback for pending events */
1753static void noinline
1754pendingcb (EV_P_ ev_prepare *w, int revents)
1755{
1756}
1757
622void noinline 1758void noinline
623ev_feed_event (EV_P_ void *w, int revents) 1759ev_feed_event (EV_P_ void *w, int revents) EV_THROW
624{ 1760{
625 W w_ = (W)w; 1761 W w_ = (W)w;
626 int pri = ABSPRI (w_); 1762 int pri = ABSPRI (w_);
627 1763
628 if (expect_false (w_->pending)) 1764 if (expect_false (w_->pending))
632 w_->pending = ++pendingcnt [pri]; 1768 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1769 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_; 1770 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 1771 pendings [pri][w_->pending - 1].events = revents;
636 } 1772 }
637}
638 1773
639void inline_speed 1774 pendingpri = NUMPRI - 1;
1775}
1776
1777inline_speed void
1778feed_reverse (EV_P_ W w)
1779{
1780 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1781 rfeeds [rfeedcnt++] = w;
1782}
1783
1784inline_size void
1785feed_reverse_done (EV_P_ int revents)
1786{
1787 do
1788 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1789 while (rfeedcnt);
1790}
1791
1792inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 1793queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 1794{
642 int i; 1795 int i;
643 1796
644 for (i = 0; i < eventcnt; ++i) 1797 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 1798 ev_feed_event (EV_A_ events [i], type);
646} 1799}
647 1800
648/*****************************************************************************/ 1801/*****************************************************************************/
649 1802
650void inline_size 1803inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 1804fd_event_nocheck (EV_P_ int fd, int revents)
665{ 1805{
666 ANFD *anfd = anfds + fd; 1806 ANFD *anfd = anfds + fd;
667 ev_io *w; 1807 ev_io *w;
668 1808
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1809 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 1813 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 1814 ev_feed_event (EV_A_ (W)w, ev);
675 } 1815 }
676} 1816}
677 1817
1818/* do not submit kernel events for fds that have reify set */
1819/* because that means they changed while we were polling for new events */
1820inline_speed void
1821fd_event (EV_P_ int fd, int revents)
1822{
1823 ANFD *anfd = anfds + fd;
1824
1825 if (expect_true (!anfd->reify))
1826 fd_event_nocheck (EV_A_ fd, revents);
1827}
1828
678void 1829void
679ev_feed_fd_event (EV_P_ int fd, int revents) 1830ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
680{ 1831{
681 if (fd >= 0 && fd < anfdmax) 1832 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 1833 fd_event_nocheck (EV_A_ fd, revents);
683} 1834}
684 1835
685void inline_size 1836/* make sure the external fd watch events are in-sync */
1837/* with the kernel/libev internal state */
1838inline_size void
686fd_reify (EV_P) 1839fd_reify (EV_P)
687{ 1840{
688 int i; 1841 int i;
1842
1843#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1844 for (i = 0; i < fdchangecnt; ++i)
1845 {
1846 int fd = fdchanges [i];
1847 ANFD *anfd = anfds + fd;
1848
1849 if (anfd->reify & EV__IOFDSET && anfd->head)
1850 {
1851 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1852
1853 if (handle != anfd->handle)
1854 {
1855 unsigned long arg;
1856
1857 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1858
1859 /* handle changed, but fd didn't - we need to do it in two steps */
1860 backend_modify (EV_A_ fd, anfd->events, 0);
1861 anfd->events = 0;
1862 anfd->handle = handle;
1863 }
1864 }
1865 }
1866#endif
689 1867
690 for (i = 0; i < fdchangecnt; ++i) 1868 for (i = 0; i < fdchangecnt; ++i)
691 { 1869 {
692 int fd = fdchanges [i]; 1870 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 1871 ANFD *anfd = anfds + fd;
694 ev_io *w; 1872 ev_io *w;
695 1873
696 unsigned char events = 0; 1874 unsigned char o_events = anfd->events;
1875 unsigned char o_reify = anfd->reify;
697 1876
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1877 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 1878
701#if EV_SELECT_IS_WINSOCKET 1879 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 1880 {
704 unsigned long argp; 1881 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 1882
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1883 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 1884 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 1885
709 #endif 1886 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1887 o_reify = EV__IOFDSET; /* actually |= */
711 } 1888 }
712#endif
713 1889
714 { 1890 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 1891 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 1892 }
725 1893
726 fdchangecnt = 0; 1894 fdchangecnt = 0;
727} 1895}
728 1896
729void inline_size 1897/* something about the given fd changed */
1898inline_size void
730fd_change (EV_P_ int fd, int flags) 1899fd_change (EV_P_ int fd, int flags)
731{ 1900{
732 unsigned char reify = anfds [fd].reify; 1901 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1902 anfds [fd].reify |= flags;
734 1903
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1907 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1908 fdchanges [fdchangecnt - 1] = fd;
740 } 1909 }
741} 1910}
742 1911
743void inline_speed 1912/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1913inline_speed void ecb_cold
744fd_kill (EV_P_ int fd) 1914fd_kill (EV_P_ int fd)
745{ 1915{
746 ev_io *w; 1916 ev_io *w;
747 1917
748 while ((w = (ev_io *)anfds [fd].head)) 1918 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1920 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1921 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1922 }
753} 1923}
754 1924
755int inline_size 1925/* check whether the given fd is actually valid, for error recovery */
1926inline_size int ecb_cold
756fd_valid (int fd) 1927fd_valid (int fd)
757{ 1928{
758#ifdef _WIN32 1929#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1930 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1931#else
761 return fcntl (fd, F_GETFD) != -1; 1932 return fcntl (fd, F_GETFD) != -1;
762#endif 1933#endif
763} 1934}
764 1935
765/* called on EBADF to verify fds */ 1936/* called on EBADF to verify fds */
766static void noinline 1937static void noinline ecb_cold
767fd_ebadf (EV_P) 1938fd_ebadf (EV_P)
768{ 1939{
769 int fd; 1940 int fd;
770 1941
771 for (fd = 0; fd < anfdmax; ++fd) 1942 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1943 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1944 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1945 fd_kill (EV_A_ fd);
775} 1946}
776 1947
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1948/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1949static void noinline ecb_cold
779fd_enomem (EV_P) 1950fd_enomem (EV_P)
780{ 1951{
781 int fd; 1952 int fd;
782 1953
783 for (fd = anfdmax; fd--; ) 1954 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1955 if (anfds [fd].events)
785 { 1956 {
786 fd_kill (EV_A_ fd); 1957 fd_kill (EV_A_ fd);
787 return; 1958 break;
788 } 1959 }
789} 1960}
790 1961
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1962/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1963static void noinline
796 1967
797 for (fd = 0; fd < anfdmax; ++fd) 1968 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1969 if (anfds [fd].events)
799 { 1970 {
800 anfds [fd].events = 0; 1971 anfds [fd].events = 0;
1972 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1973 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1974 }
803} 1975}
804 1976
1977/* used to prepare libev internal fd's */
1978/* this is not fork-safe */
1979inline_speed void
1980fd_intern (int fd)
1981{
1982#ifdef _WIN32
1983 unsigned long arg = 1;
1984 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1985#else
1986 fcntl (fd, F_SETFD, FD_CLOEXEC);
1987 fcntl (fd, F_SETFL, O_NONBLOCK);
1988#endif
1989}
1990
805/*****************************************************************************/ 1991/*****************************************************************************/
806 1992
807/* 1993/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1994 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1996 * the branching factor of the d-tree.
811 */ 1997 */
812 1998
813/* 1999/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 2010#define UPHEAP_DONE(p,k) ((p) == (k))
825 2011
826/* away from the root */ 2012/* away from the root */
827void inline_speed 2013inline_speed void
828downheap (ANHE *heap, int N, int k) 2014downheap (ANHE *heap, int N, int k)
829{ 2015{
830 ANHE he = heap [k]; 2016 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 2017 ANHE *E = heap + N + HEAP0;
832 2018
872#define HEAP0 1 2058#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 2059#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 2060#define UPHEAP_DONE(p,k) (!(p))
875 2061
876/* away from the root */ 2062/* away from the root */
877void inline_speed 2063inline_speed void
878downheap (ANHE *heap, int N, int k) 2064downheap (ANHE *heap, int N, int k)
879{ 2065{
880 ANHE he = heap [k]; 2066 ANHE he = heap [k];
881 2067
882 for (;;) 2068 for (;;)
883 { 2069 {
884 int c = k << 1; 2070 int c = k << 1;
885 2071
886 if (c > N + HEAP0 - 1) 2072 if (c >= N + HEAP0)
887 break; 2073 break;
888 2074
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 2076 ? 1 : 0;
891 2077
902 ev_active (ANHE_w (he)) = k; 2088 ev_active (ANHE_w (he)) = k;
903} 2089}
904#endif 2090#endif
905 2091
906/* towards the root */ 2092/* towards the root */
907void inline_speed 2093inline_speed void
908upheap (ANHE *heap, int k) 2094upheap (ANHE *heap, int k)
909{ 2095{
910 ANHE he = heap [k]; 2096 ANHE he = heap [k];
911 2097
912 for (;;) 2098 for (;;)
923 2109
924 heap [k] = he; 2110 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 2111 ev_active (ANHE_w (he)) = k;
926} 2112}
927 2113
928void inline_size 2114/* move an element suitably so it is in a correct place */
2115inline_size void
929adjustheap (ANHE *heap, int N, int k) 2116adjustheap (ANHE *heap, int N, int k)
930{ 2117{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 2119 upheap (heap, k);
933 else 2120 else
934 downheap (heap, N, k); 2121 downheap (heap, N, k);
935} 2122}
936 2123
937/* rebuild the heap: this function is used only once and executed rarely */ 2124/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 2125inline_size void
939reheap (ANHE *heap, int N) 2126reheap (ANHE *heap, int N)
940{ 2127{
941 int i; 2128 int i;
942 2129
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 2133 upheap (heap, i + HEAP0);
947} 2134}
948 2135
949/*****************************************************************************/ 2136/*****************************************************************************/
950 2137
2138/* associate signal watchers to a signal signal */
951typedef struct 2139typedef struct
952{ 2140{
2141 EV_ATOMIC_T pending;
2142#if EV_MULTIPLICITY
2143 EV_P;
2144#endif
953 WL head; 2145 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 2146} ANSIG;
956 2147
957static ANSIG *signals; 2148static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 2149
974/*****************************************************************************/ 2150/*****************************************************************************/
975 2151
976void inline_speed 2152#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 2153
988static void noinline 2154static void noinline ecb_cold
989evpipe_init (EV_P) 2155evpipe_init (EV_P)
990{ 2156{
991 if (!ev_is_active (&pipeev)) 2157 if (!ev_is_active (&pipe_w))
2158 {
2159 int fds [2];
2160
2161# if EV_USE_EVENTFD
2162 fds [0] = -1;
2163 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2164 if (fds [1] < 0 && errno == EINVAL)
2165 fds [1] = eventfd (0, 0);
2166
2167 if (fds [1] < 0)
2168# endif
2169 {
2170 while (pipe (fds))
2171 ev_syserr ("(libev) error creating signal/async pipe");
2172
2173 fd_intern (fds [0]);
2174 }
2175
2176 evpipe [0] = fds [0];
2177
2178 if (evpipe [1] < 0)
2179 evpipe [1] = fds [1]; /* first call, set write fd */
2180 else
2181 {
2182 /* on subsequent calls, do not change evpipe [1] */
2183 /* so that evpipe_write can always rely on its value. */
2184 /* this branch does not do anything sensible on windows, */
2185 /* so must not be executed on windows */
2186
2187 dup2 (fds [1], evpipe [1]);
2188 close (fds [1]);
2189 }
2190
2191 fd_intern (evpipe [1]);
2192
2193 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2194 ev_io_start (EV_A_ &pipe_w);
2195 ev_unref (EV_A); /* watcher should not keep loop alive */
992 { 2196 }
2197}
2198
2199inline_speed void
2200evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2201{
2202 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2203
2204 if (expect_true (*flag))
2205 return;
2206
2207 *flag = 1;
2208 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2209
2210 pipe_write_skipped = 1;
2211
2212 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2213
2214 if (pipe_write_wanted)
2215 {
2216 int old_errno;
2217
2218 pipe_write_skipped = 0;
2219 ECB_MEMORY_FENCE_RELEASE;
2220
2221 old_errno = errno; /* save errno because write will clobber it */
2222
993#if EV_USE_EVENTFD 2223#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0) 2224 if (evpipe [0] < 0)
995 { 2225 {
996 evpipe [0] = -1; 2226 uint64_t counter = 1;
997 fd_intern (evfd); 2227 write (evpipe [1], &counter, sizeof (uint64_t));
998 ev_io_set (&pipeev, evfd, EV_READ);
999 } 2228 }
1000 else 2229 else
1001#endif 2230#endif
1002 { 2231 {
1003 while (pipe (evpipe)) 2232#ifdef _WIN32
1004 syserr ("(libev) error creating signal/async pipe"); 2233 WSABUF buf;
1005 2234 DWORD sent;
1006 fd_intern (evpipe [0]); 2235 buf.buf = &buf;
1007 fd_intern (evpipe [1]); 2236 buf.len = 1;
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 2237 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2238#else
2239 write (evpipe [1], &(evpipe [1]), 1);
2240#endif
1009 } 2241 }
1010 2242
1011 ev_io_start (EV_A_ &pipeev); 2243 errno = old_errno;
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 { 2244 }
1021 int old_errno = errno; /* save errno because write might clobber it */ 2245}
1022 2246
1023 *flag = 1; 2247/* called whenever the libev signal pipe */
2248/* got some events (signal, async) */
2249static void
2250pipecb (EV_P_ ev_io *iow, int revents)
2251{
2252 int i;
1024 2253
2254 if (revents & EV_READ)
2255 {
1025#if EV_USE_EVENTFD 2256#if EV_USE_EVENTFD
1026 if (evfd >= 0) 2257 if (evpipe [0] < 0)
1027 { 2258 {
1028 uint64_t counter = 1; 2259 uint64_t counter;
1029 write (evfd, &counter, sizeof (uint64_t)); 2260 read (evpipe [1], &counter, sizeof (uint64_t));
1030 } 2261 }
1031 else 2262 else
1032#endif 2263#endif
1033 write (evpipe [1], &old_errno, 1); 2264 {
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy; 2265 char dummy[4];
2266#ifdef _WIN32
2267 WSABUF buf;
2268 DWORD recvd;
2269 DWORD flags = 0;
2270 buf.buf = dummy;
2271 buf.len = sizeof (dummy);
2272 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2273#else
1052 read (evpipe [0], &dummy, 1); 2274 read (evpipe [0], &dummy, sizeof (dummy));
2275#endif
2276 }
2277 }
2278
2279 pipe_write_skipped = 0;
2280
2281 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2282
2283#if EV_SIGNAL_ENABLE
2284 if (sig_pending)
1053 } 2285 {
2286 sig_pending = 0;
1054 2287
1055 if (gotsig && ev_is_default_loop (EV_A)) 2288 ECB_MEMORY_FENCE;
1056 {
1057 int signum;
1058 gotsig = 0;
1059 2289
1060 for (signum = signalmax; signum--; ) 2290 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 2291 if (expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 2292 ev_feed_signal_event (EV_A_ i + 1);
1063 } 2293 }
2294#endif
1064 2295
1065#if EV_ASYNC_ENABLE 2296#if EV_ASYNC_ENABLE
1066 if (gotasync) 2297 if (async_pending)
1067 { 2298 {
1068 int i; 2299 async_pending = 0;
1069 gotasync = 0; 2300
2301 ECB_MEMORY_FENCE;
1070 2302
1071 for (i = asynccnt; i--; ) 2303 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 2304 if (asyncs [i]->sent)
1073 { 2305 {
1074 asyncs [i]->sent = 0; 2306 asyncs [i]->sent = 0;
2307 ECB_MEMORY_FENCE_RELEASE;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2308 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 } 2309 }
1077 } 2310 }
1078#endif 2311#endif
1079} 2312}
1080 2313
1081/*****************************************************************************/ 2314/*****************************************************************************/
1082 2315
2316void
2317ev_feed_signal (int signum) EV_THROW
2318{
2319#if EV_MULTIPLICITY
2320 EV_P;
2321 ECB_MEMORY_FENCE_ACQUIRE;
2322 EV_A = signals [signum - 1].loop;
2323
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328 signals [signum - 1].pending = 1;
2329 evpipe_write (EV_A_ &sig_pending);
2330}
2331
1083static void 2332static void
1084ev_sighandler (int signum) 2333ev_sighandler (int signum)
1085{ 2334{
2335#ifdef _WIN32
2336 signal (signum, ev_sighandler);
2337#endif
2338
2339 ev_feed_signal (signum);
2340}
2341
2342void noinline
2343ev_feed_signal_event (EV_P_ int signum) EV_THROW
2344{
2345 WL w;
2346
2347 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2348 return;
2349
2350 --signum;
2351
1086#if EV_MULTIPLICITY 2352#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 2353 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 2354 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 2355
1090#if _WIN32 2356 if (expect_false (signals [signum].loop != EV_A))
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 2357 return;
2358#endif
1111 2359
1112 signals [signum].gotsig = 0; 2360 signals [signum].pending = 0;
2361 ECB_MEMORY_FENCE_RELEASE;
1113 2362
1114 for (w = signals [signum].head; w; w = w->next) 2363 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2364 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 2365}
1117 2366
2367#if EV_USE_SIGNALFD
2368static void
2369sigfdcb (EV_P_ ev_io *iow, int revents)
2370{
2371 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2372
2373 for (;;)
2374 {
2375 ssize_t res = read (sigfd, si, sizeof (si));
2376
2377 /* not ISO-C, as res might be -1, but works with SuS */
2378 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2379 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2380
2381 if (res < (ssize_t)sizeof (si))
2382 break;
2383 }
2384}
2385#endif
2386
2387#endif
2388
1118/*****************************************************************************/ 2389/*****************************************************************************/
1119 2390
2391#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 2392static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 2393
1124static ev_signal childev; 2394static ev_signal childev;
1125 2395
1126#ifndef WIFCONTINUED 2396#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 2397# define WIFCONTINUED(status) 0
1128#endif 2398#endif
1129 2399
1130void inline_speed 2400/* handle a single child status event */
2401inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 2402child_reap (EV_P_ int chain, int pid, int status)
1132{ 2403{
1133 ev_child *w; 2404 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2405 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 2406
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2407 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 { 2408 {
1138 if ((w->pid == pid || !w->pid) 2409 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1))) 2410 && (!traced || (w->flags & 1)))
1140 { 2411 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2412 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1148 2419
1149#ifndef WCONTINUED 2420#ifndef WCONTINUED
1150# define WCONTINUED 0 2421# define WCONTINUED 0
1151#endif 2422#endif
1152 2423
2424/* called on sigchld etc., calls waitpid */
1153static void 2425static void
1154childcb (EV_P_ ev_signal *sw, int revents) 2426childcb (EV_P_ ev_signal *sw, int revents)
1155{ 2427{
1156 int pid, status; 2428 int pid, status;
1157 2429
1165 /* make sure we are called again until all children have been reaped */ 2437 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */ 2438 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2439 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168 2440
1169 child_reap (EV_A_ pid, pid, status); 2441 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1) 2442 if ((EV_PID_HASHSIZE) > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2443 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172} 2444}
1173 2445
1174#endif 2446#endif
1175 2447
1176/*****************************************************************************/ 2448/*****************************************************************************/
1177 2449
2450#if EV_USE_IOCP
2451# include "ev_iocp.c"
2452#endif
1178#if EV_USE_PORT 2453#if EV_USE_PORT
1179# include "ev_port.c" 2454# include "ev_port.c"
1180#endif 2455#endif
1181#if EV_USE_KQUEUE 2456#if EV_USE_KQUEUE
1182# include "ev_kqueue.c" 2457# include "ev_kqueue.c"
1189#endif 2464#endif
1190#if EV_USE_SELECT 2465#if EV_USE_SELECT
1191# include "ev_select.c" 2466# include "ev_select.c"
1192#endif 2467#endif
1193 2468
1194int 2469int ecb_cold
1195ev_version_major (void) 2470ev_version_major (void) EV_THROW
1196{ 2471{
1197 return EV_VERSION_MAJOR; 2472 return EV_VERSION_MAJOR;
1198} 2473}
1199 2474
1200int 2475int ecb_cold
1201ev_version_minor (void) 2476ev_version_minor (void) EV_THROW
1202{ 2477{
1203 return EV_VERSION_MINOR; 2478 return EV_VERSION_MINOR;
1204} 2479}
1205 2480
1206/* return true if we are running with elevated privileges and should ignore env variables */ 2481/* return true if we are running with elevated privileges and should ignore env variables */
1207int inline_size 2482int inline_size ecb_cold
1208enable_secure (void) 2483enable_secure (void)
1209{ 2484{
1210#ifdef _WIN32 2485#ifdef _WIN32
1211 return 0; 2486 return 0;
1212#else 2487#else
1213 return getuid () != geteuid () 2488 return getuid () != geteuid ()
1214 || getgid () != getegid (); 2489 || getgid () != getegid ();
1215#endif 2490#endif
1216} 2491}
1217 2492
1218unsigned int 2493unsigned int ecb_cold
1219ev_supported_backends (void) 2494ev_supported_backends (void) EV_THROW
1220{ 2495{
1221 unsigned int flags = 0; 2496 unsigned int flags = 0;
1222 2497
1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2498 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2499 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2502 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228 2503
1229 return flags; 2504 return flags;
1230} 2505}
1231 2506
1232unsigned int 2507unsigned int ecb_cold
1233ev_recommended_backends (void) 2508ev_recommended_backends (void) EV_THROW
1234{ 2509{
1235 unsigned int flags = ev_supported_backends (); 2510 unsigned int flags = ev_supported_backends ();
1236 2511
1237#ifndef __NetBSD__ 2512#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */ 2513 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 2514 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 2515 flags &= ~EVBACKEND_KQUEUE;
1241#endif 2516#endif
1242#ifdef __APPLE__ 2517#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 2518 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 2519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2521#endif
2522#ifdef __FreeBSD__
2523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1245#endif 2524#endif
1246 2525
1247 return flags; 2526 return flags;
1248} 2527}
1249 2528
2529unsigned int ecb_cold
2530ev_embeddable_backends (void) EV_THROW
2531{
2532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2533
2534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2535 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2536 flags &= ~EVBACKEND_EPOLL;
2537
2538 return flags;
2539}
2540
1250unsigned int 2541unsigned int
1251ev_embeddable_backends (void) 2542ev_backend (EV_P) EV_THROW
1252{ 2543{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2544 return backend;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260} 2545}
1261 2546
2547#if EV_FEATURE_API
1262unsigned int 2548unsigned int
1263ev_backend (EV_P) 2549ev_iteration (EV_P) EV_THROW
1264{ 2550{
1265 return backend; 2551 return loop_count;
1266} 2552}
1267 2553
1268unsigned int 2554unsigned int
1269ev_loop_count (EV_P) 2555ev_depth (EV_P) EV_THROW
1270{ 2556{
1271 return loop_count; 2557 return loop_depth;
1272} 2558}
1273 2559
1274void 2560void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2561ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1276{ 2562{
1277 io_blocktime = interval; 2563 io_blocktime = interval;
1278} 2564}
1279 2565
1280void 2566void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1282{ 2568{
1283 timeout_blocktime = interval; 2569 timeout_blocktime = interval;
1284} 2570}
1285 2571
2572void
2573ev_set_userdata (EV_P_ void *data) EV_THROW
2574{
2575 userdata = data;
2576}
2577
2578void *
2579ev_userdata (EV_P) EV_THROW
2580{
2581 return userdata;
2582}
2583
2584void
2585ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2586{
2587 invoke_cb = invoke_pending_cb;
2588}
2589
2590void
2591ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2592{
2593 release_cb = release;
2594 acquire_cb = acquire;
2595}
2596#endif
2597
2598/* initialise a loop structure, must be zero-initialised */
1286static void noinline 2599static void noinline ecb_cold
1287loop_init (EV_P_ unsigned int flags) 2600loop_init (EV_P_ unsigned int flags) EV_THROW
1288{ 2601{
1289 if (!backend) 2602 if (!backend)
1290 { 2603 {
2604 origflags = flags;
2605
2606#if EV_USE_REALTIME
2607 if (!have_realtime)
2608 {
2609 struct timespec ts;
2610
2611 if (!clock_gettime (CLOCK_REALTIME, &ts))
2612 have_realtime = 1;
2613 }
2614#endif
2615
1291#if EV_USE_MONOTONIC 2616#if EV_USE_MONOTONIC
2617 if (!have_monotonic)
1292 { 2618 {
1293 struct timespec ts; 2619 struct timespec ts;
2620
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 2622 have_monotonic = 1;
1296 } 2623 }
1297#endif
1298
1299 ev_rt_now = ev_time ();
1300 mn_now = get_clock ();
1301 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif 2624#endif
1312 2625
1313 /* pid check not overridable via env */ 2626 /* pid check not overridable via env */
1314#ifndef _WIN32 2627#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK) 2628 if (flags & EVFLAG_FORKCHECK)
1319 if (!(flags & EVFLAG_NOENV) 2632 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure () 2633 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS")) 2634 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS")); 2635 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 2636
1324 if (!(flags & 0x0000ffffU)) 2637 ev_rt_now = ev_time ();
2638 mn_now = get_clock ();
2639 now_floor = mn_now;
2640 rtmn_diff = ev_rt_now - mn_now;
2641#if EV_FEATURE_API
2642 invoke_cb = ev_invoke_pending;
2643#endif
2644
2645 io_blocktime = 0.;
2646 timeout_blocktime = 0.;
2647 backend = 0;
2648 backend_fd = -1;
2649 sig_pending = 0;
2650#if EV_ASYNC_ENABLE
2651 async_pending = 0;
2652#endif
2653 pipe_write_skipped = 0;
2654 pipe_write_wanted = 0;
2655 evpipe [0] = -1;
2656 evpipe [1] = -1;
2657#if EV_USE_INOTIFY
2658 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2659#endif
2660#if EV_USE_SIGNALFD
2661 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2662#endif
2663
2664 if (!(flags & EVBACKEND_MASK))
1325 flags |= ev_recommended_backends (); 2665 flags |= ev_recommended_backends ();
1326 2666
2667#if EV_USE_IOCP
2668 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2669#endif
1327#if EV_USE_PORT 2670#if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1329#endif 2672#endif
1330#if EV_USE_KQUEUE 2673#if EV_USE_KQUEUE
1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2674 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1338#endif 2681#endif
1339#if EV_USE_SELECT 2682#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 2684#endif
1342 2685
2686 ev_prepare_init (&pending_w, pendingcb);
2687
2688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 2689 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 2690 ev_set_priority (&pipe_w, EV_MAXPRI);
2691#endif
1345 } 2692 }
1346} 2693}
1347 2694
1348static void noinline 2695/* free up a loop structure */
2696void ecb_cold
1349loop_destroy (EV_P) 2697ev_loop_destroy (EV_P)
1350{ 2698{
1351 int i; 2699 int i;
1352 2700
2701#if EV_MULTIPLICITY
2702 /* mimic free (0) */
2703 if (!EV_A)
2704 return;
2705#endif
2706
2707#if EV_CLEANUP_ENABLE
2708 /* queue cleanup watchers (and execute them) */
2709 if (expect_false (cleanupcnt))
2710 {
2711 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2712 EV_INVOKE_PENDING;
2713 }
2714#endif
2715
2716#if EV_CHILD_ENABLE
2717 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2718 {
2719 ev_ref (EV_A); /* child watcher */
2720 ev_signal_stop (EV_A_ &childev);
2721 }
2722#endif
2723
1353 if (ev_is_active (&pipeev)) 2724 if (ev_is_active (&pipe_w))
1354 { 2725 {
1355 ev_ref (EV_A); /* signal watcher */ 2726 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 2727 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 2728
2729 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2730 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2731 }
2732
1358#if EV_USE_EVENTFD 2733#if EV_USE_SIGNALFD
1359 if (evfd >= 0) 2734 if (ev_is_active (&sigfd_w))
1360 close (evfd); 2735 close (sigfd);
1361#endif 2736#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369 2737
1370#if EV_USE_INOTIFY 2738#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 2739 if (fs_fd >= 0)
1372 close (fs_fd); 2740 close (fs_fd);
1373#endif 2741#endif
1374 2742
1375 if (backend_fd >= 0) 2743 if (backend_fd >= 0)
1376 close (backend_fd); 2744 close (backend_fd);
1377 2745
2746#if EV_USE_IOCP
2747 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2748#endif
1378#if EV_USE_PORT 2749#if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2750 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1380#endif 2751#endif
1381#if EV_USE_KQUEUE 2752#if EV_USE_KQUEUE
1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2753 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1397#if EV_IDLE_ENABLE 2768#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 2769 array_free (idle, [i]);
1399#endif 2770#endif
1400 } 2771 }
1401 2772
1402 ev_free (anfds); anfdmax = 0; 2773 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 2774
1404 /* have to use the microsoft-never-gets-it-right macro */ 2775 /* have to use the microsoft-never-gets-it-right macro */
2776 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 2777 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 2778 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 2780 array_free (periodic, EMPTY);
1409#endif 2781#endif
1410#if EV_FORK_ENABLE 2782#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY); 2783 array_free (fork, EMPTY);
1412#endif 2784#endif
2785#if EV_CLEANUP_ENABLE
2786 array_free (cleanup, EMPTY);
2787#endif
1413 array_free (prepare, EMPTY); 2788 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY); 2789 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE 2790#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY); 2791 array_free (async, EMPTY);
1417#endif 2792#endif
1418 2793
1419 backend = 0; 2794 backend = 0;
2795
2796#if EV_MULTIPLICITY
2797 if (ev_is_default_loop (EV_A))
2798#endif
2799 ev_default_loop_ptr = 0;
2800#if EV_MULTIPLICITY
2801 else
2802 ev_free (EV_A);
2803#endif
1420} 2804}
1421 2805
1422#if EV_USE_INOTIFY 2806#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 2807inline_size void infy_fork (EV_P);
1424#endif 2808#endif
1425 2809
1426void inline_size 2810inline_size void
1427loop_fork (EV_P) 2811loop_fork (EV_P)
1428{ 2812{
1429#if EV_USE_PORT 2813#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 2815#endif
1437#endif 2821#endif
1438#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 2823 infy_fork (EV_A);
1440#endif 2824#endif
1441 2825
2826#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1442 if (ev_is_active (&pipeev)) 2827 if (ev_is_active (&pipe_w))
1443 { 2828 {
1444 /* this "locks" the handlers against writing to the pipe */ 2829 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1450 2830
1451 ev_ref (EV_A); 2831 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 2832 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458 2833
1459 if (evpipe [0] >= 0) 2834 if (evpipe [0] >= 0)
1460 { 2835 EV_WIN32_CLOSE_FD (evpipe [0]);
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 2836
1465 evpipe_init (EV_A); 2837 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 2838 /* iterate over everything, in case we missed something before */
1467 pipecb (EV_A_ &pipeev, EV_READ); 2839 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1468 } 2840 }
2841#endif
1469 2842
1470 postfork = 0; 2843 postfork = 0;
1471} 2844}
1472 2845
1473#if EV_MULTIPLICITY 2846#if EV_MULTIPLICITY
1474 2847
1475struct ev_loop * 2848struct ev_loop * ecb_cold
1476ev_loop_new (unsigned int flags) 2849ev_loop_new (unsigned int flags) EV_THROW
1477{ 2850{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2851 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 2852
1480 memset (loop, 0, sizeof (struct ev_loop)); 2853 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 2854 loop_init (EV_A_ flags);
1483 2855
1484 if (ev_backend (EV_A)) 2856 if (ev_backend (EV_A))
1485 return loop; 2857 return EV_A;
1486 2858
2859 ev_free (EV_A);
1487 return 0; 2860 return 0;
1488} 2861}
1489 2862
1490void 2863#endif /* multiplicity */
1491ev_loop_destroy (EV_P)
1492{
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495}
1496
1497void
1498ev_loop_fork (EV_P)
1499{
1500 postfork = 1; /* must be in line with ev_default_fork */
1501}
1502 2864
1503#if EV_VERIFY 2865#if EV_VERIFY
1504void noinline 2866static void noinline ecb_cold
1505verify_watcher (EV_P_ W w) 2867verify_watcher (EV_P_ W w)
1506{ 2868{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2869 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 2870
1509 if (w->pending) 2871 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2872 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 2873}
1512 2874
1513static void noinline 2875static void noinline ecb_cold
1514verify_heap (EV_P_ ANHE *heap, int N) 2876verify_heap (EV_P_ ANHE *heap, int N)
1515{ 2877{
1516 int i; 2878 int i;
1517 2879
1518 for (i = HEAP0; i < N + HEAP0; ++i) 2880 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 2881 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2882 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2883 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2884 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 2885
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2886 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 2887 }
1526} 2888}
1527 2889
1528static void noinline 2890static void noinline ecb_cold
1529array_verify (EV_P_ W *ws, int cnt) 2891array_verify (EV_P_ W *ws, int cnt)
1530{ 2892{
1531 while (cnt--) 2893 while (cnt--)
1532 { 2894 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2895 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 2896 verify_watcher (EV_A_ ws [cnt]);
1535 } 2897 }
1536} 2898}
1537#endif 2899#endif
1538 2900
1539void 2901#if EV_FEATURE_API
1540ev_loop_verify (EV_P) 2902void ecb_cold
2903ev_verify (EV_P) EV_THROW
1541{ 2904{
1542#if EV_VERIFY 2905#if EV_VERIFY
1543 int i; 2906 int i;
1544 WL w; 2907 WL w, w2;
1545 2908
1546 assert (activecnt >= -1); 2909 assert (activecnt >= -1);
1547 2910
1548 assert (fdchangemax >= fdchangecnt); 2911 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 2912 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2913 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 2914
1552 assert (anfdmax >= 0); 2915 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 2916 for (i = 0; i < anfdmax; ++i)
2917 {
2918 int j = 0;
2919
1554 for (w = anfds [i].head; w; w = w->next) 2920 for (w = w2 = anfds [i].head; w; w = w->next)
1555 { 2921 {
1556 verify_watcher (EV_A_ (W)w); 2922 verify_watcher (EV_A_ (W)w);
2923
2924 if (j++ & 1)
2925 {
2926 assert (("libev: io watcher list contains a loop", w != w2));
2927 w2 = w2->next;
2928 }
2929
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2930 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2931 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 2932 }
2933 }
1560 2934
1561 assert (timermax >= timercnt); 2935 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 2936 verify_heap (EV_A_ timers, timercnt);
1563 2937
1564#if EV_PERIODIC_ENABLE 2938#if EV_PERIODIC_ENABLE
1579#if EV_FORK_ENABLE 2953#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt); 2954 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt); 2955 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif 2956#endif
1583 2957
2958#if EV_CLEANUP_ENABLE
2959 assert (cleanupmax >= cleanupcnt);
2960 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2961#endif
2962
1584#if EV_ASYNC_ENABLE 2963#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt); 2964 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt); 2965 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif 2966#endif
1588 2967
2968#if EV_PREPARE_ENABLE
1589 assert (preparemax >= preparecnt); 2969 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt); 2970 array_verify (EV_A_ (W *)prepares, preparecnt);
2971#endif
1591 2972
2973#if EV_CHECK_ENABLE
1592 assert (checkmax >= checkcnt); 2974 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt); 2975 array_verify (EV_A_ (W *)checks, checkcnt);
2976#endif
1594 2977
1595# if 0 2978# if 0
2979#if EV_CHILD_ENABLE
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2980 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2981 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2982#endif
1598# endif 2983# endif
1599#endif 2984#endif
1600} 2985}
1601 2986#endif
1602#endif /* multiplicity */
1603 2987
1604#if EV_MULTIPLICITY 2988#if EV_MULTIPLICITY
1605struct ev_loop * 2989struct ev_loop * ecb_cold
1606ev_default_loop_init (unsigned int flags)
1607#else 2990#else
1608int 2991int
2992#endif
1609ev_default_loop (unsigned int flags) 2993ev_default_loop (unsigned int flags) EV_THROW
1610#endif
1611{ 2994{
1612 if (!ev_default_loop_ptr) 2995 if (!ev_default_loop_ptr)
1613 { 2996 {
1614#if EV_MULTIPLICITY 2997#if EV_MULTIPLICITY
1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2998 EV_P = ev_default_loop_ptr = &default_loop_struct;
1616#else 2999#else
1617 ev_default_loop_ptr = 1; 3000 ev_default_loop_ptr = 1;
1618#endif 3001#endif
1619 3002
1620 loop_init (EV_A_ flags); 3003 loop_init (EV_A_ flags);
1621 3004
1622 if (ev_backend (EV_A)) 3005 if (ev_backend (EV_A))
1623 { 3006 {
1624#ifndef _WIN32 3007#if EV_CHILD_ENABLE
1625 ev_signal_init (&childev, childcb, SIGCHLD); 3008 ev_signal_init (&childev, childcb, SIGCHLD);
1626 ev_set_priority (&childev, EV_MAXPRI); 3009 ev_set_priority (&childev, EV_MAXPRI);
1627 ev_signal_start (EV_A_ &childev); 3010 ev_signal_start (EV_A_ &childev);
1628 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3011 ev_unref (EV_A); /* child watcher should not keep loop alive */
1629#endif 3012#endif
1634 3017
1635 return ev_default_loop_ptr; 3018 return ev_default_loop_ptr;
1636} 3019}
1637 3020
1638void 3021void
1639ev_default_destroy (void) 3022ev_loop_fork (EV_P) EV_THROW
1640{ 3023{
1641#if EV_MULTIPLICITY 3024 postfork = 1;
1642 struct ev_loop *loop = ev_default_loop_ptr;
1643#endif
1644
1645#ifndef _WIN32
1646 ev_ref (EV_A); /* child watcher */
1647 ev_signal_stop (EV_A_ &childev);
1648#endif
1649
1650 loop_destroy (EV_A);
1651}
1652
1653void
1654ev_default_fork (void)
1655{
1656#if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr;
1658#endif
1659
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */
1662} 3025}
1663 3026
1664/*****************************************************************************/ 3027/*****************************************************************************/
1665 3028
1666void 3029void
1667ev_invoke (EV_P_ void *w, int revents) 3030ev_invoke (EV_P_ void *w, int revents)
1668{ 3031{
1669 EV_CB_INVOKE ((W)w, revents); 3032 EV_CB_INVOKE ((W)w, revents);
1670} 3033}
1671 3034
1672void inline_speed 3035unsigned int
1673call_pending (EV_P) 3036ev_pending_count (EV_P) EV_THROW
1674{ 3037{
1675 int pri; 3038 int pri;
3039 unsigned int count = 0;
1676 3040
1677 for (pri = NUMPRI; pri--; ) 3041 for (pri = NUMPRI; pri--; )
3042 count += pendingcnt [pri];
3043
3044 return count;
3045}
3046
3047void noinline
3048ev_invoke_pending (EV_P)
3049{
3050 pendingpri = NUMPRI;
3051
3052 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3053 {
3054 --pendingpri;
3055
1678 while (pendingcnt [pri]) 3056 while (pendingcnt [pendingpri])
1679 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681
1682 if (expect_true (p->w))
1683 { 3057 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3058 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1685 3059
1686 p->w->pending = 0; 3060 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events); 3061 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK; 3062 EV_FREQUENT_CHECK;
1689 } 3063 }
1690 } 3064 }
1691} 3065}
1692 3066
1693#if EV_IDLE_ENABLE 3067#if EV_IDLE_ENABLE
1694void inline_size 3068/* make idle watchers pending. this handles the "call-idle */
3069/* only when higher priorities are idle" logic */
3070inline_size void
1695idle_reify (EV_P) 3071idle_reify (EV_P)
1696{ 3072{
1697 if (expect_false (idleall)) 3073 if (expect_false (idleall))
1698 { 3074 {
1699 int pri; 3075 int pri;
1711 } 3087 }
1712 } 3088 }
1713} 3089}
1714#endif 3090#endif
1715 3091
1716void inline_size 3092/* make timers pending */
3093inline_size void
1717timers_reify (EV_P) 3094timers_reify (EV_P)
1718{ 3095{
1719 EV_FREQUENT_CHECK; 3096 EV_FREQUENT_CHECK;
1720 3097
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3098 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 { 3099 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3100 do
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 { 3101 {
3102 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3103
3104 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3105
3106 /* first reschedule or stop timer */
3107 if (w->repeat)
3108 {
1730 ev_at (w) += w->repeat; 3109 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now) 3110 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now; 3111 ev_at (w) = mn_now;
1733 3112
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3113 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735 3114
1736 ANHE_at_cache (timers [HEAP0]); 3115 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0); 3116 downheap (timers, timercnt, HEAP0);
3117 }
3118 else
3119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3120
3121 EV_FREQUENT_CHECK;
3122 feed_reverse (EV_A_ (W)w);
1738 } 3123 }
1739 else 3124 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741 3125
1742 EV_FREQUENT_CHECK; 3126 feed_reverse_done (EV_A_ EV_TIMER);
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 } 3127 }
1745} 3128}
1746 3129
1747#if EV_PERIODIC_ENABLE 3130#if EV_PERIODIC_ENABLE
1748void inline_size 3131
3132static void noinline
3133periodic_recalc (EV_P_ ev_periodic *w)
3134{
3135 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3136 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3137
3138 /* the above almost always errs on the low side */
3139 while (at <= ev_rt_now)
3140 {
3141 ev_tstamp nat = at + w->interval;
3142
3143 /* when resolution fails us, we use ev_rt_now */
3144 if (expect_false (nat == at))
3145 {
3146 at = ev_rt_now;
3147 break;
3148 }
3149
3150 at = nat;
3151 }
3152
3153 ev_at (w) = at;
3154}
3155
3156/* make periodics pending */
3157inline_size void
1749periodics_reify (EV_P) 3158periodics_reify (EV_P)
1750{ 3159{
1751 EV_FREQUENT_CHECK; 3160 EV_FREQUENT_CHECK;
1752 3161
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3162 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 { 3163 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3164 do
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 { 3165 {
3166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3167
3168 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3169
3170 /* first reschedule or stop timer */
3171 if (w->reschedule_cb)
3172 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3173 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763 3174
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3175 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765 3176
1766 ANHE_at_cache (periodics [HEAP0]); 3177 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0); 3178 downheap (periodics, periodiccnt, HEAP0);
3179 }
3180 else if (w->interval)
3181 {
3182 periodic_recalc (EV_A_ w);
3183 ANHE_at_cache (periodics [HEAP0]);
3184 downheap (periodics, periodiccnt, HEAP0);
3185 }
3186 else
3187 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3188
3189 EV_FREQUENT_CHECK;
3190 feed_reverse (EV_A_ (W)w);
1768 } 3191 }
1769 else if (w->interval) 3192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777 3193
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3194 feed_reverse_done (EV_A_ EV_PERIODIC);
1793 } 3195 }
1794} 3196}
1795 3197
3198/* simply recalculate all periodics */
3199/* TODO: maybe ensure that at least one event happens when jumping forward? */
1796static void noinline 3200static void noinline ecb_cold
1797periodics_reschedule (EV_P) 3201periodics_reschedule (EV_P)
1798{ 3202{
1799 int i; 3203 int i;
1800 3204
1801 /* adjust periodics after time jump */ 3205 /* adjust periodics after time jump */
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805 3209
1806 if (w->reschedule_cb) 3210 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3211 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval) 3212 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3213 periodic_recalc (EV_A_ w);
1810 3214
1811 ANHE_at_cache (periodics [i]); 3215 ANHE_at_cache (periodics [i]);
1812 } 3216 }
1813 3217
1814 reheap (periodics, periodiccnt); 3218 reheap (periodics, periodiccnt);
1815} 3219}
1816#endif 3220#endif
1817 3221
1818void inline_speed 3222/* adjust all timers by a given offset */
3223static void noinline ecb_cold
3224timers_reschedule (EV_P_ ev_tstamp adjust)
3225{
3226 int i;
3227
3228 for (i = 0; i < timercnt; ++i)
3229 {
3230 ANHE *he = timers + i + HEAP0;
3231 ANHE_w (*he)->at += adjust;
3232 ANHE_at_cache (*he);
3233 }
3234}
3235
3236/* fetch new monotonic and realtime times from the kernel */
3237/* also detect if there was a timejump, and act accordingly */
3238inline_speed void
1819time_update (EV_P_ ev_tstamp max_block) 3239time_update (EV_P_ ev_tstamp max_block)
1820{ 3240{
1821 int i;
1822
1823#if EV_USE_MONOTONIC 3241#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic)) 3242 if (expect_true (have_monotonic))
1825 { 3243 {
3244 int i;
1826 ev_tstamp odiff = rtmn_diff; 3245 ev_tstamp odiff = rtmn_diff;
1827 3246
1828 mn_now = get_clock (); 3247 mn_now = get_clock ();
1829 3248
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3249 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1846 * doesn't hurt either as we only do this on time-jumps or 3265 * doesn't hurt either as we only do this on time-jumps or
1847 * in the unlikely event of having been preempted here. 3266 * in the unlikely event of having been preempted here.
1848 */ 3267 */
1849 for (i = 4; --i; ) 3268 for (i = 4; --i; )
1850 { 3269 {
3270 ev_tstamp diff;
1851 rtmn_diff = ev_rt_now - mn_now; 3271 rtmn_diff = ev_rt_now - mn_now;
1852 3272
3273 diff = odiff - rtmn_diff;
3274
1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3275 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1854 return; /* all is well */ 3276 return; /* all is well */
1855 3277
1856 ev_rt_now = ev_time (); 3278 ev_rt_now = ev_time ();
1857 mn_now = get_clock (); 3279 mn_now = get_clock ();
1858 now_floor = mn_now; 3280 now_floor = mn_now;
1859 } 3281 }
1860 3282
3283 /* no timer adjustment, as the monotonic clock doesn't jump */
3284 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1861# if EV_PERIODIC_ENABLE 3285# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A); 3286 periodics_reschedule (EV_A);
1863# endif 3287# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 } 3288 }
1867 else 3289 else
1868#endif 3290#endif
1869 { 3291 {
1870 ev_rt_now = ev_time (); 3292 ev_rt_now = ev_time ();
1871 3293
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3294 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 { 3295 {
3296 /* adjust timers. this is easy, as the offset is the same for all of them */
3297 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1874#if EV_PERIODIC_ENABLE 3298#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A); 3299 periodics_reschedule (EV_A);
1876#endif 3300#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 } 3301 }
1885 3302
1886 mn_now = ev_rt_now; 3303 mn_now = ev_rt_now;
1887 } 3304 }
1888} 3305}
1889 3306
1890void 3307int
1891ev_ref (EV_P)
1892{
1893 ++activecnt;
1894}
1895
1896void
1897ev_unref (EV_P)
1898{
1899 --activecnt;
1900}
1901
1902static int loop_done;
1903
1904void
1905ev_loop (EV_P_ int flags) 3308ev_run (EV_P_ int flags)
1906{ 3309{
3310#if EV_FEATURE_API
3311 ++loop_depth;
3312#endif
3313
3314 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3315
1907 loop_done = EVUNLOOP_CANCEL; 3316 loop_done = EVBREAK_CANCEL;
1908 3317
1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3318 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1910 3319
1911 do 3320 do
1912 { 3321 {
1913#if EV_VERIFY >= 2 3322#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A); 3323 ev_verify (EV_A);
1915#endif 3324#endif
1916 3325
1917#ifndef _WIN32 3326#ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */ 3327 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid)) 3328 if (expect_false (getpid () != curpid))
1927 /* we might have forked, so queue fork handlers */ 3336 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork)) 3337 if (expect_false (postfork))
1929 if (forkcnt) 3338 if (forkcnt)
1930 { 3339 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3340 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A); 3341 EV_INVOKE_PENDING;
1933 } 3342 }
1934#endif 3343#endif
1935 3344
3345#if EV_PREPARE_ENABLE
1936 /* queue prepare watchers (and execute them) */ 3346 /* queue prepare watchers (and execute them) */
1937 if (expect_false (preparecnt)) 3347 if (expect_false (preparecnt))
1938 { 3348 {
1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3349 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1940 call_pending (EV_A); 3350 EV_INVOKE_PENDING;
1941 } 3351 }
3352#endif
1942 3353
1943 if (expect_false (!activecnt)) 3354 if (expect_false (loop_done))
1944 break; 3355 break;
1945 3356
1946 /* we might have forked, so reify kernel state if necessary */ 3357 /* we might have forked, so reify kernel state if necessary */
1947 if (expect_false (postfork)) 3358 if (expect_false (postfork))
1948 loop_fork (EV_A); 3359 loop_fork (EV_A);
1953 /* calculate blocking time */ 3364 /* calculate blocking time */
1954 { 3365 {
1955 ev_tstamp waittime = 0.; 3366 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.; 3367 ev_tstamp sleeptime = 0.;
1957 3368
3369 /* remember old timestamp for io_blocktime calculation */
3370 ev_tstamp prev_mn_now = mn_now;
3371
3372 /* update time to cancel out callback processing overhead */
3373 time_update (EV_A_ 1e100);
3374
3375 /* from now on, we want a pipe-wake-up */
3376 pipe_write_wanted = 1;
3377
3378 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3379
1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3380 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1959 { 3381 {
1960 /* update time to cancel out callback processing overhead */
1961 time_update (EV_A_ 1e100);
1962
1963 waittime = MAX_BLOCKTIME; 3382 waittime = MAX_BLOCKTIME;
1964 3383
1965 if (timercnt) 3384 if (timercnt)
1966 { 3385 {
1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3386 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1968 if (waittime > to) waittime = to; 3387 if (waittime > to) waittime = to;
1969 } 3388 }
1970 3389
1971#if EV_PERIODIC_ENABLE 3390#if EV_PERIODIC_ENABLE
1972 if (periodiccnt) 3391 if (periodiccnt)
1973 { 3392 {
1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3393 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1975 if (waittime > to) waittime = to; 3394 if (waittime > to) waittime = to;
1976 } 3395 }
1977#endif 3396#endif
1978 3397
3398 /* don't let timeouts decrease the waittime below timeout_blocktime */
1979 if (expect_false (waittime < timeout_blocktime)) 3399 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime; 3400 waittime = timeout_blocktime;
1981 3401
1982 sleeptime = waittime - backend_fudge; 3402 /* at this point, we NEED to wait, so we have to ensure */
3403 /* to pass a minimum nonzero value to the backend */
3404 if (expect_false (waittime < backend_mintime))
3405 waittime = backend_mintime;
1983 3406
3407 /* extra check because io_blocktime is commonly 0 */
1984 if (expect_true (sleeptime > io_blocktime)) 3408 if (expect_false (io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 { 3409 {
3410 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3411
3412 if (sleeptime > waittime - backend_mintime)
3413 sleeptime = waittime - backend_mintime;
3414
3415 if (expect_true (sleeptime > 0.))
3416 {
1989 ev_sleep (sleeptime); 3417 ev_sleep (sleeptime);
1990 waittime -= sleeptime; 3418 waittime -= sleeptime;
3419 }
1991 } 3420 }
1992 } 3421 }
1993 3422
3423#if EV_FEATURE_API
1994 ++loop_count; 3424 ++loop_count;
3425#endif
3426 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1995 backend_poll (EV_A_ waittime); 3427 backend_poll (EV_A_ waittime);
3428 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3429
3430 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3431
3432 ECB_MEMORY_FENCE_ACQUIRE;
3433 if (pipe_write_skipped)
3434 {
3435 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3436 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3437 }
3438
1996 3439
1997 /* update ev_rt_now, do magic */ 3440 /* update ev_rt_now, do magic */
1998 time_update (EV_A_ waittime + sleeptime); 3441 time_update (EV_A_ waittime + sleeptime);
1999 } 3442 }
2000 3443
2007#if EV_IDLE_ENABLE 3450#if EV_IDLE_ENABLE
2008 /* queue idle watchers unless other events are pending */ 3451 /* queue idle watchers unless other events are pending */
2009 idle_reify (EV_A); 3452 idle_reify (EV_A);
2010#endif 3453#endif
2011 3454
3455#if EV_CHECK_ENABLE
2012 /* queue check watchers, to be executed first */ 3456 /* queue check watchers, to be executed first */
2013 if (expect_false (checkcnt)) 3457 if (expect_false (checkcnt))
2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3458 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3459#endif
2015 3460
2016 call_pending (EV_A); 3461 EV_INVOKE_PENDING;
2017 } 3462 }
2018 while (expect_true ( 3463 while (expect_true (
2019 activecnt 3464 activecnt
2020 && !loop_done 3465 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3466 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2022 )); 3467 ));
2023 3468
2024 if (loop_done == EVUNLOOP_ONE) 3469 if (loop_done == EVBREAK_ONE)
2025 loop_done = EVUNLOOP_CANCEL; 3470 loop_done = EVBREAK_CANCEL;
3471
3472#if EV_FEATURE_API
3473 --loop_depth;
3474#endif
3475
3476 return activecnt;
2026} 3477}
2027 3478
2028void 3479void
2029ev_unloop (EV_P_ int how) 3480ev_break (EV_P_ int how) EV_THROW
2030{ 3481{
2031 loop_done = how; 3482 loop_done = how;
2032} 3483}
2033 3484
3485void
3486ev_ref (EV_P) EV_THROW
3487{
3488 ++activecnt;
3489}
3490
3491void
3492ev_unref (EV_P) EV_THROW
3493{
3494 --activecnt;
3495}
3496
3497void
3498ev_now_update (EV_P) EV_THROW
3499{
3500 time_update (EV_A_ 1e100);
3501}
3502
3503void
3504ev_suspend (EV_P) EV_THROW
3505{
3506 ev_now_update (EV_A);
3507}
3508
3509void
3510ev_resume (EV_P) EV_THROW
3511{
3512 ev_tstamp mn_prev = mn_now;
3513
3514 ev_now_update (EV_A);
3515 timers_reschedule (EV_A_ mn_now - mn_prev);
3516#if EV_PERIODIC_ENABLE
3517 /* TODO: really do this? */
3518 periodics_reschedule (EV_A);
3519#endif
3520}
3521
2034/*****************************************************************************/ 3522/*****************************************************************************/
3523/* singly-linked list management, used when the expected list length is short */
2035 3524
2036void inline_size 3525inline_size void
2037wlist_add (WL *head, WL elem) 3526wlist_add (WL *head, WL elem)
2038{ 3527{
2039 elem->next = *head; 3528 elem->next = *head;
2040 *head = elem; 3529 *head = elem;
2041} 3530}
2042 3531
2043void inline_size 3532inline_size void
2044wlist_del (WL *head, WL elem) 3533wlist_del (WL *head, WL elem)
2045{ 3534{
2046 while (*head) 3535 while (*head)
2047 { 3536 {
2048 if (*head == elem) 3537 if (expect_true (*head == elem))
2049 { 3538 {
2050 *head = elem->next; 3539 *head = elem->next;
2051 return; 3540 break;
2052 } 3541 }
2053 3542
2054 head = &(*head)->next; 3543 head = &(*head)->next;
2055 } 3544 }
2056} 3545}
2057 3546
2058void inline_speed 3547/* internal, faster, version of ev_clear_pending */
3548inline_speed void
2059clear_pending (EV_P_ W w) 3549clear_pending (EV_P_ W w)
2060{ 3550{
2061 if (w->pending) 3551 if (w->pending)
2062 { 3552 {
2063 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3553 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2064 w->pending = 0; 3554 w->pending = 0;
2065 } 3555 }
2066} 3556}
2067 3557
2068int 3558int
2069ev_clear_pending (EV_P_ void *w) 3559ev_clear_pending (EV_P_ void *w) EV_THROW
2070{ 3560{
2071 W w_ = (W)w; 3561 W w_ = (W)w;
2072 int pending = w_->pending; 3562 int pending = w_->pending;
2073 3563
2074 if (expect_true (pending)) 3564 if (expect_true (pending))
2075 { 3565 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3567 p->w = (W)&pending_w;
2077 w_->pending = 0; 3568 w_->pending = 0;
2078 p->w = 0;
2079 return p->events; 3569 return p->events;
2080 } 3570 }
2081 else 3571 else
2082 return 0; 3572 return 0;
2083} 3573}
2084 3574
2085void inline_size 3575inline_size void
2086pri_adjust (EV_P_ W w) 3576pri_adjust (EV_P_ W w)
2087{ 3577{
2088 int pri = w->priority; 3578 int pri = ev_priority (w);
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri; 3581 ev_set_priority (w, pri);
2092} 3582}
2093 3583
2094void inline_speed 3584inline_speed void
2095ev_start (EV_P_ W w, int active) 3585ev_start (EV_P_ W w, int active)
2096{ 3586{
2097 pri_adjust (EV_A_ w); 3587 pri_adjust (EV_A_ w);
2098 w->active = active; 3588 w->active = active;
2099 ev_ref (EV_A); 3589 ev_ref (EV_A);
2100} 3590}
2101 3591
2102void inline_size 3592inline_size void
2103ev_stop (EV_P_ W w) 3593ev_stop (EV_P_ W w)
2104{ 3594{
2105 ev_unref (EV_A); 3595 ev_unref (EV_A);
2106 w->active = 0; 3596 w->active = 0;
2107} 3597}
2108 3598
2109/*****************************************************************************/ 3599/*****************************************************************************/
2110 3600
2111void noinline 3601void noinline
2112ev_io_start (EV_P_ ev_io *w) 3602ev_io_start (EV_P_ ev_io *w) EV_THROW
2113{ 3603{
2114 int fd = w->fd; 3604 int fd = w->fd;
2115 3605
2116 if (expect_false (ev_is_active (w))) 3606 if (expect_false (ev_is_active (w)))
2117 return; 3607 return;
2118 3608
2119 assert (("ev_io_start called with negative fd", fd >= 0)); 3609 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3610 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2120 3611
2121 EV_FREQUENT_CHECK; 3612 EV_FREQUENT_CHECK;
2122 3613
2123 ev_start (EV_A_ (W)w, 1); 3614 ev_start (EV_A_ (W)w, 1);
2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3615 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2125 wlist_add (&anfds[fd].head, (WL)w); 3616 wlist_add (&anfds[fd].head, (WL)w);
2126 3617
3618 /* common bug, apparently */
3619 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3620
2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3621 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2128 w->events &= ~EV_IOFDSET; 3622 w->events &= ~EV__IOFDSET;
2129 3623
2130 EV_FREQUENT_CHECK; 3624 EV_FREQUENT_CHECK;
2131} 3625}
2132 3626
2133void noinline 3627void noinline
2134ev_io_stop (EV_P_ ev_io *w) 3628ev_io_stop (EV_P_ ev_io *w) EV_THROW
2135{ 3629{
2136 clear_pending (EV_A_ (W)w); 3630 clear_pending (EV_A_ (W)w);
2137 if (expect_false (!ev_is_active (w))) 3631 if (expect_false (!ev_is_active (w)))
2138 return; 3632 return;
2139 3633
2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3634 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141 3635
2142 EV_FREQUENT_CHECK; 3636 EV_FREQUENT_CHECK;
2143 3637
2144 wlist_del (&anfds[w->fd].head, (WL)w); 3638 wlist_del (&anfds[w->fd].head, (WL)w);
2145 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
2146 3640
2147 fd_change (EV_A_ w->fd, 1); 3641 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2148 3642
2149 EV_FREQUENT_CHECK; 3643 EV_FREQUENT_CHECK;
2150} 3644}
2151 3645
2152void noinline 3646void noinline
2153ev_timer_start (EV_P_ ev_timer *w) 3647ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2154{ 3648{
2155 if (expect_false (ev_is_active (w))) 3649 if (expect_false (ev_is_active (w)))
2156 return; 3650 return;
2157 3651
2158 ev_at (w) += mn_now; 3652 ev_at (w) += mn_now;
2159 3653
2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3654 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2161 3655
2162 EV_FREQUENT_CHECK; 3656 EV_FREQUENT_CHECK;
2163 3657
2164 ++timercnt; 3658 ++timercnt;
2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3659 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2168 ANHE_at_cache (timers [ev_active (w)]); 3662 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w)); 3663 upheap (timers, ev_active (w));
2170 3664
2171 EV_FREQUENT_CHECK; 3665 EV_FREQUENT_CHECK;
2172 3666
2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3667 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2174} 3668}
2175 3669
2176void noinline 3670void noinline
2177ev_timer_stop (EV_P_ ev_timer *w) 3671ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2178{ 3672{
2179 clear_pending (EV_A_ (W)w); 3673 clear_pending (EV_A_ (W)w);
2180 if (expect_false (!ev_is_active (w))) 3674 if (expect_false (!ev_is_active (w)))
2181 return; 3675 return;
2182 3676
2183 EV_FREQUENT_CHECK; 3677 EV_FREQUENT_CHECK;
2184 3678
2185 { 3679 {
2186 int active = ev_active (w); 3680 int active = ev_active (w);
2187 3681
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3682 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189 3683
2190 --timercnt; 3684 --timercnt;
2191 3685
2192 if (expect_true (active < timercnt + HEAP0)) 3686 if (expect_true (active < timercnt + HEAP0))
2193 { 3687 {
2194 timers [active] = timers [timercnt + HEAP0]; 3688 timers [active] = timers [timercnt + HEAP0];
2195 adjustheap (timers, timercnt, active); 3689 adjustheap (timers, timercnt, active);
2196 } 3690 }
2197 } 3691 }
2198 3692
2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now; 3693 ev_at (w) -= mn_now;
2202 3694
2203 ev_stop (EV_A_ (W)w); 3695 ev_stop (EV_A_ (W)w);
3696
3697 EV_FREQUENT_CHECK;
2204} 3698}
2205 3699
2206void noinline 3700void noinline
2207ev_timer_again (EV_P_ ev_timer *w) 3701ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2208{ 3702{
2209 EV_FREQUENT_CHECK; 3703 EV_FREQUENT_CHECK;
3704
3705 clear_pending (EV_A_ (W)w);
2210 3706
2211 if (ev_is_active (w)) 3707 if (ev_is_active (w))
2212 { 3708 {
2213 if (w->repeat) 3709 if (w->repeat)
2214 { 3710 {
2226 } 3722 }
2227 3723
2228 EV_FREQUENT_CHECK; 3724 EV_FREQUENT_CHECK;
2229} 3725}
2230 3726
3727ev_tstamp
3728ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3729{
3730 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3731}
3732
2231#if EV_PERIODIC_ENABLE 3733#if EV_PERIODIC_ENABLE
2232void noinline 3734void noinline
2233ev_periodic_start (EV_P_ ev_periodic *w) 3735ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2234{ 3736{
2235 if (expect_false (ev_is_active (w))) 3737 if (expect_false (ev_is_active (w)))
2236 return; 3738 return;
2237 3739
2238 if (w->reschedule_cb) 3740 if (w->reschedule_cb)
2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2240 else if (w->interval) 3742 else if (w->interval)
2241 { 3743 {
2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3744 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2243 /* this formula differs from the one in periodic_reify because we do not always round up */ 3745 periodic_recalc (EV_A_ w);
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245 } 3746 }
2246 else 3747 else
2247 ev_at (w) = w->offset; 3748 ev_at (w) = w->offset;
2248 3749
2249 EV_FREQUENT_CHECK; 3750 EV_FREQUENT_CHECK;
2255 ANHE_at_cache (periodics [ev_active (w)]); 3756 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w)); 3757 upheap (periodics, ev_active (w));
2257 3758
2258 EV_FREQUENT_CHECK; 3759 EV_FREQUENT_CHECK;
2259 3760
2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3761 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2261} 3762}
2262 3763
2263void noinline 3764void noinline
2264ev_periodic_stop (EV_P_ ev_periodic *w) 3765ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2265{ 3766{
2266 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
2267 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
2268 return; 3769 return;
2269 3770
2270 EV_FREQUENT_CHECK; 3771 EV_FREQUENT_CHECK;
2271 3772
2272 { 3773 {
2273 int active = ev_active (w); 3774 int active = ev_active (w);
2274 3775
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3776 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276 3777
2277 --periodiccnt; 3778 --periodiccnt;
2278 3779
2279 if (expect_true (active < periodiccnt + HEAP0)) 3780 if (expect_true (active < periodiccnt + HEAP0))
2280 { 3781 {
2281 periodics [active] = periodics [periodiccnt + HEAP0]; 3782 periodics [active] = periodics [periodiccnt + HEAP0];
2282 adjustheap (periodics, periodiccnt, active); 3783 adjustheap (periodics, periodiccnt, active);
2283 } 3784 }
2284 } 3785 }
2285 3786
2286 EV_FREQUENT_CHECK;
2287
2288 ev_stop (EV_A_ (W)w); 3787 ev_stop (EV_A_ (W)w);
3788
3789 EV_FREQUENT_CHECK;
2289} 3790}
2290 3791
2291void noinline 3792void noinline
2292ev_periodic_again (EV_P_ ev_periodic *w) 3793ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2293{ 3794{
2294 /* TODO: use adjustheap and recalculation */ 3795 /* TODO: use adjustheap and recalculation */
2295 ev_periodic_stop (EV_A_ w); 3796 ev_periodic_stop (EV_A_ w);
2296 ev_periodic_start (EV_A_ w); 3797 ev_periodic_start (EV_A_ w);
2297} 3798}
2299 3800
2300#ifndef SA_RESTART 3801#ifndef SA_RESTART
2301# define SA_RESTART 0 3802# define SA_RESTART 0
2302#endif 3803#endif
2303 3804
3805#if EV_SIGNAL_ENABLE
3806
2304void noinline 3807void noinline
2305ev_signal_start (EV_P_ ev_signal *w) 3808ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2306{ 3809{
2307#if EV_MULTIPLICITY
2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2309#endif
2310 if (expect_false (ev_is_active (w))) 3810 if (expect_false (ev_is_active (w)))
2311 return; 3811 return;
2312 3812
2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3813 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2314 3814
2315 evpipe_init (EV_A); 3815#if EV_MULTIPLICITY
3816 assert (("libev: a signal must not be attached to two different loops",
3817 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2316 3818
2317 EV_FREQUENT_CHECK; 3819 signals [w->signum - 1].loop = EV_A;
3820 ECB_MEMORY_FENCE_RELEASE;
3821#endif
2318 3822
3823 EV_FREQUENT_CHECK;
3824
3825#if EV_USE_SIGNALFD
3826 if (sigfd == -2)
2319 { 3827 {
2320#ifndef _WIN32 3828 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2321 sigset_t full, prev; 3829 if (sigfd < 0 && errno == EINVAL)
2322 sigfillset (&full); 3830 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325 3831
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3832 if (sigfd >= 0)
3833 {
3834 fd_intern (sigfd); /* doing it twice will not hurt */
2327 3835
2328#ifndef _WIN32 3836 sigemptyset (&sigfd_set);
2329 sigprocmask (SIG_SETMASK, &prev, 0); 3837
2330#endif 3838 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3839 ev_set_priority (&sigfd_w, EV_MAXPRI);
3840 ev_io_start (EV_A_ &sigfd_w);
3841 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3842 }
2331 } 3843 }
3844
3845 if (sigfd >= 0)
3846 {
3847 /* TODO: check .head */
3848 sigaddset (&sigfd_set, w->signum);
3849 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3850
3851 signalfd (sigfd, &sigfd_set, 0);
3852 }
3853#endif
2332 3854
2333 ev_start (EV_A_ (W)w, 1); 3855 ev_start (EV_A_ (W)w, 1);
2334 wlist_add (&signals [w->signum - 1].head, (WL)w); 3856 wlist_add (&signals [w->signum - 1].head, (WL)w);
2335 3857
2336 if (!((WL)w)->next) 3858 if (!((WL)w)->next)
3859# if EV_USE_SIGNALFD
3860 if (sigfd < 0) /*TODO*/
3861# endif
2337 { 3862 {
2338#if _WIN32 3863# ifdef _WIN32
3864 evpipe_init (EV_A);
3865
2339 signal (w->signum, ev_sighandler); 3866 signal (w->signum, ev_sighandler);
2340#else 3867# else
2341 struct sigaction sa; 3868 struct sigaction sa;
3869
3870 evpipe_init (EV_A);
3871
2342 sa.sa_handler = ev_sighandler; 3872 sa.sa_handler = ev_sighandler;
2343 sigfillset (&sa.sa_mask); 3873 sigfillset (&sa.sa_mask);
2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2345 sigaction (w->signum, &sa, 0); 3875 sigaction (w->signum, &sa, 0);
3876
3877 if (origflags & EVFLAG_NOSIGMASK)
3878 {
3879 sigemptyset (&sa.sa_mask);
3880 sigaddset (&sa.sa_mask, w->signum);
3881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3882 }
2346#endif 3883#endif
2347 } 3884 }
2348 3885
2349 EV_FREQUENT_CHECK; 3886 EV_FREQUENT_CHECK;
2350} 3887}
2351 3888
2352void noinline 3889void noinline
2353ev_signal_stop (EV_P_ ev_signal *w) 3890ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2354{ 3891{
2355 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
2357 return; 3894 return;
2358 3895
2360 3897
2361 wlist_del (&signals [w->signum - 1].head, (WL)w); 3898 wlist_del (&signals [w->signum - 1].head, (WL)w);
2362 ev_stop (EV_A_ (W)w); 3899 ev_stop (EV_A_ (W)w);
2363 3900
2364 if (!signals [w->signum - 1].head) 3901 if (!signals [w->signum - 1].head)
3902 {
3903#if EV_MULTIPLICITY
3904 signals [w->signum - 1].loop = 0; /* unattach from signal */
3905#endif
3906#if EV_USE_SIGNALFD
3907 if (sigfd >= 0)
3908 {
3909 sigset_t ss;
3910
3911 sigemptyset (&ss);
3912 sigaddset (&ss, w->signum);
3913 sigdelset (&sigfd_set, w->signum);
3914
3915 signalfd (sigfd, &sigfd_set, 0);
3916 sigprocmask (SIG_UNBLOCK, &ss, 0);
3917 }
3918 else
3919#endif
2365 signal (w->signum, SIG_DFL); 3920 signal (w->signum, SIG_DFL);
3921 }
2366 3922
2367 EV_FREQUENT_CHECK; 3923 EV_FREQUENT_CHECK;
2368} 3924}
3925
3926#endif
3927
3928#if EV_CHILD_ENABLE
2369 3929
2370void 3930void
2371ev_child_start (EV_P_ ev_child *w) 3931ev_child_start (EV_P_ ev_child *w) EV_THROW
2372{ 3932{
2373#if EV_MULTIPLICITY 3933#if EV_MULTIPLICITY
2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2375#endif 3935#endif
2376 if (expect_false (ev_is_active (w))) 3936 if (expect_false (ev_is_active (w)))
2377 return; 3937 return;
2378 3938
2379 EV_FREQUENT_CHECK; 3939 EV_FREQUENT_CHECK;
2380 3940
2381 ev_start (EV_A_ (W)w, 1); 3941 ev_start (EV_A_ (W)w, 1);
2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2383 3943
2384 EV_FREQUENT_CHECK; 3944 EV_FREQUENT_CHECK;
2385} 3945}
2386 3946
2387void 3947void
2388ev_child_stop (EV_P_ ev_child *w) 3948ev_child_stop (EV_P_ ev_child *w) EV_THROW
2389{ 3949{
2390 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
2392 return; 3952 return;
2393 3953
2394 EV_FREQUENT_CHECK; 3954 EV_FREQUENT_CHECK;
2395 3955
2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2397 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
2398 3958
2399 EV_FREQUENT_CHECK; 3959 EV_FREQUENT_CHECK;
2400} 3960}
3961
3962#endif
2401 3963
2402#if EV_STAT_ENABLE 3964#if EV_STAT_ENABLE
2403 3965
2404# ifdef _WIN32 3966# ifdef _WIN32
2405# undef lstat 3967# undef lstat
2406# define lstat(a,b) _stati64 (a,b) 3968# define lstat(a,b) _stati64 (a,b)
2407# endif 3969# endif
2408 3970
2409#define DEF_STAT_INTERVAL 5.0074891 3971#define DEF_STAT_INTERVAL 5.0074891
3972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2410#define MIN_STAT_INTERVAL 0.1074891 3973#define MIN_STAT_INTERVAL 0.1074891
2411 3974
2412static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413 3976
2414#if EV_USE_INOTIFY 3977#if EV_USE_INOTIFY
2415# define EV_INOTIFY_BUFSIZE 8192 3978
3979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2416 3981
2417static void noinline 3982static void noinline
2418infy_add (EV_P_ ev_stat *w) 3983infy_add (EV_P_ ev_stat *w)
2419{ 3984{
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3985 w->wd = inotify_add_watch (fs_fd, w->path,
3986 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3987 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3988 | IN_DONT_FOLLOW | IN_MASK_ADD);
2421 3989
2422 if (w->wd < 0) 3990 if (w->wd >= 0)
3991 {
3992 struct statfs sfs;
3993
3994 /* now local changes will be tracked by inotify, but remote changes won't */
3995 /* unless the filesystem is known to be local, we therefore still poll */
3996 /* also do poll on <2.6.25, but with normal frequency */
3997
3998 if (!fs_2625)
3999 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4000 else if (!statfs (w->path, &sfs)
4001 && (sfs.f_type == 0x1373 /* devfs */
4002 || sfs.f_type == 0x4006 /* fat */
4003 || sfs.f_type == 0x4d44 /* msdos */
4004 || sfs.f_type == 0xEF53 /* ext2/3 */
4005 || sfs.f_type == 0x72b6 /* jffs2 */
4006 || sfs.f_type == 0x858458f6 /* ramfs */
4007 || sfs.f_type == 0x5346544e /* ntfs */
4008 || sfs.f_type == 0x3153464a /* jfs */
4009 || sfs.f_type == 0x9123683e /* btrfs */
4010 || sfs.f_type == 0x52654973 /* reiser3 */
4011 || sfs.f_type == 0x01021994 /* tmpfs */
4012 || sfs.f_type == 0x58465342 /* xfs */))
4013 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4014 else
4015 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2423 { 4016 }
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4017 else
4018 {
4019 /* can't use inotify, continue to stat */
4020 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2425 4021
2426 /* monitor some parent directory for speedup hints */ 4022 /* if path is not there, monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4023 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2428 /* but an efficiency issue only */ 4024 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4025 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 { 4026 {
2431 char path [4096]; 4027 char path [4096];
2432 strcpy (path, w->path); 4028 strcpy (path, w->path);
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4032 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4033 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438 4034
2439 char *pend = strrchr (path, '/'); 4035 char *pend = strrchr (path, '/');
2440 4036
2441 if (!pend) 4037 if (!pend || pend == path)
2442 break; /* whoops, no '/', complain to your admin */ 4038 break;
2443 4039
2444 *pend = 0; 4040 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask); 4041 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 } 4042 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4043 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 } 4044 }
2449 } 4045 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452 4046
2453 if (w->wd >= 0) 4047 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4048 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4049
4050 /* now re-arm timer, if required */
4051 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4052 ev_timer_again (EV_A_ &w->timer);
4053 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2455} 4054}
2456 4055
2457static void noinline 4056static void noinline
2458infy_del (EV_P_ ev_stat *w) 4057infy_del (EV_P_ ev_stat *w)
2459{ 4058{
2462 4061
2463 if (wd < 0) 4062 if (wd < 0)
2464 return; 4063 return;
2465 4064
2466 w->wd = -2; 4065 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4066 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w); 4067 wlist_del (&fs_hash [slot].head, (WL)w);
2469 4068
2470 /* remove this watcher, if others are watching it, they will rearm */ 4069 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd); 4070 inotify_rm_watch (fs_fd, wd);
2472} 4071}
2473 4072
2474static void noinline 4073static void noinline
2475infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4074infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476{ 4075{
2477 if (slot < 0) 4076 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */ 4077 /* overflow, need to check for all hash slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4078 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2480 infy_wd (EV_A_ slot, wd, ev); 4079 infy_wd (EV_A_ slot, wd, ev);
2481 else 4080 else
2482 { 4081 {
2483 WL w_; 4082 WL w_;
2484 4083
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4084 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2486 { 4085 {
2487 ev_stat *w = (ev_stat *)w_; 4086 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */ 4087 w_ = w_->next; /* lets us remove this watcher and all before it */
2489 4088
2490 if (w->wd == wd || wd == -1) 4089 if (w->wd == wd || wd == -1)
2491 { 4090 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4091 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 { 4092 {
4093 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2494 w->wd = -1; 4094 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */ 4095 infy_add (EV_A_ w); /* re-add, no matter what */
2496 } 4096 }
2497 4097
2498 stat_timer_cb (EV_A_ &w->timer, 0); 4098 stat_timer_cb (EV_A_ &w->timer, 0);
2503 4103
2504static void 4104static void
2505infy_cb (EV_P_ ev_io *w, int revents) 4105infy_cb (EV_P_ ev_io *w, int revents)
2506{ 4106{
2507 char buf [EV_INOTIFY_BUFSIZE]; 4107 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs; 4108 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf)); 4109 int len = read (fs_fd, buf, sizeof (buf));
2511 4110
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4111 for (ofs = 0; ofs < len; )
4112 {
4113 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4114 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4115 ofs += sizeof (struct inotify_event) + ev->len;
4116 }
2514} 4117}
2515 4118
2516void inline_size 4119inline_size void ecb_cold
4120ev_check_2625 (EV_P)
4121{
4122 /* kernels < 2.6.25 are borked
4123 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4124 */
4125 if (ev_linux_version () < 0x020619)
4126 return;
4127
4128 fs_2625 = 1;
4129}
4130
4131inline_size int
4132infy_newfd (void)
4133{
4134#if defined IN_CLOEXEC && defined IN_NONBLOCK
4135 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4136 if (fd >= 0)
4137 return fd;
4138#endif
4139 return inotify_init ();
4140}
4141
4142inline_size void
2517infy_init (EV_P) 4143infy_init (EV_P)
2518{ 4144{
2519 if (fs_fd != -2) 4145 if (fs_fd != -2)
2520 return; 4146 return;
2521 4147
4148 fs_fd = -1;
4149
4150 ev_check_2625 (EV_A);
4151
2522 fs_fd = inotify_init (); 4152 fs_fd = infy_newfd ();
2523 4153
2524 if (fs_fd >= 0) 4154 if (fs_fd >= 0)
2525 { 4155 {
4156 fd_intern (fs_fd);
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4157 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI); 4158 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w); 4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
2529 } 4161 }
2530} 4162}
2531 4163
2532void inline_size 4164inline_size void
2533infy_fork (EV_P) 4165infy_fork (EV_P)
2534{ 4166{
2535 int slot; 4167 int slot;
2536 4168
2537 if (fs_fd < 0) 4169 if (fs_fd < 0)
2538 return; 4170 return;
2539 4171
4172 ev_ref (EV_A);
4173 ev_io_stop (EV_A_ &fs_w);
2540 close (fs_fd); 4174 close (fs_fd);
2541 fs_fd = inotify_init (); 4175 fs_fd = infy_newfd ();
2542 4176
4177 if (fs_fd >= 0)
4178 {
4179 fd_intern (fs_fd);
4180 ev_io_set (&fs_w, fs_fd, EV_READ);
4181 ev_io_start (EV_A_ &fs_w);
4182 ev_unref (EV_A);
4183 }
4184
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4185 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2544 { 4186 {
2545 WL w_ = fs_hash [slot].head; 4187 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0; 4188 fs_hash [slot].head = 0;
2547 4189
2548 while (w_) 4190 while (w_)
2553 w->wd = -1; 4195 w->wd = -1;
2554 4196
2555 if (fs_fd >= 0) 4197 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */ 4198 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else 4199 else
4200 {
4201 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4202 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2558 ev_timer_start (EV_A_ &w->timer); 4203 ev_timer_again (EV_A_ &w->timer);
4204 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4205 }
2559 } 4206 }
2560
2561 } 4207 }
2562} 4208}
2563 4209
4210#endif
4211
4212#ifdef _WIN32
4213# define EV_LSTAT(p,b) _stati64 (p, b)
4214#else
4215# define EV_LSTAT(p,b) lstat (p, b)
2564#endif 4216#endif
2565 4217
2566void 4218void
2567ev_stat_stat (EV_P_ ev_stat *w) 4219ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2568{ 4220{
2569 if (lstat (w->path, &w->attr) < 0) 4221 if (lstat (w->path, &w->attr) < 0)
2570 w->attr.st_nlink = 0; 4222 w->attr.st_nlink = 0;
2571 else if (!w->attr.st_nlink) 4223 else if (!w->attr.st_nlink)
2572 w->attr.st_nlink = 1; 4224 w->attr.st_nlink = 1;
2575static void noinline 4227static void noinline
2576stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4228stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577{ 4229{
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4230 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579 4231
2580 /* we copy this here each the time so that */ 4232 ev_statdata prev = w->attr;
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w); 4233 ev_stat_stat (EV_A_ w);
2584 4234
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4235 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if ( 4236 if (
2587 w->prev.st_dev != w->attr.st_dev 4237 prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino 4238 || prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode 4239 || prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink 4240 || prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid 4241 || prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid 4242 || prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev 4243 || prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size 4244 || prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime 4245 || prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime 4246 || prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime 4247 || prev.st_ctime != w->attr.st_ctime
2598 ) { 4248 ) {
4249 /* we only update w->prev on actual differences */
4250 /* in case we test more often than invoke the callback, */
4251 /* to ensure that prev is always different to attr */
4252 w->prev = prev;
4253
2599 #if EV_USE_INOTIFY 4254 #if EV_USE_INOTIFY
4255 if (fs_fd >= 0)
4256 {
2600 infy_del (EV_A_ w); 4257 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w); 4258 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */ 4259 ev_stat_stat (EV_A_ w); /* avoid race... */
4260 }
2603 #endif 4261 #endif
2604 4262
2605 ev_feed_event (EV_A_ w, EV_STAT); 4263 ev_feed_event (EV_A_ w, EV_STAT);
2606 } 4264 }
2607} 4265}
2608 4266
2609void 4267void
2610ev_stat_start (EV_P_ ev_stat *w) 4268ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2611{ 4269{
2612 if (expect_false (ev_is_active (w))) 4270 if (expect_false (ev_is_active (w)))
2613 return; 4271 return;
2614 4272
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w); 4273 ev_stat_stat (EV_A_ w);
2620 4274
4275 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2621 if (w->interval < MIN_STAT_INTERVAL) 4276 w->interval = MIN_STAT_INTERVAL;
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 4277
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4278 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2625 ev_set_priority (&w->timer, ev_priority (w)); 4279 ev_set_priority (&w->timer, ev_priority (w));
2626 4280
2627#if EV_USE_INOTIFY 4281#if EV_USE_INOTIFY
2628 infy_init (EV_A); 4282 infy_init (EV_A);
2629 4283
2630 if (fs_fd >= 0) 4284 if (fs_fd >= 0)
2631 infy_add (EV_A_ w); 4285 infy_add (EV_A_ w);
2632 else 4286 else
2633#endif 4287#endif
4288 {
2634 ev_timer_start (EV_A_ &w->timer); 4289 ev_timer_again (EV_A_ &w->timer);
4290 ev_unref (EV_A);
4291 }
2635 4292
2636 ev_start (EV_A_ (W)w, 1); 4293 ev_start (EV_A_ (W)w, 1);
2637 4294
2638 EV_FREQUENT_CHECK; 4295 EV_FREQUENT_CHECK;
2639} 4296}
2640 4297
2641void 4298void
2642ev_stat_stop (EV_P_ ev_stat *w) 4299ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2643{ 4300{
2644 clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 4302 if (expect_false (!ev_is_active (w)))
2646 return; 4303 return;
2647 4304
2648 EV_FREQUENT_CHECK; 4305 EV_FREQUENT_CHECK;
2649 4306
2650#if EV_USE_INOTIFY 4307#if EV_USE_INOTIFY
2651 infy_del (EV_A_ w); 4308 infy_del (EV_A_ w);
2652#endif 4309#endif
4310
4311 if (ev_is_active (&w->timer))
4312 {
4313 ev_ref (EV_A);
2653 ev_timer_stop (EV_A_ &w->timer); 4314 ev_timer_stop (EV_A_ &w->timer);
4315 }
2654 4316
2655 ev_stop (EV_A_ (W)w); 4317 ev_stop (EV_A_ (W)w);
2656 4318
2657 EV_FREQUENT_CHECK; 4319 EV_FREQUENT_CHECK;
2658} 4320}
2659#endif 4321#endif
2660 4322
2661#if EV_IDLE_ENABLE 4323#if EV_IDLE_ENABLE
2662void 4324void
2663ev_idle_start (EV_P_ ev_idle *w) 4325ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2664{ 4326{
2665 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
2666 return; 4328 return;
2667 4329
2668 pri_adjust (EV_A_ (W)w); 4330 pri_adjust (EV_A_ (W)w);
2681 4343
2682 EV_FREQUENT_CHECK; 4344 EV_FREQUENT_CHECK;
2683} 4345}
2684 4346
2685void 4347void
2686ev_idle_stop (EV_P_ ev_idle *w) 4348ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2687{ 4349{
2688 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2689 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2690 return; 4352 return;
2691 4353
2703 4365
2704 EV_FREQUENT_CHECK; 4366 EV_FREQUENT_CHECK;
2705} 4367}
2706#endif 4368#endif
2707 4369
4370#if EV_PREPARE_ENABLE
2708void 4371void
2709ev_prepare_start (EV_P_ ev_prepare *w) 4372ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2710{ 4373{
2711 if (expect_false (ev_is_active (w))) 4374 if (expect_false (ev_is_active (w)))
2712 return; 4375 return;
2713 4376
2714 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2719 4382
2720 EV_FREQUENT_CHECK; 4383 EV_FREQUENT_CHECK;
2721} 4384}
2722 4385
2723void 4386void
2724ev_prepare_stop (EV_P_ ev_prepare *w) 4387ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2725{ 4388{
2726 clear_pending (EV_A_ (W)w); 4389 clear_pending (EV_A_ (W)w);
2727 if (expect_false (!ev_is_active (w))) 4390 if (expect_false (!ev_is_active (w)))
2728 return; 4391 return;
2729 4392
2738 4401
2739 ev_stop (EV_A_ (W)w); 4402 ev_stop (EV_A_ (W)w);
2740 4403
2741 EV_FREQUENT_CHECK; 4404 EV_FREQUENT_CHECK;
2742} 4405}
4406#endif
2743 4407
4408#if EV_CHECK_ENABLE
2744void 4409void
2745ev_check_start (EV_P_ ev_check *w) 4410ev_check_start (EV_P_ ev_check *w) EV_THROW
2746{ 4411{
2747 if (expect_false (ev_is_active (w))) 4412 if (expect_false (ev_is_active (w)))
2748 return; 4413 return;
2749 4414
2750 EV_FREQUENT_CHECK; 4415 EV_FREQUENT_CHECK;
2755 4420
2756 EV_FREQUENT_CHECK; 4421 EV_FREQUENT_CHECK;
2757} 4422}
2758 4423
2759void 4424void
2760ev_check_stop (EV_P_ ev_check *w) 4425ev_check_stop (EV_P_ ev_check *w) EV_THROW
2761{ 4426{
2762 clear_pending (EV_A_ (W)w); 4427 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w))) 4428 if (expect_false (!ev_is_active (w)))
2764 return; 4429 return;
2765 4430
2774 4439
2775 ev_stop (EV_A_ (W)w); 4440 ev_stop (EV_A_ (W)w);
2776 4441
2777 EV_FREQUENT_CHECK; 4442 EV_FREQUENT_CHECK;
2778} 4443}
4444#endif
2779 4445
2780#if EV_EMBED_ENABLE 4446#if EV_EMBED_ENABLE
2781void noinline 4447void noinline
2782ev_embed_sweep (EV_P_ ev_embed *w) 4448ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2783{ 4449{
2784 ev_loop (w->other, EVLOOP_NONBLOCK); 4450 ev_run (w->other, EVRUN_NOWAIT);
2785} 4451}
2786 4452
2787static void 4453static void
2788embed_io_cb (EV_P_ ev_io *io, int revents) 4454embed_io_cb (EV_P_ ev_io *io, int revents)
2789{ 4455{
2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4456 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2791 4457
2792 if (ev_cb (w)) 4458 if (ev_cb (w))
2793 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4459 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2794 else 4460 else
2795 ev_loop (w->other, EVLOOP_NONBLOCK); 4461 ev_run (w->other, EVRUN_NOWAIT);
2796} 4462}
2797 4463
2798static void 4464static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4465embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{ 4466{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4467 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802 4468
2803 { 4469 {
2804 struct ev_loop *loop = w->other; 4470 EV_P = w->other;
2805 4471
2806 while (fdchangecnt) 4472 while (fdchangecnt)
2807 { 4473 {
2808 fd_reify (EV_A); 4474 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4475 ev_run (EV_A_ EVRUN_NOWAIT);
2810 } 4476 }
2811 } 4477 }
4478}
4479
4480static void
4481embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4482{
4483 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4484
4485 ev_embed_stop (EV_A_ w);
4486
4487 {
4488 EV_P = w->other;
4489
4490 ev_loop_fork (EV_A);
4491 ev_run (EV_A_ EVRUN_NOWAIT);
4492 }
4493
4494 ev_embed_start (EV_A_ w);
2812} 4495}
2813 4496
2814#if 0 4497#if 0
2815static void 4498static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4499embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2818 ev_idle_stop (EV_A_ idle); 4501 ev_idle_stop (EV_A_ idle);
2819} 4502}
2820#endif 4503#endif
2821 4504
2822void 4505void
2823ev_embed_start (EV_P_ ev_embed *w) 4506ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2824{ 4507{
2825 if (expect_false (ev_is_active (w))) 4508 if (expect_false (ev_is_active (w)))
2826 return; 4509 return;
2827 4510
2828 { 4511 {
2829 struct ev_loop *loop = w->other; 4512 EV_P = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4513 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4514 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 } 4515 }
2833 4516
2834 EV_FREQUENT_CHECK; 4517 EV_FREQUENT_CHECK;
2835 4518
2838 4521
2839 ev_prepare_init (&w->prepare, embed_prepare_cb); 4522 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI); 4523 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare); 4524 ev_prepare_start (EV_A_ &w->prepare);
2842 4525
4526 ev_fork_init (&w->fork, embed_fork_cb);
4527 ev_fork_start (EV_A_ &w->fork);
4528
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4529 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844 4530
2845 ev_start (EV_A_ (W)w, 1); 4531 ev_start (EV_A_ (W)w, 1);
2846 4532
2847 EV_FREQUENT_CHECK; 4533 EV_FREQUENT_CHECK;
2848} 4534}
2849 4535
2850void 4536void
2851ev_embed_stop (EV_P_ ev_embed *w) 4537ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2852{ 4538{
2853 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2855 return; 4541 return;
2856 4542
2857 EV_FREQUENT_CHECK; 4543 EV_FREQUENT_CHECK;
2858 4544
2859 ev_io_stop (EV_A_ &w->io); 4545 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare); 4546 ev_prepare_stop (EV_A_ &w->prepare);
4547 ev_fork_stop (EV_A_ &w->fork);
2861 4548
2862 ev_stop (EV_A_ (W)w); 4549 ev_stop (EV_A_ (W)w);
2863 4550
2864 EV_FREQUENT_CHECK; 4551 EV_FREQUENT_CHECK;
2865} 4552}
2866#endif 4553#endif
2867 4554
2868#if EV_FORK_ENABLE 4555#if EV_FORK_ENABLE
2869void 4556void
2870ev_fork_start (EV_P_ ev_fork *w) 4557ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2871{ 4558{
2872 if (expect_false (ev_is_active (w))) 4559 if (expect_false (ev_is_active (w)))
2873 return; 4560 return;
2874 4561
2875 EV_FREQUENT_CHECK; 4562 EV_FREQUENT_CHECK;
2880 4567
2881 EV_FREQUENT_CHECK; 4568 EV_FREQUENT_CHECK;
2882} 4569}
2883 4570
2884void 4571void
2885ev_fork_stop (EV_P_ ev_fork *w) 4572ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2886{ 4573{
2887 clear_pending (EV_A_ (W)w); 4574 clear_pending (EV_A_ (W)w);
2888 if (expect_false (!ev_is_active (w))) 4575 if (expect_false (!ev_is_active (w)))
2889 return; 4576 return;
2890 4577
2901 4588
2902 EV_FREQUENT_CHECK; 4589 EV_FREQUENT_CHECK;
2903} 4590}
2904#endif 4591#endif
2905 4592
4593#if EV_CLEANUP_ENABLE
4594void
4595ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4596{
4597 if (expect_false (ev_is_active (w)))
4598 return;
4599
4600 EV_FREQUENT_CHECK;
4601
4602 ev_start (EV_A_ (W)w, ++cleanupcnt);
4603 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4604 cleanups [cleanupcnt - 1] = w;
4605
4606 /* cleanup watchers should never keep a refcount on the loop */
4607 ev_unref (EV_A);
4608 EV_FREQUENT_CHECK;
4609}
4610
4611void
4612ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4613{
4614 clear_pending (EV_A_ (W)w);
4615 if (expect_false (!ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619 ev_ref (EV_A);
4620
4621 {
4622 int active = ev_active (w);
4623
4624 cleanups [active - 1] = cleanups [--cleanupcnt];
4625 ev_active (cleanups [active - 1]) = active;
4626 }
4627
4628 ev_stop (EV_A_ (W)w);
4629
4630 EV_FREQUENT_CHECK;
4631}
4632#endif
4633
2906#if EV_ASYNC_ENABLE 4634#if EV_ASYNC_ENABLE
2907void 4635void
2908ev_async_start (EV_P_ ev_async *w) 4636ev_async_start (EV_P_ ev_async *w) EV_THROW
2909{ 4637{
2910 if (expect_false (ev_is_active (w))) 4638 if (expect_false (ev_is_active (w)))
2911 return; 4639 return;
4640
4641 w->sent = 0;
2912 4642
2913 evpipe_init (EV_A); 4643 evpipe_init (EV_A);
2914 4644
2915 EV_FREQUENT_CHECK; 4645 EV_FREQUENT_CHECK;
2916 4646
2920 4650
2921 EV_FREQUENT_CHECK; 4651 EV_FREQUENT_CHECK;
2922} 4652}
2923 4653
2924void 4654void
2925ev_async_stop (EV_P_ ev_async *w) 4655ev_async_stop (EV_P_ ev_async *w) EV_THROW
2926{ 4656{
2927 clear_pending (EV_A_ (W)w); 4657 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w))) 4658 if (expect_false (!ev_is_active (w)))
2929 return; 4659 return;
2930 4660
2941 4671
2942 EV_FREQUENT_CHECK; 4672 EV_FREQUENT_CHECK;
2943} 4673}
2944 4674
2945void 4675void
2946ev_async_send (EV_P_ ev_async *w) 4676ev_async_send (EV_P_ ev_async *w) EV_THROW
2947{ 4677{
2948 w->sent = 1; 4678 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync); 4679 evpipe_write (EV_A_ &async_pending);
2950} 4680}
2951#endif 4681#endif
2952 4682
2953/*****************************************************************************/ 4683/*****************************************************************************/
2954 4684
2964once_cb (EV_P_ struct ev_once *once, int revents) 4694once_cb (EV_P_ struct ev_once *once, int revents)
2965{ 4695{
2966 void (*cb)(int revents, void *arg) = once->cb; 4696 void (*cb)(int revents, void *arg) = once->cb;
2967 void *arg = once->arg; 4697 void *arg = once->arg;
2968 4698
2969 ev_io_stop (EV_A_ &once->io); 4699 ev_io_stop (EV_A_ &once->io);
2970 ev_timer_stop (EV_A_ &once->to); 4700 ev_timer_stop (EV_A_ &once->to);
2971 ev_free (once); 4701 ev_free (once);
2972 4702
2973 cb (revents, arg); 4703 cb (revents, arg);
2974} 4704}
2975 4705
2976static void 4706static void
2977once_cb_io (EV_P_ ev_io *w, int revents) 4707once_cb_io (EV_P_ ev_io *w, int revents)
2978{ 4708{
2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4709 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4710
4711 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2980} 4712}
2981 4713
2982static void 4714static void
2983once_cb_to (EV_P_ ev_timer *w, int revents) 4715once_cb_to (EV_P_ ev_timer *w, int revents)
2984{ 4716{
2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4717 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4718
4719 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2986} 4720}
2987 4721
2988void 4722void
2989ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4723ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2990{ 4724{
2991 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4725 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2992 4726
2993 if (expect_false (!once)) 4727 if (expect_false (!once))
2994 { 4728 {
2995 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4729 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2996 return; 4730 return;
2997 } 4731 }
2998 4732
2999 once->cb = cb; 4733 once->cb = cb;
3000 once->arg = arg; 4734 once->arg = arg;
3012 ev_timer_set (&once->to, timeout, 0.); 4746 ev_timer_set (&once->to, timeout, 0.);
3013 ev_timer_start (EV_A_ &once->to); 4747 ev_timer_start (EV_A_ &once->to);
3014 } 4748 }
3015} 4749}
3016 4750
4751/*****************************************************************************/
4752
4753#if EV_WALK_ENABLE
4754void ecb_cold
4755ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4756{
4757 int i, j;
4758 ev_watcher_list *wl, *wn;
4759
4760 if (types & (EV_IO | EV_EMBED))
4761 for (i = 0; i < anfdmax; ++i)
4762 for (wl = anfds [i].head; wl; )
4763 {
4764 wn = wl->next;
4765
4766#if EV_EMBED_ENABLE
4767 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4768 {
4769 if (types & EV_EMBED)
4770 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4771 }
4772 else
4773#endif
4774#if EV_USE_INOTIFY
4775 if (ev_cb ((ev_io *)wl) == infy_cb)
4776 ;
4777 else
4778#endif
4779 if ((ev_io *)wl != &pipe_w)
4780 if (types & EV_IO)
4781 cb (EV_A_ EV_IO, wl);
4782
4783 wl = wn;
4784 }
4785
4786 if (types & (EV_TIMER | EV_STAT))
4787 for (i = timercnt + HEAP0; i-- > HEAP0; )
4788#if EV_STAT_ENABLE
4789 /*TODO: timer is not always active*/
4790 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4791 {
4792 if (types & EV_STAT)
4793 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4794 }
4795 else
4796#endif
4797 if (types & EV_TIMER)
4798 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4799
4800#if EV_PERIODIC_ENABLE
4801 if (types & EV_PERIODIC)
4802 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4803 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4804#endif
4805
4806#if EV_IDLE_ENABLE
4807 if (types & EV_IDLE)
4808 for (j = NUMPRI; j--; )
4809 for (i = idlecnt [j]; i--; )
4810 cb (EV_A_ EV_IDLE, idles [j][i]);
4811#endif
4812
4813#if EV_FORK_ENABLE
4814 if (types & EV_FORK)
4815 for (i = forkcnt; i--; )
4816 if (ev_cb (forks [i]) != embed_fork_cb)
4817 cb (EV_A_ EV_FORK, forks [i]);
4818#endif
4819
4820#if EV_ASYNC_ENABLE
4821 if (types & EV_ASYNC)
4822 for (i = asynccnt; i--; )
4823 cb (EV_A_ EV_ASYNC, asyncs [i]);
4824#endif
4825
4826#if EV_PREPARE_ENABLE
4827 if (types & EV_PREPARE)
4828 for (i = preparecnt; i--; )
4829# if EV_EMBED_ENABLE
4830 if (ev_cb (prepares [i]) != embed_prepare_cb)
4831# endif
4832 cb (EV_A_ EV_PREPARE, prepares [i]);
4833#endif
4834
4835#if EV_CHECK_ENABLE
4836 if (types & EV_CHECK)
4837 for (i = checkcnt; i--; )
4838 cb (EV_A_ EV_CHECK, checks [i]);
4839#endif
4840
4841#if EV_SIGNAL_ENABLE
4842 if (types & EV_SIGNAL)
4843 for (i = 0; i < EV_NSIG - 1; ++i)
4844 for (wl = signals [i].head; wl; )
4845 {
4846 wn = wl->next;
4847 cb (EV_A_ EV_SIGNAL, wl);
4848 wl = wn;
4849 }
4850#endif
4851
4852#if EV_CHILD_ENABLE
4853 if (types & EV_CHILD)
4854 for (i = (EV_PID_HASHSIZE); i--; )
4855 for (wl = childs [i]; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_CHILD, wl);
4859 wl = wn;
4860 }
4861#endif
4862/* EV_STAT 0x00001000 /* stat data changed */
4863/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4864}
4865#endif
4866
3017#if EV_MULTIPLICITY 4867#if EV_MULTIPLICITY
3018 #include "ev_wrap.h" 4868 #include "ev_wrap.h"
3019#endif 4869#endif
3020 4870
3021#ifdef __cplusplus
3022}
3023#endif
3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines