ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC vs.
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
300# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
302#else 334#else
303# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
304# define noinline 336# define noinline
305# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline 338# define inline
307# endif 339# endif
308#endif 340#endif
309 341
310#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
325 357
326typedef ev_watcher *W; 358typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
329 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
330#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 369#endif
360 perror (msg); 395 perror (msg);
361 abort (); 396 abort ();
362 } 397 }
363} 398}
364 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
365static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
366 416
367void 417void
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
369{ 419{
370 alloc = cb; 420 alloc = cb;
371} 421}
372 422
373inline_speed void * 423inline_speed void *
374ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
375{ 425{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
377 427
378 if (!ptr && size) 428 if (!ptr && size)
379 { 429 {
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
381 abort (); 431 abort ();
404 W w; 454 W w;
405 int events; 455 int events;
406} ANPENDING; 456} ANPENDING;
407 457
408#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
409typedef struct 460typedef struct
410{ 461{
411 WL head; 462 WL head;
412} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
413#endif 482#endif
414 483
415#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
416 485
417 struct ev_loop 486 struct ev_loop
502 } 571 }
503} 572}
504 573
505/*****************************************************************************/ 574/*****************************************************************************/
506 575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
507int inline_size 578int inline_size
508array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
509{ 580{
510 int ncur = cur + 1; 581 int ncur = cur + 1;
511 582
512 do 583 do
513 ncur <<= 1; 584 ncur <<= 1;
514 while (cnt > ncur); 585 while (cnt > ncur);
515 586
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 589 {
519 ncur *= elem; 590 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 593 ncur /= elem;
523 } 594 }
524 595
525 return ncur; 596 return ncur;
739 } 810 }
740} 811}
741 812
742/*****************************************************************************/ 813/*****************************************************************************/
743 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
744void inline_speed 835void inline_speed
745upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
746{ 837{
747 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
748 840
749 while (k) 841 for (;;)
750 { 842 {
751 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
752 846
753 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
754 break; 863 break;
755 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
756 heap [k] = heap [p]; 927 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
758 k = p; 929 k = p;
759 } 930 }
760 931
761 heap [k] = w; 932 heap [k] = he;
762 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
763}
764
765void inline_speed
766downheap (WT *heap, int N, int k)
767{
768 WT w = heap [k];
769
770 for (;;)
771 {
772 int c = (k << 1) + 1;
773
774 if (c >= N)
775 break;
776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
783 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1;
785
786 k = c;
787 }
788
789 heap [k] = w;
790 ((W)heap [k])->active = k + 1;
791} 934}
792 935
793void inline_size 936void inline_size
794adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
795{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
796 upheap (heap, k); 940 upheap (heap, k);
941 else
797 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
798} 955}
799 956
800/*****************************************************************************/ 957/*****************************************************************************/
801 958
802typedef struct 959typedef struct
891pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
892{ 1049{
893#if EV_USE_EVENTFD 1050#if EV_USE_EVENTFD
894 if (evfd >= 0) 1051 if (evfd >= 0)
895 { 1052 {
896 uint64_t counter = 1; 1053 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 1054 read (evfd, &counter, sizeof (uint64_t));
898 } 1055 }
899 else 1056 else
900#endif 1057#endif
901 { 1058 {
1170 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 1328 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 1331
1175 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1176 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1177 1334
1178#if EV_USE_PORT 1335#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 1337#endif
1268#endif 1425#endif
1269 1426
1270 backend = 0; 1427 backend = 0;
1271} 1428}
1272 1429
1430#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1274 1433
1275void inline_size 1434void inline_size
1276loop_fork (EV_P) 1435loop_fork (EV_P)
1277{ 1436{
1278#if EV_USE_PORT 1437#if EV_USE_PORT
1318 1477
1319 postfork = 0; 1478 postfork = 0;
1320} 1479}
1321 1480
1322#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1323struct ev_loop * 1483struct ev_loop *
1324ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1325{ 1485{
1326 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1327 1487
1346ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1347{ 1507{
1348 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1349} 1509}
1350 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1351#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1352 1611
1353#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1354struct ev_loop * 1613struct ev_loop *
1355ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1356#else 1615#else
1432 { 1691 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1434 1693
1435 p->w->pending = 0; 1694 p->w->pending = 0;
1436 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1437 } 1697 }
1438 } 1698 }
1439} 1699}
1440
1441void inline_size
1442timers_reify (EV_P)
1443{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1445 {
1446 ev_timer *w = (ev_timer *)timers [0];
1447
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449
1450 /* first reschedule or stop timer */
1451 if (w->repeat)
1452 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454
1455 ((WT)w)->at += w->repeat;
1456 if (((WT)w)->at < mn_now)
1457 ((WT)w)->at = mn_now;
1458
1459 downheap (timers, timercnt, 0);
1460 }
1461 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1465 }
1466}
1467
1468#if EV_PERIODIC_ENABLE
1469void inline_size
1470periodics_reify (EV_P)
1471{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1473 {
1474 ev_periodic *w = (ev_periodic *)periodics [0];
1475
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477
1478 /* first reschedule or stop timer */
1479 if (w->reschedule_cb)
1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0);
1491 }
1492 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1496 }
1497}
1498
1499static void noinline
1500periodics_reschedule (EV_P)
1501{
1502 int i;
1503
1504 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i)
1506 {
1507 ev_periodic *w = (ev_periodic *)periodics [i];
1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520 1700
1521#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1522void inline_size 1702void inline_size
1523idle_reify (EV_P) 1703idle_reify (EV_P)
1524{ 1704{
1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1537 break; 1717 break;
1538 } 1718 }
1539 } 1719 }
1540 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1541} 1823}
1542#endif 1824#endif
1543 1825
1544void inline_speed 1826void inline_speed
1545time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1574 */ 1856 */
1575 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1576 { 1858 {
1577 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1578 1860
1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1580 return; /* all is well */ 1862 return; /* all is well */
1581 1863
1582 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1583 mn_now = get_clock (); 1865 mn_now = get_clock ();
1584 now_floor = mn_now; 1866 now_floor = mn_now;
1600#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1602#endif 1884#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1605 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1606 } 1892 }
1607 1893
1608 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1609 } 1895 }
1610} 1896}
1630 1916
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1632 1918
1633 do 1919 do
1634 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1635#ifndef _WIN32 1925#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1638 { 1928 {
1639 curpid = getpid (); 1929 curpid = getpid ();
1680 1970
1681 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1682 1972
1683 if (timercnt) 1973 if (timercnt)
1684 { 1974 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1687 } 1977 }
1688 1978
1689#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 1980 if (periodiccnt)
1691 { 1981 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1693 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1694 } 1984 }
1695#endif 1985#endif
1696 1986
1697 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1834 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1835 return; 2125 return;
1836 2126
1837 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1838 2128
2129 EV_FREQUENT_CHECK;
2130
1839 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1841 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1842 2134
1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1845} 2139}
1846 2140
1847void noinline 2141void noinline
1848ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1849{ 2143{
1850 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1851 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1852 return; 2146 return;
1853 2147
1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1855 2151
1856 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1857 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1858 2154
1859 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1860} 2158}
1861 2159
1862void noinline 2160void noinline
1863ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1864{ 2162{
1865 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1866 return; 2164 return;
1867 2165
1868 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1869 2167
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1872 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1875 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1876 2178
2179 EV_FREQUENT_CHECK;
2180
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1878} 2182}
1879 2183
1880void noinline 2184void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1882{ 2186{
1883 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1885 return; 2189 return;
1886 2190
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1888 2192
1889 { 2193 {
1890 int active = ((W)w)->active; 2194 int active = ev_active (w);
1891 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1892 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1893 { 2201 {
1894 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1895 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1896 } 2204 }
1897 } 2205 }
1898 2206
1899 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1900 2210
1901 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1902} 2212}
1903 2213
1904void noinline 2214void noinline
1905ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1906{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1907 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1908 { 2220 {
1909 if (w->repeat) 2221 if (w->repeat)
1910 { 2222 {
1911 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1913 } 2226 }
1914 else 2227 else
1915 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1916 } 2229 }
1917 else if (w->repeat) 2230 else if (w->repeat)
1918 { 2231 {
1919 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1921 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1922} 2237}
1923 2238
1924#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1925void noinline 2240void noinline
1926ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1927{ 2242{
1928 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1929 return; 2244 return;
1930 2245
1931 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 2248 else if (w->interval)
1934 { 2249 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 2253 }
1939 else 2254 else
1940 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1941 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1946 2265
2266 EV_FREQUENT_CHECK;
2267
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1948} 2269}
1949 2270
1950void noinline 2271void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1952{ 2273{
1953 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1955 return; 2276 return;
1956 2277
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1958 2279
1959 { 2280 {
1960 int active = ((W)w)->active; 2281 int active = ev_active (w);
1961 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1962 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1963 { 2288 {
1964 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1965 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1966 } 2291 }
1967 } 2292 }
1968 2293
2294 EV_FREQUENT_CHECK;
2295
1969 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1970} 2297}
1971 2298
1972void noinline 2299void noinline
1973ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1992 return; 2319 return;
1993 2320
1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1995 2322
1996 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1997 2326
1998 { 2327 {
1999#ifndef _WIN32 2328#ifndef _WIN32
2000 sigset_t full, prev; 2329 sigset_t full, prev;
2001 sigfillset (&full); 2330 sigfillset (&full);
2022 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2024 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2025#endif 2354#endif
2026 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2027} 2358}
2028 2359
2029void noinline 2360void noinline
2030ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2031{ 2362{
2032 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2034 return; 2365 return;
2035 2366
2367 EV_FREQUENT_CHECK;
2368
2036 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2037 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2038 2371
2039 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2040 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2041} 2376}
2042 2377
2043void 2378void
2044ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2045{ 2380{
2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2048#endif 2383#endif
2049 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2050 return; 2385 return;
2051 2386
2387 EV_FREQUENT_CHECK;
2388
2052 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2054} 2393}
2055 2394
2056void 2395void
2057ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2058{ 2397{
2059 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2061 return; 2400 return;
2062 2401
2402 EV_FREQUENT_CHECK;
2403
2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2064 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2065} 2408}
2066 2409
2067#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2068 2411
2069# ifdef _WIN32 2412# ifdef _WIN32
2087 if (w->wd < 0) 2430 if (w->wd < 0)
2088 { 2431 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090 2433
2091 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 2438 {
2094 char path [4096]; 2439 char path [4096];
2095 strcpy (path, w->path); 2440 strcpy (path, w->path);
2096 2441
2295 else 2640 else
2296#endif 2641#endif
2297 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2298 2643
2299 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2300} 2647}
2301 2648
2302void 2649void
2303ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2304{ 2651{
2305 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2307 return; 2654 return;
2308 2655
2656 EV_FREQUENT_CHECK;
2657
2309#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2311#endif 2660#endif
2312 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2313 2662
2314 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2315} 2666}
2316#endif 2667#endif
2317 2668
2318#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2319void 2670void
2321{ 2672{
2322 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2323 return; 2674 return;
2324 2675
2325 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2326 2679
2327 { 2680 {
2328 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2329 2682
2330 ++idleall; 2683 ++idleall;
2331 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2332 2685
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2335 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2336} 2691}
2337 2692
2338void 2693void
2339ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2340{ 2695{
2341 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2343 return; 2698 return;
2344 2699
2700 EV_FREQUENT_CHECK;
2701
2345 { 2702 {
2346 int active = ((W)w)->active; 2703 int active = ev_active (w);
2347 2704
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 2707
2351 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2352 --idleall; 2709 --idleall;
2353 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2354} 2713}
2355#endif 2714#endif
2356 2715
2357void 2716void
2358ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2359{ 2718{
2360 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2361 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2362 2723
2363 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2366} 2729}
2367 2730
2368void 2731void
2369ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2370{ 2733{
2371 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2373 return; 2736 return;
2374 2737
2738 EV_FREQUENT_CHECK;
2739
2375 { 2740 {
2376 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2377 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2379 } 2745 }
2380 2746
2381 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2382} 2750}
2383 2751
2384void 2752void
2385ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2386{ 2754{
2387 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2388 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2389 2759
2390 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2393} 2765}
2394 2766
2395void 2767void
2396ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2397{ 2769{
2398 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2400 return; 2772 return;
2401 2773
2774 EV_FREQUENT_CHECK;
2775
2402 { 2776 {
2403 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2404 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2406 } 2781 }
2407 2782
2408 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2409} 2786}
2410 2787
2411#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2412void noinline 2789void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2460 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 } 2840 }
2464 2841
2842 EV_FREQUENT_CHECK;
2843
2465 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2467 2846
2468 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2471 2850
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473 2852
2474 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2475} 2856}
2476 2857
2477void 2858void
2478ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2479{ 2860{
2480 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2482 return; 2863 return;
2483 2864
2865 EV_FREQUENT_CHECK;
2866
2484 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2486 2869
2487 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2488} 2873}
2489#endif 2874#endif
2490 2875
2491#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2492void 2877void
2493ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2494{ 2879{
2495 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2496 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2497 2884
2498 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2501} 2890}
2502 2891
2503void 2892void
2504ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2505{ 2894{
2506 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2508 return; 2897 return;
2509 2898
2899 EV_FREQUENT_CHECK;
2900
2510 { 2901 {
2511 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2512 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2514 } 2906 }
2515 2907
2516 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2517} 2911}
2518#endif 2912#endif
2519 2913
2520#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2521void 2915void
2523{ 2917{
2524 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2525 return; 2919 return;
2526 2920
2527 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2528 2924
2529 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2532} 2930}
2533 2931
2534void 2932void
2535ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2536{ 2934{
2537 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2539 return; 2937 return;
2540 2938
2939 EV_FREQUENT_CHECK;
2940
2541 { 2941 {
2542 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2543 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 2945 ev_active (asyncs [active - 1]) = active;
2545 } 2946 }
2546 2947
2547 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2548} 2951}
2549 2952
2550void 2953void
2551ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2552{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines