ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.83 by root, Fri Nov 9 21:48:23 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 148#ifdef EV_H
132# include EV_H 149# include EV_H
133#else 150#else
134# include "ev.h" 151# include "ev.h"
135#endif 152#endif
136 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
259
260#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0
263#endif
264
265#ifndef CLOCK_REALTIME
266# undef EV_USE_REALTIME
267# define EV_USE_REALTIME 0
268#endif
269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif
288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322
137#if __GNUC__ >= 3 323#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 325# define noinline __attribute__ ((noinline))
140#else 326#else
141# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
142# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
143#endif 332#endif
144 333
145#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
147 343
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 346
347#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */
349
151typedef struct ev_watcher *W; 350typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
154 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
156 362
363#ifdef _WIN32
157#include "ev_win32.c" 364# include "ev_win32.c"
365#endif
158 366
159/*****************************************************************************/ 367/*****************************************************************************/
160 368
161static void (*syserr_cb)(const char *msg); 369static void (*syserr_cb)(const char *msg);
162 370
371void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 372ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 373{
165 syserr_cb = cb; 374 syserr_cb = cb;
166} 375}
167 376
168static void 377static void noinline
169syserr (const char *msg) 378syserr (const char *msg)
170{ 379{
171 if (!msg) 380 if (!msg)
172 msg = "(libev) system error"; 381 msg = "(libev) system error";
173 382
178 perror (msg); 387 perror (msg);
179 abort (); 388 abort ();
180 } 389 }
181} 390}
182 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
183static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 408
409void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 411{
187 alloc = cb; 412 alloc = cb;
188} 413}
189 414
190static void * 415inline_speed void *
191ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
192{ 417{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
194 419
195 if (!ptr && size) 420 if (!ptr && size)
196 { 421 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 423 abort ();
209typedef struct 434typedef struct
210{ 435{
211 WL head; 436 WL head;
212 unsigned char events; 437 unsigned char events;
213 unsigned char reify; 438 unsigned char reify;
439#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle;
441#endif
214} ANFD; 442} ANFD;
215 443
216typedef struct 444typedef struct
217{ 445{
218 W w; 446 W w;
219 int events; 447 int events;
220} ANPENDING; 448} ANPENDING;
221 449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
475
222#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
223 477
224 struct ev_loop 478 struct ev_loop
225 { 479 {
480 ev_tstamp ev_rt_now;
481 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 482 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 483 #include "ev_vars.h"
228 #undef VAR 484 #undef VAR
229 }; 485 };
230 #include "ev_wrap.h" 486 #include "ev_wrap.h"
231 487
232 struct ev_loop default_loop_struct; 488 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 489 struct ev_loop *ev_default_loop_ptr;
234 490
235#else 491#else
236 492
493 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 494 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 495 #include "ev_vars.h"
239 #undef VAR 496 #undef VAR
240 497
241 static int default_loop; 498 static int ev_default_loop_ptr;
242 499
243#endif 500#endif
244 501
245/*****************************************************************************/ 502/*****************************************************************************/
246 503
247inline ev_tstamp 504ev_tstamp
248ev_time (void) 505ev_time (void)
249{ 506{
250#if EV_USE_REALTIME 507#if EV_USE_REALTIME
251 struct timespec ts; 508 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 509 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 515#endif
259} 516}
260 517
261inline ev_tstamp 518ev_tstamp inline_size
262get_clock (void) 519get_clock (void)
263{ 520{
264#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
266 { 523 {
271#endif 528#endif
272 529
273 return ev_time (); 530 return ev_time ();
274} 531}
275 532
533#if EV_MULTIPLICITY
276ev_tstamp 534ev_tstamp
277ev_now (EV_P) 535ev_now (EV_P)
278{ 536{
279 return rt_now; 537 return ev_rt_now;
280} 538}
539#endif
281 540
282#define array_roundsize(type,n) ((n) | 4 & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
283 597
284#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
286 { \ 600 { \
287 int newcnt = cur; \ 601 int ocur_ = (cur); \
288 do \ 602 (base) = (type *)array_realloc \
289 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 605 }
298 606
607#if 0
299#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 610 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 614 }
306 615#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 616
312#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 619
315/*****************************************************************************/ 620/*****************************************************************************/
316 621
317static void 622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
318anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
319{ 652{
320 while (count--) 653 while (count--)
321 { 654 {
322 base->head = 0; 655 base->head = 0;
325 658
326 ++base; 659 ++base;
327 } 660 }
328} 661}
329 662
330void 663void inline_speed
331ev_feed_event (EV_P_ void *w, int revents)
332{
333 W w_ = (W)w;
334
335 if (w_->pending)
336 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return;
339 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345}
346
347static void
348queue_events (EV_P_ W *events, int eventcnt, int type)
349{
350 int i;
351
352 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type);
354}
355
356inline void
357fd_event (EV_P_ int fd, int revents) 664fd_event (EV_P_ int fd, int revents)
358{ 665{
359 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 667 ev_io *w;
361 668
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 670 {
364 int ev = w->events & revents; 671 int ev = w->events & revents;
365 672
366 if (ev) 673 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
369} 676}
370 677
371void 678void
372ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 680{
681 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
375} 683}
376 684
377/*****************************************************************************/ 685void inline_size
378
379static void
380fd_reify (EV_P) 686fd_reify (EV_P)
381{ 687{
382 int i; 688 int i;
383 689
384 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
385 { 691 {
386 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 694 ev_io *w;
389 695
390 int events = 0; 696 unsigned char events = 0;
391 697
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 699 events |= (unsigned char)w->events;
394 700
701#if EV_SELECT_IS_WINSOCKET
702 if (events)
703 {
704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
711 }
712#endif
713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
395 anfd->reify = 0; 718 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
399 } 724 }
400 725
401 fdchangecnt = 0; 726 fdchangecnt = 0;
402} 727}
403 728
404static void 729void inline_size
405fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
406{ 731{
407 if (anfds [fd].reify) 732 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
411 734
735 if (expect_true (!reify))
736 {
412 ++fdchangecnt; 737 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
415} 741}
416 742
417static void 743void inline_speed
418fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
419{ 745{
420 struct ev_io *w; 746 ev_io *w;
421 747
422 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
423 { 749 {
424 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 752 }
427} 753}
428 754
429static int 755int inline_size
430fd_valid (int fd) 756fd_valid (int fd)
431{ 757{
432#ifdef WIN32 758#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 759 return _get_osfhandle (fd) != -1;
434#else 760#else
435 return fcntl (fd, F_GETFD) != -1; 761 return fcntl (fd, F_GETFD) != -1;
436#endif 762#endif
437} 763}
438 764
439/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
440static void 766static void noinline
441fd_ebadf (EV_P) 767fd_ebadf (EV_P)
442{ 768{
443 int fd; 769 int fd;
444 770
445 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
448 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
449} 775}
450 776
451/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 778static void noinline
453fd_enomem (EV_P) 779fd_enomem (EV_P)
454{ 780{
455 int fd; 781 int fd;
456 782
457 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
460 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
461 return; 787 return;
462 } 788 }
463} 789}
464 790
465/* usually called after fork if method needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 792static void noinline
467fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
468{ 794{
469 int fd; 795 int fd;
470 796
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 798 if (anfds [fd].events)
474 { 799 {
475 anfds [fd].events = 0; 800 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
477 } 802 }
478} 803}
479 804
480/*****************************************************************************/ 805/*****************************************************************************/
481 806
482static void 807/*
483upheap (WT *heap, int k) 808 * the heap functions want a real array index. array index 0 uis guaranteed to not
484{ 809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
485 WT w = heap [k]; 810 * the branching factor of the d-tree.
811 */
486 812
487 while (k && heap [k >> 1]->at > w->at) 813/*
488 { 814 * at the moment we allow libev the luxury of two heaps,
489 heap [k] = heap [k >> 1]; 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
490 ((W)heap [k])->active = k + 1; 816 * which is more cache-efficient.
491 k >>= 1; 817 * the difference is about 5% with 50000+ watchers.
492 } 818 */
819#if EV_USE_4HEAP
493 820
494 heap [k] = w; 821#define DHEAP 4
495 ((W)heap [k])->active = k + 1; 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
496 825
497} 826/* away from the root */
498 827void inline_speed
499static void
500downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
501{ 829{
502 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
503 832
504 while (k < (N >> 1)) 833 for (;;)
505 { 834 {
506 int j = k << 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
507 838
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
509 ++j; 841 {
510 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
511 if (w->at <= heap [j]->at) 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
512 break; 855 break;
513 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
514 heap [k] = heap [j]; 895 heap [k] = heap [c];
515 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
516 k = j; 898 k = c;
517 } 899 }
518 900
519 heap [k] = w; 901 heap [k] = he;
520 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
929adjustheap (ANHE *heap, int N, int k)
930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
521} 947}
522 948
523/*****************************************************************************/ 949/*****************************************************************************/
524 950
525typedef struct 951typedef struct
526{ 952{
527 WL head; 953 WL head;
528 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
529} ANSIG; 955} ANSIG;
530 956
531static ANSIG *signals; 957static ANSIG *signals;
532static int signalmax; 958static int signalmax;
533 959
534static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537 961
538static void 962void inline_size
539signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
540{ 964{
541 while (count--) 965 while (count--)
542 { 966 {
543 base->head = 0; 967 base->head = 0;
545 969
546 ++base; 970 ++base;
547 } 971 }
548} 972}
549 973
974/*****************************************************************************/
975
976void inline_speed
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987
988static void noinline
989evpipe_init (EV_P)
990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
1006 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
1011 ev_io_start (EV_A_ &pipeev);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
550static void 1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
1079}
1080
1081/*****************************************************************************/
1082
1083static void
551sighandler (int signum) 1084ev_sighandler (int signum)
552{ 1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
553#if WIN32 1090#if _WIN32
554 signal (signum, sighandler); 1091 signal (signum, ev_sighandler);
555#endif 1092#endif
556 1093
557 signals [signum - 1].gotsig = 1; 1094 signals [signum - 1].gotsig = 1;
558 1095 evpipe_write (EV_A_ &gotsig);
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
569 }
570} 1096}
571 1097
572void 1098void noinline
573ev_feed_signal_event (EV_P_ int signum) 1099ev_feed_signal_event (EV_P_ int signum)
574{ 1100{
575 WL w; 1101 WL w;
576 1102
577#if EV_MULTIPLICITY 1103#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
579#endif 1105#endif
580 1106
581 --signum; 1107 --signum;
582 1108
583 if (signum < 0 || signum >= signalmax) 1109 if (signum < 0 || signum >= signalmax)
587 1113
588 for (w = signals [signum].head; w; w = w->next) 1114 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1116}
591 1117
592static void
593sigcb (EV_P_ struct ev_io *iow, int revents)
594{
595 int signum;
596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603
604 for (signum = signalmax; signum--; )
605 if (signals [signum].gotsig)
606 ev_feed_signal_event (EV_A_ signum + 1);
607}
608
609static void
610siginit (EV_P)
611{
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624}
625
626/*****************************************************************************/ 1118/*****************************************************************************/
627 1119
628static struct ev_child *childs [PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
629 1121
630#ifndef WIN32 1122#ifndef _WIN32
631 1123
632static struct ev_signal childev; 1124static ev_signal childev;
1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
1130void inline_speed
1131child_reap (EV_P_ int chain, int pid, int status)
1132{
1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
1140 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1142 w->rpid = pid;
1143 w->rstatus = status;
1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1145 }
1146 }
1147}
633 1148
634#ifndef WCONTINUED 1149#ifndef WCONTINUED
635# define WCONTINUED 0 1150# define WCONTINUED 0
636#endif 1151#endif
637 1152
638static void 1153static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1154childcb (EV_P_ ev_signal *sw, int revents)
655{ 1155{
656 int pid, status; 1156 int pid, status;
657 1157
1158 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1159 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1160 if (!WCONTINUED
1161 || errno != EINVAL
1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1163 return;
1164
660 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1168
663 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1172}
667 1173
668#endif 1174#endif
669 1175
670/*****************************************************************************/ 1176/*****************************************************************************/
671 1177
1178#if EV_USE_PORT
1179# include "ev_port.c"
1180#endif
672#if EV_USE_KQUEUE 1181#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1182# include "ev_kqueue.c"
674#endif 1183#endif
675#if EV_USE_EPOLL 1184#if EV_USE_EPOLL
676# include "ev_epoll.c" 1185# include "ev_epoll.c"
693{ 1202{
694 return EV_VERSION_MINOR; 1203 return EV_VERSION_MINOR;
695} 1204}
696 1205
697/* return true if we are running with elevated privileges and should ignore env variables */ 1206/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1207int inline_size
699enable_secure (void) 1208enable_secure (void)
700{ 1209{
701#ifdef WIN32 1210#ifdef _WIN32
702 return 0; 1211 return 0;
703#else 1212#else
704 return getuid () != geteuid () 1213 return getuid () != geteuid ()
705 || getgid () != getegid (); 1214 || getgid () != getegid ();
706#endif 1215#endif
707} 1216}
708 1217
709int 1218unsigned int
710ev_method (EV_P) 1219ev_supported_backends (void)
711{ 1220{
712 return method; 1221 unsigned int flags = 0;
713}
714 1222
715static void 1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
716loop_init (EV_P_ int methods) 1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1226 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_recommended_backends (void)
717{ 1234{
718 if (!method) 1235 unsigned int flags = ev_supported_backends ();
1236
1237#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE;
1241#endif
1242#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation
1244 flags &= ~EVBACKEND_POLL;
1245#endif
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_embeddable_backends (void)
1252{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_backend (EV_P)
1264{
1265 return backend;
1266}
1267
1268unsigned int
1269ev_loop_count (EV_P)
1270{
1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
1284}
1285
1286static void noinline
1287loop_init (EV_P_ unsigned int flags)
1288{
1289 if (!backend)
719 { 1290 {
720#if EV_USE_MONOTONIC 1291#if EV_USE_MONOTONIC
721 { 1292 {
722 struct timespec ts; 1293 struct timespec ts;
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
724 have_monotonic = 1; 1295 have_monotonic = 1;
725 } 1296 }
726#endif 1297#endif
727 1298
728 rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
729 mn_now = get_clock (); 1300 mn_now = get_clock ();
730 now_floor = mn_now; 1301 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
732 1303
733 if (methods == EVMETHOD_AUTO) 1304 io_blocktime = 0.;
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1312
1313 /* pid check not overridable via env */
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
735 methods = atoi (getenv ("LIBEV_METHODS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
736 else
737 methods = EVMETHOD_ANY;
738 1323
739 method = 0; 1324 if (!(flags & 0x0000ffffU))
740#if EV_USE_WIN32 1325 flags |= ev_recommended_backends ();
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1326
1327#if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
742#endif 1329#endif
743#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
745#endif 1332#endif
746#if EV_USE_EPOLL 1333#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1334 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
748#endif 1335#endif
749#if EV_USE_POLL 1336#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1337 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
751#endif 1338#endif
752#if EV_USE_SELECT 1339#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
754#endif 1341#endif
755 1342
756 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
757 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
758 } 1345 }
759} 1346}
760 1347
761void 1348static void noinline
762loop_destroy (EV_P) 1349loop_destroy (EV_P)
763{ 1350{
764 int i; 1351 int i;
765 1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369
766#if EV_USE_WIN32 1370#if EV_USE_INOTIFY
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1371 if (fs_fd >= 0)
1372 close (fs_fd);
1373#endif
1374
1375 if (backend_fd >= 0)
1376 close (backend_fd);
1377
1378#if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
768#endif 1380#endif
769#if EV_USE_KQUEUE 1381#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
771#endif 1383#endif
772#if EV_USE_EPOLL 1384#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
774#endif 1386#endif
775#if EV_USE_POLL 1387#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
777#endif 1389#endif
778#if EV_USE_SELECT 1390#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
780#endif 1392#endif
781 1393
782 for (i = NUMPRI; i--; ) 1394 for (i = NUMPRI; i--; )
1395 {
783 array_free (pending, [i]); 1396 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399#endif
1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
784 1403
785 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange); 1405 array_free (fdchange, EMPTY);
787 array_free_microshit (timer); 1406 array_free (timer, EMPTY);
788 array_free_microshit (periodic); 1407#if EV_PERIODIC_ENABLE
789 array_free_microshit (idle); 1408 array_free (periodic, EMPTY);
790 array_free_microshit (prepare); 1409#endif
791 array_free_microshit (check); 1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1413 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
792 1418
793 method = 0; 1419 backend = 0;
794} 1420}
795 1421
796static void 1422#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P);
1424#endif
1425
1426void inline_size
797loop_fork (EV_P) 1427loop_fork (EV_P)
798{ 1428{
1429#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif
1432#if EV_USE_KQUEUE
1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1434#endif
799#if EV_USE_EPOLL 1435#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
801#endif 1437#endif
802#if EV_USE_KQUEUE 1438#if EV_USE_INOTIFY
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1439 infy_fork (EV_A);
804#endif 1440#endif
805 1441
806 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
807 { 1443 {
808 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
809 1450
810 ev_ref (EV_A); 1451 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
812 close (sigpipe [0]); 1461 close (evpipe [0]);
813 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
814 1464
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
819 } 1468 }
820 1469
821 postfork = 0; 1470 postfork = 0;
822} 1471}
1472
1473#if EV_MULTIPLICITY
1474
1475struct ev_loop *
1476ev_loop_new (unsigned int flags)
1477{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479
1480 memset (loop, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags);
1483
1484 if (ev_backend (EV_A))
1485 return loop;
1486
1487 return 0;
1488}
1489
1490void
1491ev_loop_destroy (EV_P)
1492{
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495}
1496
1497void
1498ev_loop_fork (EV_P)
1499{
1500 postfork = 1; /* must be in line with ev_default_fork */
1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
823 1603
824#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
825struct ev_loop * 1605struct ev_loop *
826ev_loop_new (int methods) 1606ev_default_loop_init (unsigned int flags)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else 1607#else
858int 1608int
1609ev_default_loop (unsigned int flags)
859#endif 1610#endif
860ev_default_loop (int methods)
861{ 1611{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 1612 if (!ev_default_loop_ptr)
867 { 1613 {
868#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
870#else 1616#else
871 default_loop = 1; 1617 ev_default_loop_ptr = 1;
872#endif 1618#endif
873 1619
874 loop_init (EV_A_ methods); 1620 loop_init (EV_A_ flags);
875 1621
876 if (ev_method (EV_A)) 1622 if (ev_backend (EV_A))
877 { 1623 {
878 siginit (EV_A);
879
880#ifndef WIN32 1624#ifndef _WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 1629#endif
886 } 1630 }
887 else 1631 else
888 default_loop = 0; 1632 ev_default_loop_ptr = 0;
889 } 1633 }
890 1634
891 return default_loop; 1635 return ev_default_loop_ptr;
892} 1636}
893 1637
894void 1638void
895ev_default_destroy (void) 1639ev_default_destroy (void)
896{ 1640{
897#if EV_MULTIPLICITY 1641#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop; 1642 struct ev_loop *loop = ev_default_loop_ptr;
899#endif 1643#endif
900 1644
901#ifndef WIN32 1645#ifndef _WIN32
902 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
904#endif 1648#endif
905 1649
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
913} 1651}
914 1652
915void 1653void
916ev_default_fork (void) 1654ev_default_fork (void)
917{ 1655{
918#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1657 struct ev_loop *loop = ev_default_loop_ptr;
920#endif 1658#endif
921 1659
922 if (method) 1660 if (backend)
923 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
924} 1662}
925 1663
926/*****************************************************************************/ 1664/*****************************************************************************/
927 1665
928static int 1666void
929any_pending (EV_P) 1667ev_invoke (EV_P_ void *w, int revents)
930{ 1668{
931 int pri; 1669 EV_CB_INVOKE ((W)w, revents);
932
933 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938} 1670}
939 1671
940static void 1672void inline_speed
941call_pending (EV_P) 1673call_pending (EV_P)
942{ 1674{
943 int pri; 1675 int pri;
944 1676
945 for (pri = NUMPRI; pri--; ) 1677 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 1678 while (pendingcnt [pri])
947 { 1679 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 1681
950 if (p->w) 1682 if (expect_true (p->w))
951 { 1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1685
952 p->w->pending = 0; 1686 p->w->pending = 0;
953 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
954 } 1689 }
955 } 1690 }
956} 1691}
957 1692
958static void 1693#if EV_IDLE_ENABLE
1694void inline_size
1695idle_reify (EV_P)
1696{
1697 if (expect_false (idleall))
1698 {
1699 int pri;
1700
1701 for (pri = NUMPRI; pri--; )
1702 {
1703 if (pendingcnt [pri])
1704 break;
1705
1706 if (idlecnt [pri])
1707 {
1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1709 break;
1710 }
1711 }
1712 }
1713}
1714#endif
1715
1716void inline_size
959timers_reify (EV_P) 1717timers_reify (EV_P)
960{ 1718{
1719 EV_FREQUENT_CHECK;
1720
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 1722 {
963 struct ev_timer *w = timers [0]; 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
964 1724
965 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
966 1726
967 /* first reschedule or stop timer */ 1727 /* first reschedule or stop timer */
968 if (w->repeat) 1728 if (w->repeat)
969 { 1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 1735
1736 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 1737 downheap (timers, timercnt, HEAP0);
973 } 1738 }
974 else 1739 else
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 1741
1742 EV_FREQUENT_CHECK;
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
978 } 1744 }
979} 1745}
980 1746
981static void 1747#if EV_PERIODIC_ENABLE
1748void inline_size
982periodics_reify (EV_P) 1749periodics_reify (EV_P)
983{ 1750{
1751 EV_FREQUENT_CHECK;
1752
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 1754 {
986 struct ev_periodic *w = periodics [0]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
987 1756
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
989 1758
990 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
991 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
992 { 1761 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994 1763
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
996 downheap ((WT *)periodics, periodiccnt, 0); 1767 downheap (periodics, periodiccnt, HEAP0);
997 } 1768 }
998 else if (w->interval) 1769 else if (w->interval)
999 { 1770 {
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1002 downheap ((WT *)periodics, periodiccnt, 0); 1786 downheap (periodics, periodiccnt, HEAP0);
1003 } 1787 }
1004 else 1788 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 1790
1791 EV_FREQUENT_CHECK;
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1008 } 1793 }
1009} 1794}
1010 1795
1011static void 1796static void noinline
1012periodics_reschedule (EV_P) 1797periodics_reschedule (EV_P)
1013{ 1798{
1014 int i; 1799 int i;
1015 1800
1016 /* adjust periodics after time jump */ 1801 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1018 { 1803 {
1019 struct ev_periodic *w = periodics [i]; 1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1020 1805
1021 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1023 else if (w->interval) 1808 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1025 }
1026 1810
1027 /* now rebuild the heap */ 1811 ANHE_at_cache (periodics [i]);
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 1812 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048}
1049 1813
1050static void 1814 reheap (periodics, periodiccnt);
1051time_update (EV_P) 1815}
1816#endif
1817
1818void inline_speed
1819time_update (EV_P_ ev_tstamp max_block)
1052{ 1820{
1053 int i; 1821 int i;
1054 1822
1055#if EV_USE_MONOTONIC 1823#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 1824 if (expect_true (have_monotonic))
1057 { 1825 {
1058 if (time_update_monotonic (EV_A)) 1826 ev_tstamp odiff = rtmn_diff;
1827
1828 mn_now = get_clock ();
1829
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1831 /* interpolate in the meantime */
1832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 1833 {
1060 ev_tstamp odiff = rtmn_diff; 1834 ev_rt_now = rtmn_diff + mn_now;
1835 return;
1836 }
1061 1837
1838 now_floor = mn_now;
1839 ev_rt_now = ev_time ();
1840
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1841 /* loop a few times, before making important decisions.
1842 * on the choice of "4": one iteration isn't enough,
1843 * in case we get preempted during the calls to
1844 * ev_time and get_clock. a second call is almost guaranteed
1845 * to succeed in that case, though. and looping a few more times
1846 * doesn't hurt either as we only do this on time-jumps or
1847 * in the unlikely event of having been preempted here.
1848 */
1849 for (i = 4; --i; )
1850 {
1851 rtmn_diff = ev_rt_now - mn_now;
1852
1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1854 return; /* all is well */
1855
1856 ev_rt_now = ev_time ();
1857 mn_now = get_clock ();
1858 now_floor = mn_now;
1859 }
1860
1861# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A);
1863# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 }
1867 else
1868#endif
1869 {
1870 ev_rt_now = ev_time ();
1871
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 {
1874#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A);
1876#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1063 { 1879 {
1064 rtmn_diff = rt_now - mn_now; 1880 ANHE *he = timers + i + HEAP0;
1065 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1882 ANHE_at_cache (*he);
1067 return; /* all is well */
1068
1069 rt_now = ev_time ();
1070 mn_now = get_clock ();
1071 now_floor = mn_now;
1072 } 1883 }
1073
1074 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 1884 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 1885
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 1886 mn_now = ev_rt_now;
1094 } 1887 }
1095} 1888}
1096 1889
1097void 1890void
1098ev_ref (EV_P) 1891ev_ref (EV_P)
1109static int loop_done; 1902static int loop_done;
1110 1903
1111void 1904void
1112ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1113{ 1906{
1114 double block; 1907 loop_done = EVUNLOOP_CANCEL;
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1908
1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1116 1910
1117 do 1911 do
1118 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1917#ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid))
1920 {
1921 curpid = getpid ();
1922 postfork = 1;
1923 }
1924#endif
1925
1926#if EV_FORK_ENABLE
1927 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork))
1929 if (forkcnt)
1930 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A);
1933 }
1934#endif
1935
1119 /* queue check watchers (and execute them) */ 1936 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 1937 if (expect_false (preparecnt))
1121 { 1938 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 1940 call_pending (EV_A);
1124 } 1941 }
1125 1942
1943 if (expect_false (!activecnt))
1944 break;
1945
1126 /* we might have forked, so reify kernel state if necessary */ 1946 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 1947 if (expect_false (postfork))
1128 loop_fork (EV_A); 1948 loop_fork (EV_A);
1129 1949
1130 /* update fd-related kernel structures */ 1950 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 1951 fd_reify (EV_A);
1132 1952
1133 /* calculate blocking time */ 1953 /* calculate blocking time */
1954 {
1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1134 1957
1135 /* we only need this for !monotonic clock or timers, but as we basically 1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1136 always have timers, we just calculate it always */
1137#if EV_USE_MONOTONIC
1138 if (expect_true (have_monotonic))
1139 time_update_monotonic (EV_A);
1140 else
1141#endif
1142 { 1959 {
1143 rt_now = ev_time (); 1960 /* update time to cancel out callback processing overhead */
1144 mn_now = rt_now; 1961 time_update (EV_A_ 1e100);
1145 }
1146 1962
1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
1148 block = 0.;
1149 else
1150 {
1151 block = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1152 1964
1153 if (timercnt) 1965 if (timercnt)
1154 { 1966 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 1968 if (waittime > to) waittime = to;
1157 } 1969 }
1158 1970
1971#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 1972 if (periodiccnt)
1160 { 1973 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1163 } 1976 }
1977#endif
1164 1978
1165 if (block < 0.) block = 0.; 1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1166 } 1992 }
1167 1993
1168 method_poll (EV_A_ block); 1994 ++loop_count;
1995 backend_poll (EV_A_ waittime);
1169 1996
1170 /* update rt_now, do magic */ 1997 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 1998 time_update (EV_A_ waittime + sleeptime);
1999 }
1172 2000
1173 /* queue pending timers and reschedule them */ 2001 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 2002 timers_reify (EV_A); /* relative timers called last */
2003#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 2004 periodics_reify (EV_A); /* absolute timers called first */
2005#endif
1176 2006
2007#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 2008 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 2009 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2010#endif
1180 2011
1181 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1182 if (checkcnt) 2013 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1184 2015
1185 call_pending (EV_A); 2016 call_pending (EV_A);
1186 } 2017 }
1187 while (activecnt && !loop_done); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1188 2023
1189 if (loop_done != 2) 2024 if (loop_done == EVUNLOOP_ONE)
1190 loop_done = 0; 2025 loop_done = EVUNLOOP_CANCEL;
1191} 2026}
1192 2027
1193void 2028void
1194ev_unloop (EV_P_ int how) 2029ev_unloop (EV_P_ int how)
1195{ 2030{
1196 loop_done = how; 2031 loop_done = how;
1197} 2032}
1198 2033
1199/*****************************************************************************/ 2034/*****************************************************************************/
1200 2035
1201inline void 2036void inline_size
1202wlist_add (WL *head, WL elem) 2037wlist_add (WL *head, WL elem)
1203{ 2038{
1204 elem->next = *head; 2039 elem->next = *head;
1205 *head = elem; 2040 *head = elem;
1206} 2041}
1207 2042
1208inline void 2043void inline_size
1209wlist_del (WL *head, WL elem) 2044wlist_del (WL *head, WL elem)
1210{ 2045{
1211 while (*head) 2046 while (*head)
1212 { 2047 {
1213 if (*head == elem) 2048 if (*head == elem)
1218 2053
1219 head = &(*head)->next; 2054 head = &(*head)->next;
1220 } 2055 }
1221} 2056}
1222 2057
1223inline void 2058void inline_speed
1224ev_clear_pending (EV_P_ W w) 2059clear_pending (EV_P_ W w)
1225{ 2060{
1226 if (w->pending) 2061 if (w->pending)
1227 { 2062 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2063 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1229 w->pending = 0; 2064 w->pending = 0;
1230 } 2065 }
1231} 2066}
1232 2067
1233inline void 2068int
2069ev_clear_pending (EV_P_ void *w)
2070{
2071 W w_ = (W)w;
2072 int pending = w_->pending;
2073
2074 if (expect_true (pending))
2075 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2077 w_->pending = 0;
2078 p->w = 0;
2079 return p->events;
2080 }
2081 else
2082 return 0;
2083}
2084
2085void inline_size
2086pri_adjust (EV_P_ W w)
2087{
2088 int pri = w->priority;
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri;
2092}
2093
2094void inline_speed
1234ev_start (EV_P_ W w, int active) 2095ev_start (EV_P_ W w, int active)
1235{ 2096{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2097 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2098 w->active = active;
1240 ev_ref (EV_A); 2099 ev_ref (EV_A);
1241} 2100}
1242 2101
1243inline void 2102void inline_size
1244ev_stop (EV_P_ W w) 2103ev_stop (EV_P_ W w)
1245{ 2104{
1246 ev_unref (EV_A); 2105 ev_unref (EV_A);
1247 w->active = 0; 2106 w->active = 0;
1248} 2107}
1249 2108
1250/*****************************************************************************/ 2109/*****************************************************************************/
1251 2110
1252void 2111void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2112ev_io_start (EV_P_ ev_io *w)
1254{ 2113{
1255 int fd = w->fd; 2114 int fd = w->fd;
1256 2115
1257 if (ev_is_active (w)) 2116 if (expect_false (ev_is_active (w)))
1258 return; 2117 return;
1259 2118
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
2120
2121 EV_FREQUENT_CHECK;
1261 2122
1262 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1265 2126
1266 fd_change (EV_A_ fd); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1267} 2128 w->events &= ~EV_IOFDSET;
1268 2129
1269void 2130 EV_FREQUENT_CHECK;
2131}
2132
2133void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1271{ 2135{
1272 ev_clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2137 if (expect_false (!ev_is_active (w)))
1274 return; 2138 return;
1275 2139
2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
2143
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1278 2146
1279 fd_change (EV_A_ w->fd); 2147 fd_change (EV_A_ w->fd, 1);
1280}
1281 2148
1282void 2149 EV_FREQUENT_CHECK;
2150}
2151
2152void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1284{ 2154{
1285 if (ev_is_active (w)) 2155 if (expect_false (ev_is_active (w)))
1286 return; 2156 return;
1287 2157
1288 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1289 2159
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1296 2170
2171 EV_FREQUENT_CHECK;
2172
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2174}
1299 2175
1300void 2176void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2178{
1303 ev_clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2180 if (expect_false (!ev_is_active (w)))
1305 return; 2181 return;
1306 2182
2183 EV_FREQUENT_CHECK;
2184
2185 {
2186 int active = ev_active (w);
2187
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2189
1309 if (((W)w)->active < timercnt--) 2190 --timercnt;
2191
2192 if (expect_true (active < timercnt + HEAP0))
1310 { 2193 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2195 adjustheap (timers, timercnt, active);
1313 } 2196 }
2197 }
1314 2198
1315 ((WT)w)->at = w->repeat; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1316 2202
1317 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1318} 2204}
1319 2205
1320void 2206void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1322{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1323 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1324 { 2212 {
1325 if (w->repeat) 2213 if (w->repeat)
1326 { 2214 {
1327 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 ANHE_at_cache (timers [ev_active (w)]);
2217 adjustheap (timers, timercnt, ev_active (w));
1329 } 2218 }
1330 else 2219 else
1331 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1332 } 2221 }
1333 else if (w->repeat) 2222 else if (w->repeat)
2223 {
2224 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1335} 2226 }
1336 2227
1337void 2228 EV_FREQUENT_CHECK;
2229}
2230
2231#if EV_PERIODIC_ENABLE
2232void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2234{
1340 if (ev_is_active (w)) 2235 if (expect_false (ev_is_active (w)))
1341 return; 2236 return;
1342 2237
1343 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2240 else if (w->interval)
1346 { 2241 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2245 }
2246 else
2247 ev_at (w) = w->offset;
1351 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1356 2257
2258 EV_FREQUENT_CHECK;
2259
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2261}
1359 2262
1360void 2263void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2265{
1363 ev_clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2267 if (expect_false (!ev_is_active (w)))
1365 return; 2268 return;
1366 2269
2270 EV_FREQUENT_CHECK;
2271
2272 {
2273 int active = ev_active (w);
2274
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2276
1369 if (((W)w)->active < periodiccnt--) 2277 --periodiccnt;
2278
2279 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2280 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2282 adjustheap (periodics, periodiccnt, active);
1373 } 2283 }
2284 }
2285
2286 EV_FREQUENT_CHECK;
1374 2287
1375 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1376} 2289}
1377 2290
1378void 2291void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2293{
2294 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2295 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2296 ev_periodic_start (EV_A_ w);
1383} 2297}
1384 2298#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2299
1451#ifndef SA_RESTART 2300#ifndef SA_RESTART
1452# define SA_RESTART 0 2301# define SA_RESTART 0
1453#endif 2302#endif
1454 2303
1455void 2304void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2305ev_signal_start (EV_P_ ev_signal *w)
1457{ 2306{
1458#if EV_MULTIPLICITY 2307#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1460#endif 2309#endif
1461 if (ev_is_active (w)) 2310 if (expect_false (ev_is_active (w)))
1462 return; 2311 return;
1463 2312
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1465 2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2318
2319 {
2320#ifndef _WIN32
2321 sigset_t full, prev;
2322 sigfillset (&full);
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2327
2328#ifndef _WIN32
2329 sigprocmask (SIG_SETMASK, &prev, 0);
2330#endif
2331 }
2332
1466 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1469 2335
1470 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1471 { 2337 {
1472#if WIN32 2338#if _WIN32
1473 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1474#else 2340#else
1475 struct sigaction sa; 2341 struct sigaction sa;
1476 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1477 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1480#endif 2346#endif
1481 } 2347 }
1482}
1483 2348
1484void 2349 EV_FREQUENT_CHECK;
2350}
2351
2352void noinline
1485ev_signal_stop (EV_P_ struct ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1486{ 2354{
1487 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w)) 2356 if (expect_false (!ev_is_active (w)))
1489 return; 2357 return;
1490 2358
2359 EV_FREQUENT_CHECK;
2360
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1492 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1493 2363
1494 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1495 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
1496}
1497 2366
2367 EV_FREQUENT_CHECK;
2368}
2369
1498void 2370void
1499ev_child_start (EV_P_ struct ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1500{ 2372{
1501#if EV_MULTIPLICITY 2373#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1503#endif 2375#endif
1504 if (ev_is_active (w)) 2376 if (expect_false (ev_is_active (w)))
1505 return; 2377 return;
1506 2378
2379 EV_FREQUENT_CHECK;
2380
1507 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1509}
1510 2383
2384 EV_FREQUENT_CHECK;
2385}
2386
1511void 2387void
1512ev_child_stop (EV_P_ struct ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1513{ 2389{
1514 ev_clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 2391 if (expect_false (!ev_is_active (w)))
1516 return; 2392 return;
1517 2393
2394 EV_FREQUENT_CHECK;
2395
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1520} 2400}
2401
2402#if EV_STAT_ENABLE
2403
2404# ifdef _WIN32
2405# undef lstat
2406# define lstat(a,b) _stati64 (a,b)
2407# endif
2408
2409#define DEF_STAT_INTERVAL 5.0074891
2410#define MIN_STAT_INTERVAL 0.1074891
2411
2412static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413
2414#if EV_USE_INOTIFY
2415# define EV_INOTIFY_BUFSIZE 8192
2416
2417static void noinline
2418infy_add (EV_P_ ev_stat *w)
2419{
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2421
2422 if (w->wd < 0)
2423 {
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2425
2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 {
2431 char path [4096];
2432 strcpy (path, w->path);
2433
2434 do
2435 {
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438
2439 char *pend = strrchr (path, '/');
2440
2441 if (!pend)
2442 break; /* whoops, no '/', complain to your admin */
2443
2444 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 }
2449 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452
2453 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2455}
2456
2457static void noinline
2458infy_del (EV_P_ ev_stat *w)
2459{
2460 int slot;
2461 int wd = w->wd;
2462
2463 if (wd < 0)
2464 return;
2465
2466 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w);
2469
2470 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd);
2472}
2473
2474static void noinline
2475infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476{
2477 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2480 infy_wd (EV_A_ slot, wd, ev);
2481 else
2482 {
2483 WL w_;
2484
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2486 {
2487 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */
2489
2490 if (w->wd == wd || wd == -1)
2491 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 {
2494 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */
2496 }
2497
2498 stat_timer_cb (EV_A_ &w->timer, 0);
2499 }
2500 }
2501 }
2502}
2503
2504static void
2505infy_cb (EV_P_ ev_io *w, int revents)
2506{
2507 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf));
2511
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2514}
2515
2516void inline_size
2517infy_init (EV_P)
2518{
2519 if (fs_fd != -2)
2520 return;
2521
2522 fs_fd = inotify_init ();
2523
2524 if (fs_fd >= 0)
2525 {
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w);
2529 }
2530}
2531
2532void inline_size
2533infy_fork (EV_P)
2534{
2535 int slot;
2536
2537 if (fs_fd < 0)
2538 return;
2539
2540 close (fs_fd);
2541 fs_fd = inotify_init ();
2542
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2544 {
2545 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0;
2547
2548 while (w_)
2549 {
2550 ev_stat *w = (ev_stat *)w_;
2551 w_ = w_->next; /* lets us add this watcher */
2552
2553 w->wd = -1;
2554
2555 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else
2558 ev_timer_start (EV_A_ &w->timer);
2559 }
2560
2561 }
2562}
2563
2564#endif
2565
2566void
2567ev_stat_stat (EV_P_ ev_stat *w)
2568{
2569 if (lstat (w->path, &w->attr) < 0)
2570 w->attr.st_nlink = 0;
2571 else if (!w->attr.st_nlink)
2572 w->attr.st_nlink = 1;
2573}
2574
2575static void noinline
2576stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577{
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579
2580 /* we copy this here each the time so that */
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w);
2584
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if (
2587 w->prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime
2598 ) {
2599 #if EV_USE_INOTIFY
2600 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */
2603 #endif
2604
2605 ev_feed_event (EV_A_ w, EV_STAT);
2606 }
2607}
2608
2609void
2610ev_stat_start (EV_P_ ev_stat *w)
2611{
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w);
2620
2621 if (w->interval < MIN_STAT_INTERVAL)
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2625 ev_set_priority (&w->timer, ev_priority (w));
2626
2627#if EV_USE_INOTIFY
2628 infy_init (EV_A);
2629
2630 if (fs_fd >= 0)
2631 infy_add (EV_A_ w);
2632 else
2633#endif
2634 ev_timer_start (EV_A_ &w->timer);
2635
2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2639}
2640
2641void
2642ev_stat_stop (EV_P_ ev_stat *w)
2643{
2644 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w)))
2646 return;
2647
2648 EV_FREQUENT_CHECK;
2649
2650#if EV_USE_INOTIFY
2651 infy_del (EV_A_ w);
2652#endif
2653 ev_timer_stop (EV_A_ &w->timer);
2654
2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2658}
2659#endif
2660
2661#if EV_IDLE_ENABLE
2662void
2663ev_idle_start (EV_P_ ev_idle *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ++idlecnt [ABSPRI (w)];
2674
2675 ++idleall;
2676 ev_start (EV_A_ (W)w, active);
2677
2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2679 idles [ABSPRI (w)][active - 1] = w;
2680 }
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_idle_stop (EV_P_ ev_idle *w)
2687{
2688 clear_pending (EV_A_ (W)w);
2689 if (expect_false (!ev_is_active (w)))
2690 return;
2691
2692 EV_FREQUENT_CHECK;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2699
2700 ev_stop (EV_A_ (W)w);
2701 --idleall;
2702 }
2703
2704 EV_FREQUENT_CHECK;
2705}
2706#endif
2707
2708void
2709ev_prepare_start (EV_P_ ev_prepare *w)
2710{
2711 if (expect_false (ev_is_active (w)))
2712 return;
2713
2714 EV_FREQUENT_CHECK;
2715
2716 ev_start (EV_A_ (W)w, ++preparecnt);
2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2721}
2722
2723void
2724ev_prepare_stop (EV_P_ ev_prepare *w)
2725{
2726 clear_pending (EV_A_ (W)w);
2727 if (expect_false (!ev_is_active (w)))
2728 return;
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ev_active (w);
2734
2735 prepares [active - 1] = prepares [--preparecnt];
2736 ev_active (prepares [active - 1]) = active;
2737 }
2738
2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2742}
2743
2744void
2745ev_check_start (EV_P_ ev_check *w)
2746{
2747 if (expect_false (ev_is_active (w)))
2748 return;
2749
2750 EV_FREQUENT_CHECK;
2751
2752 ev_start (EV_A_ (W)w, ++checkcnt);
2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2757}
2758
2759void
2760ev_check_stop (EV_P_ ev_check *w)
2761{
2762 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w)))
2764 return;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
2771 checks [active - 1] = checks [--checkcnt];
2772 ev_active (checks [active - 1]) = active;
2773 }
2774
2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2778}
2779
2780#if EV_EMBED_ENABLE
2781void noinline
2782ev_embed_sweep (EV_P_ ev_embed *w)
2783{
2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2785}
2786
2787static void
2788embed_io_cb (EV_P_ ev_io *io, int revents)
2789{
2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2791
2792 if (ev_cb (w))
2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2794 else
2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2796}
2797
2798static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2821
2822void
2823ev_embed_start (EV_P_ ev_embed *w)
2824{
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 {
2829 struct ev_loop *loop = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 }
2833
2834 EV_FREQUENT_CHECK;
2835
2836 ev_set_priority (&w->io, ev_priority (w));
2837 ev_io_start (EV_A_ &w->io);
2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_embed_stop (EV_P_ ev_embed *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2861
2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2865}
2866#endif
2867
2868#if EV_FORK_ENABLE
2869void
2870ev_fork_start (EV_P_ ev_fork *w)
2871{
2872 if (expect_false (ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_start (EV_A_ (W)w, ++forkcnt);
2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2882}
2883
2884void
2885ev_fork_stop (EV_P_ ev_fork *w)
2886{
2887 clear_pending (EV_A_ (W)w);
2888 if (expect_false (!ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
2892
2893 {
2894 int active = ev_active (w);
2895
2896 forks [active - 1] = forks [--forkcnt];
2897 ev_active (forks [active - 1]) = active;
2898 }
2899
2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2950}
2951#endif
1521 2952
1522/*****************************************************************************/ 2953/*****************************************************************************/
1523 2954
1524struct ev_once 2955struct ev_once
1525{ 2956{
1526 struct ev_io io; 2957 ev_io io;
1527 struct ev_timer to; 2958 ev_timer to;
1528 void (*cb)(int revents, void *arg); 2959 void (*cb)(int revents, void *arg);
1529 void *arg; 2960 void *arg;
1530}; 2961};
1531 2962
1532static void 2963static void
1541 2972
1542 cb (revents, arg); 2973 cb (revents, arg);
1543} 2974}
1544 2975
1545static void 2976static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 2977once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 2978{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1549} 2980}
1550 2981
1551static void 2982static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 2983once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 2984{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1555} 2986}
1556 2987
1557void 2988void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2989ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 2990{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2991 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 2992
1562 if (!once) 2993 if (expect_false (!once))
2994 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2995 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1564 else 2996 return;
1565 { 2997 }
2998
1566 once->cb = cb; 2999 once->cb = cb;
1567 once->arg = arg; 3000 once->arg = arg;
1568 3001
1569 ev_init (&once->io, once_cb_io); 3002 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 3003 if (fd >= 0)
1571 { 3004 {
1572 ev_io_set (&once->io, fd, events); 3005 ev_io_set (&once->io, fd, events);
1573 ev_io_start (EV_A_ &once->io); 3006 ev_io_start (EV_A_ &once->io);
1574 } 3007 }
1575 3008
1576 ev_init (&once->to, once_cb_to); 3009 ev_init (&once->to, once_cb_to);
1577 if (timeout >= 0.) 3010 if (timeout >= 0.)
1578 { 3011 {
1579 ev_timer_set (&once->to, timeout, 0.); 3012 ev_timer_set (&once->to, timeout, 0.);
1580 ev_timer_start (EV_A_ &once->to); 3013 ev_timer_start (EV_A_ &once->to);
1581 }
1582 } 3014 }
1583} 3015}
1584 3016
3017#if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019#endif
3020
3021#ifdef __cplusplus
3022}
3023#endif
3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines