ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC vs.
Revision 1.475 by sf-exg, Wed Apr 1 06:57:41 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 273# else
172# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
173# endif 275# endif
174#endif 276#endif
175 277
176#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 280#endif
179 281
180#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 285# else
184# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
185# endif 287# endif
186#endif 288#endif
187 289
188#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 292#endif
191 293
192#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
193# ifdef _WIN32 295# ifdef _WIN32
194# define EV_USE_POLL 0 296# define EV_USE_POLL 0
195# else 297# else
196# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 299# endif
198#endif 300#endif
199 301
200#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 305# else
204# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
205# endif 307# endif
206#endif 308#endif
207 309
213# define EV_USE_PORT 0 315# define EV_USE_PORT 0
214#endif 316#endif
215 317
216#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 321# else
220# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
221# endif 323# endif
222#endif 324#endif
223 325
224#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 328#endif
231 329
232#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 332#endif
239 333
240#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 337# else
244# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
245# endif 347# endif
246#endif 348#endif
247 349
248#if 0 /* debugging */ 350#if 0 /* debugging */
249# define EV_VERIFY 3 351# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
252#endif 354#endif
253 355
254#ifndef EV_VERIFY 356#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 358#endif
257 359
258#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 362#endif
261 363
262#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
264#endif 396#endif
265 397
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 399
268#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
279# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
281#endif 413#endif
282 414
283#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 418# include <sys/select.h>
286# endif 419# endif
287#endif 420#endif
288 421
289#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
290# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
291#endif 429# endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif 430#endif
296 431
297#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 434# include <stdint.h>
300# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
301extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
302# endif 437# endif
303int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 439# ifdef O_CLOEXEC
305} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
306# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
307#endif 468#endif
308 469
309/**/ 470/**/
310 471
311#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 474#else
314# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
315#endif 476#endif
316 477
317/* 478/*
318 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 481 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 484
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 546 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
334#else 562#else
335# define expect(expr,value) (expr) 563 #include <inttypes.h>
336# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
338# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
339# endif 569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
340#endif 580 #endif
581#endif
341 582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647#ifndef ECB_MEMORY_FENCE
648 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 #if __i386 || __i386__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 #elif ECB_GCC_AMD64
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 #elif __aarch64__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 #elif (__sparc || __sparc__) && !__sparcv8
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 #elif defined __s390__ || defined __s390x__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 #elif defined __mips__
674 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 #elif defined __alpha__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679 #elif defined __hppa__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682 #elif defined __ia64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 #elif defined __m68k__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #elif defined __m88k__
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688 #elif defined __sh__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 #endif
691 #endif
692#endif
693
694#ifndef ECB_MEMORY_FENCE
695 #if ECB_GCC_VERSION(4,7)
696 /* see comment below (stdatomic.h) about the C11 memory model. */
697 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700
701 #elif ECB_CLANG_EXTENSION(c_atomic)
702 /* see comment below (stdatomic.h) about the C11 memory model. */
703 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706
707 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 #elif defined _WIN32
721 #include <WinNT.h>
722 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #include <mbarrier.h>
725 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 #elif __xlC__
729 #define ECB_MEMORY_FENCE __sync ()
730 #endif
731#endif
732
733#ifndef ECB_MEMORY_FENCE
734 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735 /* we assume that these memory fences work on all variables/all memory accesses, */
736 /* not just C11 atomics and atomic accesses */
737 #include <stdatomic.h>
738 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739 /* any fence other than seq_cst, which isn't very efficient for us. */
740 /* Why that is, we don't know - either the C11 memory model is quite useless */
741 /* for most usages, or gcc and clang have a bug */
742 /* I *currently* lean towards the latter, and inefficiently implement */
743 /* all three of ecb's fences as a seq_cst fence */
744 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745 /* for all __atomic_thread_fence's except seq_cst */
746 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if !ECB_AVOID_PTHREADS
752 /*
753 * if you get undefined symbol references to pthread_mutex_lock,
754 * or failure to find pthread.h, then you should implement
755 * the ECB_MEMORY_FENCE operations for your cpu/compiler
756 * OR provide pthread.h and link against the posix thread library
757 * of your system.
758 */
759 #include <pthread.h>
760 #define ECB_NEEDS_PTHREADS 1
761 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762
763 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765 #endif
766#endif
767
768#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770#endif
771
772#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774#endif
775
776/*****************************************************************************/
777
778#if ECB_CPP
779 #define ecb_inline static inline
780#elif ECB_GCC_VERSION(2,5)
781 #define ecb_inline static __inline__
782#elif ECB_C99
783 #define ecb_inline static inline
784#else
785 #define ecb_inline static
786#endif
787
788#if ECB_GCC_VERSION(3,3)
789 #define ecb_restrict __restrict__
790#elif ECB_C99
791 #define ecb_restrict restrict
792#else
793 #define ecb_restrict
794#endif
795
796typedef int ecb_bool;
797
798#define ECB_CONCAT_(a, b) a ## b
799#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800#define ECB_STRINGIFY_(a) # a
801#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803
804#define ecb_function_ ecb_inline
805
806#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807 #define ecb_attribute(attrlist) __attribute__ (attrlist)
808#else
809 #define ecb_attribute(attrlist)
810#endif
811
812#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813 #define ecb_is_constant(expr) __builtin_constant_p (expr)
814#else
815 /* possible C11 impl for integral types
816 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818
819 #define ecb_is_constant(expr) 0
820#endif
821
822#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824#else
825 #define ecb_expect(expr,value) (expr)
826#endif
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830#else
831 #define ecb_prefetch(addr,rw,locality)
832#endif
833
834/* no emulation for ecb_decltype */
835#if ECB_CPP11
836 // older implementations might have problems with decltype(x)::type, work around it
837 template<class T> struct ecb_decltype_t { typedef T type; };
838 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840 #define ecb_decltype(x) __typeof__ (x)
841#endif
842
843#if _MSC_VER >= 1300
844 #define ecb_deprecated __declspec (deprecated)
845#else
846 #define ecb_deprecated ecb_attribute ((__deprecated__))
847#endif
848
849#if __MSC_VER >= 1500
850 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851#elif ECB_GCC_VERSION(4,5)
852 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853#else
854 #define ecb_deprecated_message(msg) ecb_deprecated
855#endif
856
857#if _MSC_VER >= 1400
858 #define ecb_noinline __declspec (noinline)
859#else
860 #define ecb_noinline ecb_attribute ((__noinline__))
861#endif
862
863#define ecb_unused ecb_attribute ((__unused__))
864#define ecb_const ecb_attribute ((__const__))
865#define ecb_pure ecb_attribute ((__pure__))
866
867#if ECB_C11 || __IBMC_NORETURN
868 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 #define ecb_noreturn _Noreturn
870#elif ECB_CPP11
871 #define ecb_noreturn [[noreturn]]
872#elif _MSC_VER >= 1200
873 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874 #define ecb_noreturn __declspec (noreturn)
875#else
876 #define ecb_noreturn ecb_attribute ((__noreturn__))
877#endif
878
879#if ECB_GCC_VERSION(4,3)
880 #define ecb_artificial ecb_attribute ((__artificial__))
881 #define ecb_hot ecb_attribute ((__hot__))
882 #define ecb_cold ecb_attribute ((__cold__))
883#else
884 #define ecb_artificial
885 #define ecb_hot
886 #define ecb_cold
887#endif
888
889/* put around conditional expressions if you are very sure that the */
890/* expression is mostly true or mostly false. note that these return */
891/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 892#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 893#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894/* for compatibility to the rest of the world */
895#define ecb_likely(expr) ecb_expect_true (expr)
896#define ecb_unlikely(expr) ecb_expect_false (expr)
897
898/* count trailing zero bits and count # of one bits */
899#if ECB_GCC_VERSION(3,4) \
900 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902 && ECB_CLANG_BUILTIN(__builtin_popcount))
903 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906 #define ecb_ctz32(x) __builtin_ctz (x)
907 #define ecb_ctz64(x) __builtin_ctzll (x)
908 #define ecb_popcount32(x) __builtin_popcount (x)
909 /* no popcountll */
910#else
911 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912 ecb_function_ ecb_const int
913 ecb_ctz32 (uint32_t x)
914 {
915 int r = 0;
916
917 x &= ~x + 1; /* this isolates the lowest bit */
918
919#if ECB_branchless_on_i386
920 r += !!(x & 0xaaaaaaaa) << 0;
921 r += !!(x & 0xcccccccc) << 1;
922 r += !!(x & 0xf0f0f0f0) << 2;
923 r += !!(x & 0xff00ff00) << 3;
924 r += !!(x & 0xffff0000) << 4;
925#else
926 if (x & 0xaaaaaaaa) r += 1;
927 if (x & 0xcccccccc) r += 2;
928 if (x & 0xf0f0f0f0) r += 4;
929 if (x & 0xff00ff00) r += 8;
930 if (x & 0xffff0000) r += 16;
931#endif
932
933 return r;
934 }
935
936 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937 ecb_function_ ecb_const int
938 ecb_ctz64 (uint64_t x)
939 {
940 int shift = x & 0xffffffffU ? 0 : 32;
941 return ecb_ctz32 (x >> shift) + shift;
942 }
943
944 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945 ecb_function_ ecb_const int
946 ecb_popcount32 (uint32_t x)
947 {
948 x -= (x >> 1) & 0x55555555;
949 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950 x = ((x >> 4) + x) & 0x0f0f0f0f;
951 x *= 0x01010101;
952
953 return x >> 24;
954 }
955
956 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 {
959 int r = 0;
960
961 if (x >> 16) { x >>= 16; r += 16; }
962 if (x >> 8) { x >>= 8; r += 8; }
963 if (x >> 4) { x >>= 4; r += 4; }
964 if (x >> 2) { x >>= 2; r += 2; }
965 if (x >> 1) { r += 1; }
966
967 return r;
968 }
969
970 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 {
973 int r = 0;
974
975 if (x >> 32) { x >>= 32; r += 32; }
976
977 return r + ecb_ld32 (x);
978 }
979#endif
980
981ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985
986ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988{
989 return ( (x * 0x0802U & 0x22110U)
990 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991}
992
993ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995{
996 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999 x = ( x >> 8 ) | ( x << 8);
1000
1001 return x;
1002}
1003
1004ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006{
1007 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011 x = ( x >> 16 ) | ( x << 16);
1012
1013 return x;
1014}
1015
1016/* popcount64 is only available on 64 bit cpus as gcc builtin */
1017/* so for this version we are lazy */
1018ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019ecb_function_ ecb_const int
1020ecb_popcount64 (uint64_t x)
1021{
1022 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023}
1024
1025ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033
1034ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042
1043#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045 #define ecb_bswap32(x) __builtin_bswap32 (x)
1046 #define ecb_bswap64(x) __builtin_bswap64 (x)
1047#else
1048 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049 ecb_function_ ecb_const uint16_t
1050 ecb_bswap16 (uint16_t x)
1051 {
1052 return ecb_rotl16 (x, 8);
1053 }
1054
1055 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056 ecb_function_ ecb_const uint32_t
1057 ecb_bswap32 (uint32_t x)
1058 {
1059 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060 }
1061
1062 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063 ecb_function_ ecb_const uint64_t
1064 ecb_bswap64 (uint64_t x)
1065 {
1066 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067 }
1068#endif
1069
1070#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 #define ecb_unreachable() __builtin_unreachable ()
1072#else
1073 /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076#endif
1077
1078/* try to tell the compiler that some condition is definitely true */
1079#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080
1081ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082ecb_inline ecb_const unsigned char
1083ecb_byteorder_helper (void)
1084{
1085 /* the union code still generates code under pressure in gcc, */
1086 /* but less than using pointers, and always seems to */
1087 /* successfully return a constant. */
1088 /* the reason why we have this horrible preprocessor mess */
1089 /* is to avoid it in all cases, at least on common architectures */
1090 /* or when using a recent enough gcc version (>= 4.6) */
1091#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 return 0x44;
1093#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094 return 0x44;
1095#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096 return 0x11;
1097#else
1098 union
1099 {
1100 uint32_t i;
1101 uint8_t c;
1102 } u = { 0x11223344 };
1103 return u.c;
1104#endif
1105}
1106
1107ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111
1112#if ECB_GCC_VERSION(3,0) || ECB_C99
1113 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114#else
1115 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116#endif
1117
1118#if ECB_CPP
1119 template<typename T>
1120 static inline T ecb_div_rd (T val, T div)
1121 {
1122 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123 }
1124 template<typename T>
1125 static inline T ecb_div_ru (T val, T div)
1126 {
1127 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128 }
1129#else
1130 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132#endif
1133
1134#if ecb_cplusplus_does_not_suck
1135 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136 template<typename T, int N>
1137 static inline int ecb_array_length (const T (&arr)[N])
1138 {
1139 return N;
1140 }
1141#else
1142 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143#endif
1144
1145/*******************************************************************************/
1146/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147
1148/* basically, everything uses "ieee pure-endian" floating point numbers */
1149/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150#if 0 \
1151 || __i386 || __i386__ \
1152 || ECB_GCC_AMD64 \
1153 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154 || defined __s390__ || defined __s390x__ \
1155 || defined __mips__ \
1156 || defined __alpha__ \
1157 || defined __hppa__ \
1158 || defined __ia64__ \
1159 || defined __m68k__ \
1160 || defined __m88k__ \
1161 || defined __sh__ \
1162 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 || defined __aarch64__
1165 #define ECB_STDFP 1
1166 #include <string.h> /* for memcpy */
1167#else
1168 #define ECB_STDFP 0
1169#endif
1170
1171#ifndef ECB_NO_LIBM
1172
1173 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174
1175 /* only the oldest of old doesn't have this one. solaris. */
1176 #ifdef INFINITY
1177 #define ECB_INFINITY INFINITY
1178 #else
1179 #define ECB_INFINITY HUGE_VAL
1180 #endif
1181
1182 #ifdef NAN
1183 #define ECB_NAN NAN
1184 #else
1185 #define ECB_NAN ECB_INFINITY
1186 #endif
1187
1188 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190 #else
1191 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 #endif
1193
1194 /* converts an ieee half/binary16 to a float */
1195 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196 ecb_function_ ecb_const float
1197 ecb_binary16_to_float (uint16_t x)
1198 {
1199 int e = (x >> 10) & 0x1f;
1200 int m = x & 0x3ff;
1201 float r;
1202
1203 if (!e ) r = ecb_ldexpf (m , -24);
1204 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 else if (m ) r = ECB_NAN;
1206 else r = ECB_INFINITY;
1207
1208 return x & 0x8000 ? -r : r;
1209 }
1210
1211 /* convert a float to ieee single/binary32 */
1212 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213 ecb_function_ ecb_const uint32_t
1214 ecb_float_to_binary32 (float x)
1215 {
1216 uint32_t r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 4);
1220 #else
1221 /* slow emulation, works for anything but -0 */
1222 uint32_t m;
1223 int e;
1224
1225 if (x == 0e0f ) return 0x00000000U;
1226 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228 if (x != x ) return 0x7fbfffffU;
1229
1230 m = frexpf (x, &e) * 0x1000000U;
1231
1232 r = m & 0x80000000U;
1233
1234 if (r)
1235 m = -m;
1236
1237 if (e <= -126)
1238 {
1239 m &= 0xffffffU;
1240 m >>= (-125 - e);
1241 e = -126;
1242 }
1243
1244 r |= (e + 126) << 23;
1245 r |= m & 0x7fffffU;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 /* converts an ieee single/binary32 to a float */
1252 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253 ecb_function_ ecb_const float
1254 ecb_binary32_to_float (uint32_t x)
1255 {
1256 float r;
1257
1258 #if ECB_STDFP
1259 memcpy (&r, &x, 4);
1260 #else
1261 /* emulation, only works for normals and subnormals and +0 */
1262 int neg = x >> 31;
1263 int e = (x >> 23) & 0xffU;
1264
1265 x &= 0x7fffffU;
1266
1267 if (e)
1268 x |= 0x800000U;
1269 else
1270 e = 1;
1271
1272 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274
1275 r = neg ? -r : r;
1276 #endif
1277
1278 return r;
1279 }
1280
1281 /* convert a double to ieee double/binary64 */
1282 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283 ecb_function_ ecb_const uint64_t
1284 ecb_double_to_binary64 (double x)
1285 {
1286 uint64_t r;
1287
1288 #if ECB_STDFP
1289 memcpy (&r, &x, 8);
1290 #else
1291 /* slow emulation, works for anything but -0 */
1292 uint64_t m;
1293 int e;
1294
1295 if (x == 0e0 ) return 0x0000000000000000U;
1296 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298 if (x != x ) return 0X7ff7ffffffffffffU;
1299
1300 m = frexp (x, &e) * 0x20000000000000U;
1301
1302 r = m & 0x8000000000000000;;
1303
1304 if (r)
1305 m = -m;
1306
1307 if (e <= -1022)
1308 {
1309 m &= 0x1fffffffffffffU;
1310 m >>= (-1021 - e);
1311 e = -1022;
1312 }
1313
1314 r |= ((uint64_t)(e + 1022)) << 52;
1315 r |= m & 0xfffffffffffffU;
1316 #endif
1317
1318 return r;
1319 }
1320
1321 /* converts an ieee double/binary64 to a double */
1322 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323 ecb_function_ ecb_const double
1324 ecb_binary64_to_double (uint64_t x)
1325 {
1326 double r;
1327
1328 #if ECB_STDFP
1329 memcpy (&r, &x, 8);
1330 #else
1331 /* emulation, only works for normals and subnormals and +0 */
1332 int neg = x >> 63;
1333 int e = (x >> 52) & 0x7ffU;
1334
1335 x &= 0xfffffffffffffU;
1336
1337 if (e)
1338 x |= 0x10000000000000U;
1339 else
1340 e = 1;
1341
1342 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344
1345 r = neg ? -r : r;
1346 #endif
1347
1348 return r;
1349 }
1350
1351#endif
1352
1353#endif
1354
1355/* ECB.H END */
1356
1357#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358/* if your architecture doesn't need memory fences, e.g. because it is
1359 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 * libev, in which cases the memory fences become nops.
1362 * alternatively, you can remove this #error and link against libpthread,
1363 * which will then provide the memory fences.
1364 */
1365# error "memory fences not defined for your architecture, please report"
1366#endif
1367
1368#ifndef ECB_MEMORY_FENCE
1369# define ECB_MEMORY_FENCE do { } while (0)
1370# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372#endif
1373
1374#define expect_false(cond) ecb_expect_false (cond)
1375#define expect_true(cond) ecb_expect_true (cond)
1376#define noinline ecb_noinline
1377
344#define inline_size static inline 1378#define inline_size ecb_inline
345 1379
346#if EV_MINIMAL 1380#if EV_FEATURE_CODE
1381# define inline_speed ecb_inline
1382#else
347# define inline_speed static noinline 1383# define inline_speed static noinline
1384#endif
1385
1386#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387
1388#if EV_MINPRI == EV_MAXPRI
1389# define ABSPRI(w) (((W)w), 0)
348#else 1390#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1391# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392#endif
354 1393
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1394#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 1395#define EMPTY2(a,b) /* used to suppress some warnings */
357 1396
358typedef ev_watcher *W; 1397typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 1399typedef ev_watcher_time *WT;
361 1400
362#define ev_active(w) ((W)(w))->active 1401#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 1402#define ev_at(w) ((WT)(w))->at
364 1403
1404#if EV_USE_REALTIME
1405/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406/* giving it a reasonably high chance of working on typical architectures */
1407static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408#endif
1409
365#if EV_USE_MONOTONIC 1410#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1411static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412#endif
1413
1414#ifndef EV_FD_TO_WIN32_HANDLE
1415# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416#endif
1417#ifndef EV_WIN32_HANDLE_TO_FD
1418# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419#endif
1420#ifndef EV_WIN32_CLOSE_FD
1421# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1422#endif
370 1423
371#ifdef _WIN32 1424#ifdef _WIN32
372# include "ev_win32.c" 1425# include "ev_win32.c"
373#endif 1426#endif
374 1427
375/*****************************************************************************/ 1428/*****************************************************************************/
376 1429
1430/* define a suitable floor function (only used by periodics atm) */
1431
1432#if EV_USE_FLOOR
1433# include <math.h>
1434# define ev_floor(v) floor (v)
1435#else
1436
1437#include <float.h>
1438
1439/* a floor() replacement function, should be independent of ev_tstamp type */
1440static ev_tstamp noinline
1441ev_floor (ev_tstamp v)
1442{
1443 /* the choice of shift factor is not terribly important */
1444#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446#else
1447 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448#endif
1449
1450 /* argument too large for an unsigned long? */
1451 if (expect_false (v >= shift))
1452 {
1453 ev_tstamp f;
1454
1455 if (v == v - 1.)
1456 return v; /* very large number */
1457
1458 f = shift * ev_floor (v * (1. / shift));
1459 return f + ev_floor (v - f);
1460 }
1461
1462 /* special treatment for negative args? */
1463 if (expect_false (v < 0.))
1464 {
1465 ev_tstamp f = -ev_floor (-v);
1466
1467 return f - (f == v ? 0 : 1);
1468 }
1469
1470 /* fits into an unsigned long */
1471 return (unsigned long)v;
1472}
1473
1474#endif
1475
1476/*****************************************************************************/
1477
1478#ifdef __linux
1479# include <sys/utsname.h>
1480#endif
1481
1482static unsigned int noinline ecb_cold
1483ev_linux_version (void)
1484{
1485#ifdef __linux
1486 unsigned int v = 0;
1487 struct utsname buf;
1488 int i;
1489 char *p = buf.release;
1490
1491 if (uname (&buf))
1492 return 0;
1493
1494 for (i = 3+1; --i; )
1495 {
1496 unsigned int c = 0;
1497
1498 for (;;)
1499 {
1500 if (*p >= '0' && *p <= '9')
1501 c = c * 10 + *p++ - '0';
1502 else
1503 {
1504 p += *p == '.';
1505 break;
1506 }
1507 }
1508
1509 v = (v << 8) | c;
1510 }
1511
1512 return v;
1513#else
1514 return 0;
1515#endif
1516}
1517
1518/*****************************************************************************/
1519
1520#if EV_AVOID_STDIO
1521static void noinline ecb_cold
1522ev_printerr (const char *msg)
1523{
1524 write (STDERR_FILENO, msg, strlen (msg));
1525}
1526#endif
1527
377static void (*syserr_cb)(const char *msg); 1528static void (*syserr_cb)(const char *msg) EV_THROW;
378 1529
379void 1530void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1531ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
381{ 1532{
382 syserr_cb = cb; 1533 syserr_cb = cb;
383} 1534}
384 1535
385static void noinline 1536static void noinline ecb_cold
386syserr (const char *msg) 1537ev_syserr (const char *msg)
387{ 1538{
388 if (!msg) 1539 if (!msg)
389 msg = "(libev) system error"; 1540 msg = "(libev) system error";
390 1541
391 if (syserr_cb) 1542 if (syserr_cb)
392 syserr_cb (msg); 1543 syserr_cb (msg);
393 else 1544 else
394 { 1545 {
1546#if EV_AVOID_STDIO
1547 ev_printerr (msg);
1548 ev_printerr (": ");
1549 ev_printerr (strerror (errno));
1550 ev_printerr ("\n");
1551#else
395 perror (msg); 1552 perror (msg);
1553#endif
396 abort (); 1554 abort ();
397 } 1555 }
398} 1556}
399 1557
400static void * 1558static void *
401ev_realloc_emul (void *ptr, long size) 1559ev_realloc_emul (void *ptr, long size) EV_THROW
402{ 1560{
403 /* some systems, notably openbsd and darwin, fail to properly 1561 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1562 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1563 * the single unix specification, so work around them here.
1564 * recently, also (at least) fedora and debian started breaking it,
1565 * despite documenting it otherwise.
406 */ 1566 */
407 1567
408 if (size) 1568 if (size)
409 return realloc (ptr, size); 1569 return realloc (ptr, size);
410 1570
411 free (ptr); 1571 free (ptr);
412 return 0; 1572 return 0;
413} 1573}
414 1574
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1575static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1576
417void 1577void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1578ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
419{ 1579{
420 alloc = cb; 1580 alloc = cb;
421} 1581}
422 1582
423inline_speed void * 1583inline_speed void *
425{ 1585{
426 ptr = alloc (ptr, size); 1586 ptr = alloc (ptr, size);
427 1587
428 if (!ptr && size) 1588 if (!ptr && size)
429 { 1589 {
1590#if EV_AVOID_STDIO
1591 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1593 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594#endif
431 abort (); 1595 abort ();
432 } 1596 }
433 1597
434 return ptr; 1598 return ptr;
435} 1599}
437#define ev_malloc(size) ev_realloc (0, (size)) 1601#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1602#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1603
440/*****************************************************************************/ 1604/*****************************************************************************/
441 1605
1606/* set in reify when reification needed */
1607#define EV_ANFD_REIFY 1
1608
1609/* file descriptor info structure */
442typedef struct 1610typedef struct
443{ 1611{
444 WL head; 1612 WL head;
445 unsigned char events; 1613 unsigned char events; /* the events watched for */
1614 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1616 unsigned char unused;
1617#if EV_USE_EPOLL
1618 unsigned int egen; /* generation counter to counter epoll bugs */
1619#endif
447#if EV_SELECT_IS_WINSOCKET 1620#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1621 SOCKET handle;
449#endif 1622#endif
1623#if EV_USE_IOCP
1624 OVERLAPPED or, ow;
1625#endif
450} ANFD; 1626} ANFD;
451 1627
1628/* stores the pending event set for a given watcher */
452typedef struct 1629typedef struct
453{ 1630{
454 W w; 1631 W w;
455 int events; 1632 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1633} ANPENDING;
457 1634
458#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1636/* hash table entry per inotify-id */
460typedef struct 1637typedef struct
463} ANFS; 1640} ANFS;
464#endif 1641#endif
465 1642
466/* Heap Entry */ 1643/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1644#if EV_HEAP_CACHE_AT
1645 /* a heap element */
468 typedef struct { 1646 typedef struct {
469 ev_tstamp at; 1647 ev_tstamp at;
470 WT w; 1648 WT w;
471 } ANHE; 1649 } ANHE;
472 1650
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1651 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1652 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1653 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1654#else
1655 /* a heap element */
477 typedef WT ANHE; 1656 typedef WT ANHE;
478 1657
479 #define ANHE_w(he) (he) 1658 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1659 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1660 #define ANHE_at_cache(he)
492 #undef VAR 1671 #undef VAR
493 }; 1672 };
494 #include "ev_wrap.h" 1673 #include "ev_wrap.h"
495 1674
496 static struct ev_loop default_loop_struct; 1675 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1676 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1677
499#else 1678#else
500 1679
501 ev_tstamp ev_rt_now; 1680 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1681 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1682 #include "ev_vars.h"
504 #undef VAR 1683 #undef VAR
505 1684
506 static int ev_default_loop_ptr; 1685 static int ev_default_loop_ptr;
507 1686
508#endif 1687#endif
509 1688
1689#if EV_FEATURE_API
1690# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692# define EV_INVOKE_PENDING invoke_cb (EV_A)
1693#else
1694# define EV_RELEASE_CB (void)0
1695# define EV_ACQUIRE_CB (void)0
1696# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697#endif
1698
1699#define EVBREAK_RECURSE 0x80
1700
510/*****************************************************************************/ 1701/*****************************************************************************/
511 1702
1703#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1704ev_tstamp
513ev_time (void) 1705ev_time (void) EV_THROW
514{ 1706{
515#if EV_USE_REALTIME 1707#if EV_USE_REALTIME
1708 if (expect_true (have_realtime))
1709 {
516 struct timespec ts; 1710 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1711 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1712 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1713 }
1714#endif
1715
520 struct timeval tv; 1716 struct timeval tv;
521 gettimeofday (&tv, 0); 1717 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1718 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1719}
1720#endif
525 1721
526ev_tstamp inline_size 1722inline_size ev_tstamp
527get_clock (void) 1723get_clock (void)
528{ 1724{
529#if EV_USE_MONOTONIC 1725#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1726 if (expect_true (have_monotonic))
531 { 1727 {
538 return ev_time (); 1734 return ev_time ();
539} 1735}
540 1736
541#if EV_MULTIPLICITY 1737#if EV_MULTIPLICITY
542ev_tstamp 1738ev_tstamp
543ev_now (EV_P) 1739ev_now (EV_P) EV_THROW
544{ 1740{
545 return ev_rt_now; 1741 return ev_rt_now;
546} 1742}
547#endif 1743#endif
548 1744
549void 1745void
550ev_sleep (ev_tstamp delay) 1746ev_sleep (ev_tstamp delay) EV_THROW
551{ 1747{
552 if (delay > 0.) 1748 if (delay > 0.)
553 { 1749 {
554#if EV_USE_NANOSLEEP 1750#if EV_USE_NANOSLEEP
555 struct timespec ts; 1751 struct timespec ts;
556 1752
557 ts.tv_sec = (time_t)delay; 1753 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1754 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1755#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1756 Sleep ((unsigned long)(delay * 1e3));
563#else 1757#else
564 struct timeval tv; 1758 struct timeval tv;
565 1759
566 tv.tv_sec = (time_t)delay; 1760 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1761 /* something not guaranteed by newer posix versions, but guaranteed */
568 1762 /* by older ones */
1763 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1764 select (0, 0, 0, 0, &tv);
570#endif 1765#endif
571 } 1766 }
572} 1767}
573 1768
574/*****************************************************************************/ 1769/*****************************************************************************/
575 1770
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1771#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1772
578int inline_size 1773/* find a suitable new size for the given array, */
1774/* hopefully by rounding to a nice-to-malloc size */
1775inline_size int
579array_nextsize (int elem, int cur, int cnt) 1776array_nextsize (int elem, int cur, int cnt)
580{ 1777{
581 int ncur = cur + 1; 1778 int ncur = cur + 1;
582 1779
583 do 1780 do
584 ncur <<= 1; 1781 ncur <<= 1;
585 while (cnt > ncur); 1782 while (cnt > ncur);
586 1783
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1784 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1785 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1786 {
590 ncur *= elem; 1787 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1788 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1789 ncur = ncur - sizeof (void *) * 4;
594 } 1791 }
595 1792
596 return ncur; 1793 return ncur;
597} 1794}
598 1795
599static noinline void * 1796static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1797array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1798{
602 *cur = array_nextsize (elem, *cur, cnt); 1799 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1800 return ev_realloc (base, elem * *cur);
604} 1801}
1802
1803#define array_init_zero(base,count) \
1804 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1805
606#define array_needsize(type,base,cur,cnt,init) \ 1806#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1807 if (expect_false ((cnt) > (cur))) \
608 { \ 1808 { \
609 int ocur_ = (cur); \ 1809 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1810 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1811 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1812 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1813 }
614 1814
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1821 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1822 }
623#endif 1823#endif
624 1824
625#define array_free(stem, idx) \ 1825#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1826 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1827
628/*****************************************************************************/ 1828/*****************************************************************************/
629 1829
1830/* dummy callback for pending events */
1831static void noinline
1832pendingcb (EV_P_ ev_prepare *w, int revents)
1833{
1834}
1835
630void noinline 1836void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1837ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1838{
633 W w_ = (W)w; 1839 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1840 int pri = ABSPRI (w_);
635 1841
636 if (expect_false (w_->pending)) 1842 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1846 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1847 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1848 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1849 pendings [pri][w_->pending - 1].events = revents;
644 } 1850 }
645}
646 1851
647void inline_speed 1852 pendingpri = NUMPRI - 1;
1853}
1854
1855inline_speed void
1856feed_reverse (EV_P_ W w)
1857{
1858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859 rfeeds [rfeedcnt++] = w;
1860}
1861
1862inline_size void
1863feed_reverse_done (EV_P_ int revents)
1864{
1865 do
1866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867 while (rfeedcnt);
1868}
1869
1870inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1871queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1872{
650 int i; 1873 int i;
651 1874
652 for (i = 0; i < eventcnt; ++i) 1875 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1876 ev_feed_event (EV_A_ events [i], type);
654} 1877}
655 1878
656/*****************************************************************************/ 1879/*****************************************************************************/
657 1880
658void inline_size 1881inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1882fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1883{
674 ANFD *anfd = anfds + fd; 1884 ANFD *anfd = anfds + fd;
675 ev_io *w; 1885 ev_io *w;
676 1886
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1891 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1892 ev_feed_event (EV_A_ (W)w, ev);
683 } 1893 }
684} 1894}
685 1895
1896/* do not submit kernel events for fds that have reify set */
1897/* because that means they changed while we were polling for new events */
1898inline_speed void
1899fd_event (EV_P_ int fd, int revents)
1900{
1901 ANFD *anfd = anfds + fd;
1902
1903 if (expect_true (!anfd->reify))
1904 fd_event_nocheck (EV_A_ fd, revents);
1905}
1906
686void 1907void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1908ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1909{
689 if (fd >= 0 && fd < anfdmax) 1910 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1911 fd_event_nocheck (EV_A_ fd, revents);
691} 1912}
692 1913
693void inline_size 1914/* make sure the external fd watch events are in-sync */
1915/* with the kernel/libev internal state */
1916inline_size void
694fd_reify (EV_P) 1917fd_reify (EV_P)
695{ 1918{
696 int i; 1919 int i;
1920
1921#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1922 for (i = 0; i < fdchangecnt; ++i)
1923 {
1924 int fd = fdchanges [i];
1925 ANFD *anfd = anfds + fd;
1926
1927 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 {
1929 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930
1931 if (handle != anfd->handle)
1932 {
1933 unsigned long arg;
1934
1935 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936
1937 /* handle changed, but fd didn't - we need to do it in two steps */
1938 backend_modify (EV_A_ fd, anfd->events, 0);
1939 anfd->events = 0;
1940 anfd->handle = handle;
1941 }
1942 }
1943 }
1944#endif
697 1945
698 for (i = 0; i < fdchangecnt; ++i) 1946 for (i = 0; i < fdchangecnt; ++i)
699 { 1947 {
700 int fd = fdchanges [i]; 1948 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1949 ANFD *anfd = anfds + fd;
702 ev_io *w; 1950 ev_io *w;
703 1951
704 unsigned char events = 0; 1952 unsigned char o_events = anfd->events;
1953 unsigned char o_reify = anfd->reify;
705 1954
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1955 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1956
709#if EV_SELECT_IS_WINSOCKET 1957 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1958 {
712 unsigned long argp; 1959 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1960
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1961 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1962 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1963
717 #endif 1964 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1965 o_reify = EV__IOFDSET; /* actually |= */
719 } 1966 }
720#endif
721 1967
722 { 1968 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1969 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1970 }
733 1971
734 fdchangecnt = 0; 1972 fdchangecnt = 0;
735} 1973}
736 1974
737void inline_size 1975/* something about the given fd changed */
1976inline_size void
738fd_change (EV_P_ int fd, int flags) 1977fd_change (EV_P_ int fd, int flags)
739{ 1978{
740 unsigned char reify = anfds [fd].reify; 1979 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1980 anfds [fd].reify |= flags;
742 1981
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1985 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1986 fdchanges [fdchangecnt - 1] = fd;
748 } 1987 }
749} 1988}
750 1989
751void inline_speed 1990/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1992fd_kill (EV_P_ int fd)
753{ 1993{
754 ev_io *w; 1994 ev_io *w;
755 1995
756 while ((w = (ev_io *)anfds [fd].head)) 1996 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1998 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1999 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 2000 }
761} 2001}
762 2002
763int inline_size 2003/* check whether the given fd is actually valid, for error recovery */
2004inline_size int ecb_cold
764fd_valid (int fd) 2005fd_valid (int fd)
765{ 2006{
766#ifdef _WIN32 2007#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 2008 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 2009#else
769 return fcntl (fd, F_GETFD) != -1; 2010 return fcntl (fd, F_GETFD) != -1;
770#endif 2011#endif
771} 2012}
772 2013
773/* called on EBADF to verify fds */ 2014/* called on EBADF to verify fds */
774static void noinline 2015static void noinline ecb_cold
775fd_ebadf (EV_P) 2016fd_ebadf (EV_P)
776{ 2017{
777 int fd; 2018 int fd;
778 2019
779 for (fd = 0; fd < anfdmax; ++fd) 2020 for (fd = 0; fd < anfdmax; ++fd)
780 if (anfds [fd].events) 2021 if (anfds [fd].events)
781 if (!fd_valid (fd) == -1 && errno == EBADF) 2022 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 2023 fd_kill (EV_A_ fd);
783} 2024}
784 2025
785/* called on ENOMEM in select/poll to kill some fds and retry */ 2026/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 2027static void noinline ecb_cold
787fd_enomem (EV_P) 2028fd_enomem (EV_P)
788{ 2029{
789 int fd; 2030 int fd;
790 2031
791 for (fd = anfdmax; fd--; ) 2032 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 2033 if (anfds [fd].events)
793 { 2034 {
794 fd_kill (EV_A_ fd); 2035 fd_kill (EV_A_ fd);
795 return; 2036 break;
796 } 2037 }
797} 2038}
798 2039
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 2040/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 2041static void noinline
804 2045
805 for (fd = 0; fd < anfdmax; ++fd) 2046 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 2047 if (anfds [fd].events)
807 { 2048 {
808 anfds [fd].events = 0; 2049 anfds [fd].events = 0;
2050 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2051 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 2052 }
811} 2053}
812 2054
2055/* used to prepare libev internal fd's */
2056/* this is not fork-safe */
2057inline_speed void
2058fd_intern (int fd)
2059{
2060#ifdef _WIN32
2061 unsigned long arg = 1;
2062 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2063#else
2064 fcntl (fd, F_SETFD, FD_CLOEXEC);
2065 fcntl (fd, F_SETFL, O_NONBLOCK);
2066#endif
2067}
2068
813/*****************************************************************************/ 2069/*****************************************************************************/
814 2070
815/* 2071/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 2072 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2073 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 2074 * the branching factor of the d-tree.
819 */ 2075 */
820 2076
821/* 2077/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2086#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2087#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 2088#define UPHEAP_DONE(p,k) ((p) == (k))
833 2089
834/* away from the root */ 2090/* away from the root */
835void inline_speed 2091inline_speed void
836downheap (ANHE *heap, int N, int k) 2092downheap (ANHE *heap, int N, int k)
837{ 2093{
838 ANHE he = heap [k]; 2094 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 2095 ANHE *E = heap + N + HEAP0;
840 2096
880#define HEAP0 1 2136#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 2137#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 2138#define UPHEAP_DONE(p,k) (!(p))
883 2139
884/* away from the root */ 2140/* away from the root */
885void inline_speed 2141inline_speed void
886downheap (ANHE *heap, int N, int k) 2142downheap (ANHE *heap, int N, int k)
887{ 2143{
888 ANHE he = heap [k]; 2144 ANHE he = heap [k];
889 2145
890 for (;;) 2146 for (;;)
891 { 2147 {
892 int c = k << 1; 2148 int c = k << 1;
893 2149
894 if (c > N + HEAP0 - 1) 2150 if (c >= N + HEAP0)
895 break; 2151 break;
896 2152
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2153 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 2154 ? 1 : 0;
899 2155
910 ev_active (ANHE_w (he)) = k; 2166 ev_active (ANHE_w (he)) = k;
911} 2167}
912#endif 2168#endif
913 2169
914/* towards the root */ 2170/* towards the root */
915void inline_speed 2171inline_speed void
916upheap (ANHE *heap, int k) 2172upheap (ANHE *heap, int k)
917{ 2173{
918 ANHE he = heap [k]; 2174 ANHE he = heap [k];
919 2175
920 for (;;) 2176 for (;;)
931 2187
932 heap [k] = he; 2188 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 2189 ev_active (ANHE_w (he)) = k;
934} 2190}
935 2191
936void inline_size 2192/* move an element suitably so it is in a correct place */
2193inline_size void
937adjustheap (ANHE *heap, int N, int k) 2194adjustheap (ANHE *heap, int N, int k)
938{ 2195{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2196 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 2197 upheap (heap, k);
941 else 2198 else
942 downheap (heap, N, k); 2199 downheap (heap, N, k);
943} 2200}
944 2201
945/* rebuild the heap: this function is used only once and executed rarely */ 2202/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 2203inline_size void
947reheap (ANHE *heap, int N) 2204reheap (ANHE *heap, int N)
948{ 2205{
949 int i; 2206 int i;
950 2207
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2208 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 2211 upheap (heap, i + HEAP0);
955} 2212}
956 2213
957/*****************************************************************************/ 2214/*****************************************************************************/
958 2215
2216/* associate signal watchers to a signal signal */
959typedef struct 2217typedef struct
960{ 2218{
2219 EV_ATOMIC_T pending;
2220#if EV_MULTIPLICITY
2221 EV_P;
2222#endif
961 WL head; 2223 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 2224} ANSIG;
964 2225
965static ANSIG *signals; 2226static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 2227
982/*****************************************************************************/ 2228/*****************************************************************************/
983 2229
984void inline_speed 2230#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 int arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 2231
996static void noinline 2232static void noinline ecb_cold
997evpipe_init (EV_P) 2233evpipe_init (EV_P)
998{ 2234{
999 if (!ev_is_active (&pipeev)) 2235 if (!ev_is_active (&pipe_w))
2236 {
2237 int fds [2];
2238
2239# if EV_USE_EVENTFD
2240 fds [0] = -1;
2241 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242 if (fds [1] < 0 && errno == EINVAL)
2243 fds [1] = eventfd (0, 0);
2244
2245 if (fds [1] < 0)
2246# endif
2247 {
2248 while (pipe (fds))
2249 ev_syserr ("(libev) error creating signal/async pipe");
2250
2251 fd_intern (fds [0]);
2252 }
2253
2254 evpipe [0] = fds [0];
2255
2256 if (evpipe [1] < 0)
2257 evpipe [1] = fds [1]; /* first call, set write fd */
2258 else
2259 {
2260 /* on subsequent calls, do not change evpipe [1] */
2261 /* so that evpipe_write can always rely on its value. */
2262 /* this branch does not do anything sensible on windows, */
2263 /* so must not be executed on windows */
2264
2265 dup2 (fds [1], evpipe [1]);
2266 close (fds [1]);
2267 }
2268
2269 fd_intern (evpipe [1]);
2270
2271 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2272 ev_io_start (EV_A_ &pipe_w);
2273 ev_unref (EV_A); /* watcher should not keep loop alive */
1000 { 2274 }
2275}
2276
2277inline_speed void
2278evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2279{
2280 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281
2282 if (expect_true (*flag))
2283 return;
2284
2285 *flag = 1;
2286 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287
2288 pipe_write_skipped = 1;
2289
2290 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291
2292 if (pipe_write_wanted)
2293 {
2294 int old_errno;
2295
2296 pipe_write_skipped = 0;
2297 ECB_MEMORY_FENCE_RELEASE;
2298
2299 old_errno = errno; /* save errno because write will clobber it */
2300
1001#if EV_USE_EVENTFD 2301#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0) 2302 if (evpipe [0] < 0)
1003 { 2303 {
1004 evpipe [0] = -1; 2304 uint64_t counter = 1;
1005 fd_intern (evfd); 2305 write (evpipe [1], &counter, sizeof (uint64_t));
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 } 2306 }
1008 else 2307 else
1009#endif 2308#endif
1010 { 2309 {
1011 while (pipe (evpipe)) 2310#ifdef _WIN32
1012 syserr ("(libev) error creating signal/async pipe"); 2311 WSABUF buf;
1013 2312 DWORD sent;
1014 fd_intern (evpipe [0]); 2313 buf.buf = &buf;
1015 fd_intern (evpipe [1]); 2314 buf.len = 1;
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 2315 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316#else
2317 write (evpipe [1], &(evpipe [1]), 1);
2318#endif
1017 } 2319 }
1018 2320
1019 ev_io_start (EV_A_ &pipeev); 2321 errno = old_errno;
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 { 2322 }
1029 int old_errno = errno; /* save errno because write might clobber it */ 2323}
1030 2324
1031 *flag = 1; 2325/* called whenever the libev signal pipe */
2326/* got some events (signal, async) */
2327static void
2328pipecb (EV_P_ ev_io *iow, int revents)
2329{
2330 int i;
1032 2331
2332 if (revents & EV_READ)
2333 {
1033#if EV_USE_EVENTFD 2334#if EV_USE_EVENTFD
1034 if (evfd >= 0) 2335 if (evpipe [0] < 0)
1035 { 2336 {
1036 uint64_t counter = 1; 2337 uint64_t counter;
1037 write (evfd, &counter, sizeof (uint64_t)); 2338 read (evpipe [1], &counter, sizeof (uint64_t));
1038 } 2339 }
1039 else 2340 else
1040#endif 2341#endif
1041 write (evpipe [1], &old_errno, 1); 2342 {
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy; 2343 char dummy[4];
2344#ifdef _WIN32
2345 WSABUF buf;
2346 DWORD recvd;
2347 DWORD flags = 0;
2348 buf.buf = dummy;
2349 buf.len = sizeof (dummy);
2350 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351#else
1060 read (evpipe [0], &dummy, 1); 2352 read (evpipe [0], &dummy, sizeof (dummy));
2353#endif
2354 }
2355 }
2356
2357 pipe_write_skipped = 0;
2358
2359 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360
2361#if EV_SIGNAL_ENABLE
2362 if (sig_pending)
1061 } 2363 {
2364 sig_pending = 0;
1062 2365
1063 if (gotsig && ev_is_default_loop (EV_A)) 2366 ECB_MEMORY_FENCE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 2367
1068 for (signum = signalmax; signum--; ) 2368 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 2369 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 2370 ev_feed_signal_event (EV_A_ i + 1);
1071 } 2371 }
2372#endif
1072 2373
1073#if EV_ASYNC_ENABLE 2374#if EV_ASYNC_ENABLE
1074 if (gotasync) 2375 if (async_pending)
1075 { 2376 {
1076 int i; 2377 async_pending = 0;
1077 gotasync = 0; 2378
2379 ECB_MEMORY_FENCE;
1078 2380
1079 for (i = asynccnt; i--; ) 2381 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 2382 if (asyncs [i]->sent)
1081 { 2383 {
1082 asyncs [i]->sent = 0; 2384 asyncs [i]->sent = 0;
2385 ECB_MEMORY_FENCE_RELEASE;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2386 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 } 2387 }
1085 } 2388 }
1086#endif 2389#endif
1087} 2390}
1088 2391
1089/*****************************************************************************/ 2392/*****************************************************************************/
1090 2393
2394void
2395ev_feed_signal (int signum) EV_THROW
2396{
2397#if EV_MULTIPLICITY
2398 EV_P;
2399 ECB_MEMORY_FENCE_ACQUIRE;
2400 EV_A = signals [signum - 1].loop;
2401
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406 signals [signum - 1].pending = 1;
2407 evpipe_write (EV_A_ &sig_pending);
2408}
2409
1091static void 2410static void
1092ev_sighandler (int signum) 2411ev_sighandler (int signum)
1093{ 2412{
2413#ifdef _WIN32
2414 signal (signum, ev_sighandler);
2415#endif
2416
2417 ev_feed_signal (signum);
2418}
2419
2420void noinline
2421ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422{
2423 WL w;
2424
2425 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 return;
2427
2428 --signum;
2429
1094#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 2431 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2432 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2433
1098#if _WIN32 2434 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2435 return;
2436#endif
1119 2437
1120 signals [signum].gotsig = 0; 2438 signals [signum].pending = 0;
2439 ECB_MEMORY_FENCE_RELEASE;
1121 2440
1122 for (w = signals [signum].head; w; w = w->next) 2441 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2442 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2443}
1125 2444
2445#if EV_USE_SIGNALFD
2446static void
2447sigfdcb (EV_P_ ev_io *iow, int revents)
2448{
2449 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450
2451 for (;;)
2452 {
2453 ssize_t res = read (sigfd, si, sizeof (si));
2454
2455 /* not ISO-C, as res might be -1, but works with SuS */
2456 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458
2459 if (res < (ssize_t)sizeof (si))
2460 break;
2461 }
2462}
2463#endif
2464
2465#endif
2466
1126/*****************************************************************************/ 2467/*****************************************************************************/
1127 2468
2469#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2470static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2471
1132static ev_signal childev; 2472static ev_signal childev;
1133 2473
1134#ifndef WIFCONTINUED 2474#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2475# define WIFCONTINUED(status) 0
1136#endif 2476#endif
1137 2477
1138void inline_speed 2478/* handle a single child status event */
2479inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2480child_reap (EV_P_ int chain, int pid, int status)
1140{ 2481{
1141 ev_child *w; 2482 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2483 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2484
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2485 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2486 {
1146 if ((w->pid == pid || !w->pid) 2487 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2488 && (!traced || (w->flags & 1)))
1148 { 2489 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2490 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2497
1157#ifndef WCONTINUED 2498#ifndef WCONTINUED
1158# define WCONTINUED 0 2499# define WCONTINUED 0
1159#endif 2500#endif
1160 2501
2502/* called on sigchld etc., calls waitpid */
1161static void 2503static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2504childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2505{
1164 int pid, status; 2506 int pid, status;
1165 2507
1173 /* make sure we are called again until all children have been reaped */ 2515 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2516 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2517 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2518
1177 child_reap (EV_A_ pid, pid, status); 2519 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2520 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2521 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2522}
1181 2523
1182#endif 2524#endif
1183 2525
1184/*****************************************************************************/ 2526/*****************************************************************************/
1185 2527
2528#if EV_USE_IOCP
2529# include "ev_iocp.c"
2530#endif
1186#if EV_USE_PORT 2531#if EV_USE_PORT
1187# include "ev_port.c" 2532# include "ev_port.c"
1188#endif 2533#endif
1189#if EV_USE_KQUEUE 2534#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2535# include "ev_kqueue.c"
1197#endif 2542#endif
1198#if EV_USE_SELECT 2543#if EV_USE_SELECT
1199# include "ev_select.c" 2544# include "ev_select.c"
1200#endif 2545#endif
1201 2546
1202int 2547int ecb_cold
1203ev_version_major (void) 2548ev_version_major (void) EV_THROW
1204{ 2549{
1205 return EV_VERSION_MAJOR; 2550 return EV_VERSION_MAJOR;
1206} 2551}
1207 2552
1208int 2553int ecb_cold
1209ev_version_minor (void) 2554ev_version_minor (void) EV_THROW
1210{ 2555{
1211 return EV_VERSION_MINOR; 2556 return EV_VERSION_MINOR;
1212} 2557}
1213 2558
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2559/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2560int inline_size ecb_cold
1216enable_secure (void) 2561enable_secure (void)
1217{ 2562{
1218#ifdef _WIN32 2563#ifdef _WIN32
1219 return 0; 2564 return 0;
1220#else 2565#else
1221 return getuid () != geteuid () 2566 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2567 || getgid () != getegid ();
1223#endif 2568#endif
1224} 2569}
1225 2570
1226unsigned int 2571unsigned int ecb_cold
1227ev_supported_backends (void) 2572ev_supported_backends (void) EV_THROW
1228{ 2573{
1229 unsigned int flags = 0; 2574 unsigned int flags = 0;
1230 2575
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2576 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2577 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2580 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2581
1237 return flags; 2582 return flags;
1238} 2583}
1239 2584
1240unsigned int 2585unsigned int ecb_cold
1241ev_recommended_backends (void) 2586ev_recommended_backends (void) EV_THROW
1242{ 2587{
1243 unsigned int flags = ev_supported_backends (); 2588 unsigned int flags = ev_supported_backends ();
1244 2589
1245#ifndef __NetBSD__ 2590#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2591 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2592 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2593 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2594#endif
1250#ifdef __APPLE__ 2595#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2596 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2597 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599#endif
2600#ifdef __FreeBSD__
2601 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2602#endif
1254 2603
1255 return flags; 2604 return flags;
1256} 2605}
1257 2606
2607unsigned int ecb_cold
2608ev_embeddable_backends (void) EV_THROW
2609{
2610 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611
2612 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614 flags &= ~EVBACKEND_EPOLL;
2615
2616 return flags;
2617}
2618
1258unsigned int 2619unsigned int
1259ev_embeddable_backends (void) 2620ev_backend (EV_P) EV_THROW
1260{ 2621{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2622 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2623}
1269 2624
2625#if EV_FEATURE_API
1270unsigned int 2626unsigned int
1271ev_backend (EV_P) 2627ev_iteration (EV_P) EV_THROW
1272{ 2628{
1273 return backend; 2629 return loop_count;
1274} 2630}
1275 2631
1276unsigned int 2632unsigned int
1277ev_loop_count (EV_P) 2633ev_depth (EV_P) EV_THROW
1278{ 2634{
1279 return loop_count; 2635 return loop_depth;
1280} 2636}
1281 2637
1282void 2638void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2639ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2640{
1285 io_blocktime = interval; 2641 io_blocktime = interval;
1286} 2642}
1287 2643
1288void 2644void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2645ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2646{
1291 timeout_blocktime = interval; 2647 timeout_blocktime = interval;
1292} 2648}
1293 2649
2650void
2651ev_set_userdata (EV_P_ void *data) EV_THROW
2652{
2653 userdata = data;
2654}
2655
2656void *
2657ev_userdata (EV_P) EV_THROW
2658{
2659 return userdata;
2660}
2661
2662void
2663ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664{
2665 invoke_cb = invoke_pending_cb;
2666}
2667
2668void
2669ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670{
2671 release_cb = release;
2672 acquire_cb = acquire;
2673}
2674#endif
2675
2676/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2677static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2678loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2679{
1297 if (!backend) 2680 if (!backend)
1298 { 2681 {
2682 origflags = flags;
2683
2684#if EV_USE_REALTIME
2685 if (!have_realtime)
2686 {
2687 struct timespec ts;
2688
2689 if (!clock_gettime (CLOCK_REALTIME, &ts))
2690 have_realtime = 1;
2691 }
2692#endif
2693
1299#if EV_USE_MONOTONIC 2694#if EV_USE_MONOTONIC
2695 if (!have_monotonic)
1300 { 2696 {
1301 struct timespec ts; 2697 struct timespec ts;
2698
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2699 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2700 have_monotonic = 1;
1304 } 2701 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2702#endif
1320 2703
1321 /* pid check not overridable via env */ 2704 /* pid check not overridable via env */
1322#ifndef _WIN32 2705#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2706 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2710 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2711 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2712 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2713 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2714
1332 if (!(flags & 0x0000ffffU)) 2715 ev_rt_now = ev_time ();
2716 mn_now = get_clock ();
2717 now_floor = mn_now;
2718 rtmn_diff = ev_rt_now - mn_now;
2719#if EV_FEATURE_API
2720 invoke_cb = ev_invoke_pending;
2721#endif
2722
2723 io_blocktime = 0.;
2724 timeout_blocktime = 0.;
2725 backend = 0;
2726 backend_fd = -1;
2727 sig_pending = 0;
2728#if EV_ASYNC_ENABLE
2729 async_pending = 0;
2730#endif
2731 pipe_write_skipped = 0;
2732 pipe_write_wanted = 0;
2733 evpipe [0] = -1;
2734 evpipe [1] = -1;
2735#if EV_USE_INOTIFY
2736 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737#endif
2738#if EV_USE_SIGNALFD
2739 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740#endif
2741
2742 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2743 flags |= ev_recommended_backends ();
1334 2744
2745#if EV_USE_IOCP
2746 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2747#endif
1335#if EV_USE_PORT 2748#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2749 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2750#endif
1338#if EV_USE_KQUEUE 2751#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2752 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2759#endif
1347#if EV_USE_SELECT 2760#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2761 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2762#endif
1350 2763
2764 ev_prepare_init (&pending_w, pendingcb);
2765
2766#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2767 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2768 ev_set_priority (&pipe_w, EV_MAXPRI);
2769#endif
1353 } 2770 }
1354} 2771}
1355 2772
1356static void noinline 2773/* free up a loop structure */
2774void ecb_cold
1357loop_destroy (EV_P) 2775ev_loop_destroy (EV_P)
1358{ 2776{
1359 int i; 2777 int i;
1360 2778
2779#if EV_MULTIPLICITY
2780 /* mimic free (0) */
2781 if (!EV_A)
2782 return;
2783#endif
2784
2785#if EV_CLEANUP_ENABLE
2786 /* queue cleanup watchers (and execute them) */
2787 if (expect_false (cleanupcnt))
2788 {
2789 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790 EV_INVOKE_PENDING;
2791 }
2792#endif
2793
2794#if EV_CHILD_ENABLE
2795 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 {
2797 ev_ref (EV_A); /* child watcher */
2798 ev_signal_stop (EV_A_ &childev);
2799 }
2800#endif
2801
1361 if (ev_is_active (&pipeev)) 2802 if (ev_is_active (&pipe_w))
1362 { 2803 {
1363 ev_ref (EV_A); /* signal watcher */ 2804 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2805 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2806
2807 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 }
2810
1366#if EV_USE_EVENTFD 2811#if EV_USE_SIGNALFD
1367 if (evfd >= 0) 2812 if (ev_is_active (&sigfd_w))
1368 close (evfd); 2813 close (sigfd);
1369#endif 2814#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377 2815
1378#if EV_USE_INOTIFY 2816#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2817 if (fs_fd >= 0)
1380 close (fs_fd); 2818 close (fs_fd);
1381#endif 2819#endif
1382 2820
1383 if (backend_fd >= 0) 2821 if (backend_fd >= 0)
1384 close (backend_fd); 2822 close (backend_fd);
1385 2823
2824#if EV_USE_IOCP
2825 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826#endif
1386#if EV_USE_PORT 2827#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2828 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2829#endif
1389#if EV_USE_KQUEUE 2830#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2831 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2846#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2847 array_free (idle, [i]);
1407#endif 2848#endif
1408 } 2849 }
1409 2850
1410 ev_free (anfds); anfdmax = 0; 2851 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2852
1412 /* have to use the microsoft-never-gets-it-right macro */ 2853 /* have to use the microsoft-never-gets-it-right macro */
2854 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2855 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2856 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2857#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2858 array_free (periodic, EMPTY);
1417#endif 2859#endif
1418#if EV_FORK_ENABLE 2860#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2861 array_free (fork, EMPTY);
1420#endif 2862#endif
2863#if EV_CLEANUP_ENABLE
2864 array_free (cleanup, EMPTY);
2865#endif
1421 array_free (prepare, EMPTY); 2866 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2867 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2868#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2869 array_free (async, EMPTY);
1425#endif 2870#endif
1426 2871
1427 backend = 0; 2872 backend = 0;
2873
2874#if EV_MULTIPLICITY
2875 if (ev_is_default_loop (EV_A))
2876#endif
2877 ev_default_loop_ptr = 0;
2878#if EV_MULTIPLICITY
2879 else
2880 ev_free (EV_A);
2881#endif
1428} 2882}
1429 2883
1430#if EV_USE_INOTIFY 2884#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2885inline_size void infy_fork (EV_P);
1432#endif 2886#endif
1433 2887
1434void inline_size 2888inline_size void
1435loop_fork (EV_P) 2889loop_fork (EV_P)
1436{ 2890{
1437#if EV_USE_PORT 2891#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2892 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2893#endif
1445#endif 2899#endif
1446#if EV_USE_INOTIFY 2900#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2901 infy_fork (EV_A);
1448#endif 2902#endif
1449 2903
2904#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1450 if (ev_is_active (&pipeev)) 2905 if (ev_is_active (&pipe_w))
1451 { 2906 {
1452 /* this "locks" the handlers against writing to the pipe */ 2907 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2908
1459 ev_ref (EV_A); 2909 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2910 ev_io_stop (EV_A_ &pipe_w);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466 2911
1467 if (evpipe [0] >= 0) 2912 if (evpipe [0] >= 0)
1468 { 2913 EV_WIN32_CLOSE_FD (evpipe [0]);
1469 close (evpipe [0]);
1470 close (evpipe [1]);
1471 }
1472 2914
1473 evpipe_init (EV_A); 2915 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2916 /* iterate over everything, in case we missed something before */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2917 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1476 } 2918 }
2919#endif
1477 2920
1478 postfork = 0; 2921 postfork = 0;
1479} 2922}
1480 2923
1481#if EV_MULTIPLICITY 2924#if EV_MULTIPLICITY
1482 2925
1483struct ev_loop * 2926struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2927ev_loop_new (unsigned int flags) EV_THROW
1485{ 2928{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2930
1488 memset (loop, 0, sizeof (struct ev_loop)); 2931 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2932 loop_init (EV_A_ flags);
1491 2933
1492 if (ev_backend (EV_A)) 2934 if (ev_backend (EV_A))
1493 return loop; 2935 return EV_A;
1494 2936
2937 ev_free (EV_A);
1495 return 0; 2938 return 0;
1496} 2939}
1497 2940
1498void 2941#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2942
1511#if EV_VERIFY 2943#if EV_VERIFY
1512void noinline 2944static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2945verify_watcher (EV_P_ W w)
1514{ 2946{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2948
1517 if (w->pending) 2949 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2951}
1520 2952
1521static void noinline 2953static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2954verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2955{
1524 int i; 2956 int i;
1525 2957
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2958 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2959 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2963
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2965 }
1534} 2966}
1535 2967
1536static void noinline 2968static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2969array_verify (EV_P_ W *ws, int cnt)
1538{ 2970{
1539 while (cnt--) 2971 while (cnt--)
1540 { 2972 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2974 verify_watcher (EV_A_ ws [cnt]);
1543 } 2975 }
1544} 2976}
1545#endif 2977#endif
1546 2978
1547void 2979#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2980void ecb_cold
2981ev_verify (EV_P) EV_THROW
1549{ 2982{
1550#if EV_VERIFY 2983#if EV_VERIFY
1551 int i; 2984 int i;
1552 WL w; 2985 WL w, w2;
1553 2986
1554 assert (activecnt >= -1); 2987 assert (activecnt >= -1);
1555 2988
1556 assert (fdchangemax >= fdchangecnt); 2989 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2990 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2992
1560 assert (anfdmax >= 0); 2993 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2994 for (i = 0; i < anfdmax; ++i)
2995 {
2996 int j = 0;
2997
1562 for (w = anfds [i].head; w; w = w->next) 2998 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2999 {
1564 verify_watcher (EV_A_ (W)w); 3000 verify_watcher (EV_A_ (W)w);
3001
3002 if (j++ & 1)
3003 {
3004 assert (("libev: io watcher list contains a loop", w != w2));
3005 w2 = w2->next;
3006 }
3007
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3008 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3009 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 3010 }
3011 }
1568 3012
1569 assert (timermax >= timercnt); 3013 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 3014 verify_heap (EV_A_ timers, timercnt);
1571 3015
1572#if EV_PERIODIC_ENABLE 3016#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 3031#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 3032 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 3033 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 3034#endif
1591 3035
3036#if EV_CLEANUP_ENABLE
3037 assert (cleanupmax >= cleanupcnt);
3038 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039#endif
3040
1592#if EV_ASYNC_ENABLE 3041#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 3042 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 3043 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 3044#endif
1596 3045
3046#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 3047 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 3048 array_verify (EV_A_ (W *)prepares, preparecnt);
3049#endif
1599 3050
3051#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 3052 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 3053 array_verify (EV_A_ (W *)checks, checkcnt);
3054#endif
1602 3055
1603# if 0 3056# if 0
3057#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3058 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3059 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060#endif
1606# endif 3061# endif
1607#endif 3062#endif
1608} 3063}
1609 3064#endif
1610#endif /* multiplicity */
1611 3065
1612#if EV_MULTIPLICITY 3066#if EV_MULTIPLICITY
1613struct ev_loop * 3067struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 3068#else
1616int 3069int
3070#endif
1617ev_default_loop (unsigned int flags) 3071ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 3072{
1620 if (!ev_default_loop_ptr) 3073 if (!ev_default_loop_ptr)
1621 { 3074 {
1622#if EV_MULTIPLICITY 3075#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3076 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 3077#else
1625 ev_default_loop_ptr = 1; 3078 ev_default_loop_ptr = 1;
1626#endif 3079#endif
1627 3080
1628 loop_init (EV_A_ flags); 3081 loop_init (EV_A_ flags);
1629 3082
1630 if (ev_backend (EV_A)) 3083 if (ev_backend (EV_A))
1631 { 3084 {
1632#ifndef _WIN32 3085#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 3086 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 3087 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 3088 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3089 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 3090#endif
1642 3095
1643 return ev_default_loop_ptr; 3096 return ev_default_loop_ptr;
1644} 3097}
1645 3098
1646void 3099void
1647ev_default_destroy (void) 3100ev_loop_fork (EV_P) EV_THROW
1648{ 3101{
1649#if EV_MULTIPLICITY 3102 postfork = 1;
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */
1670} 3103}
1671 3104
1672/*****************************************************************************/ 3105/*****************************************************************************/
1673 3106
1674void 3107void
1675ev_invoke (EV_P_ void *w, int revents) 3108ev_invoke (EV_P_ void *w, int revents)
1676{ 3109{
1677 EV_CB_INVOKE ((W)w, revents); 3110 EV_CB_INVOKE ((W)w, revents);
1678} 3111}
1679 3112
1680void inline_speed 3113unsigned int
1681call_pending (EV_P) 3114ev_pending_count (EV_P) EV_THROW
1682{ 3115{
1683 int pri; 3116 int pri;
3117 unsigned int count = 0;
1684 3118
1685 for (pri = NUMPRI; pri--; ) 3119 for (pri = NUMPRI; pri--; )
3120 count += pendingcnt [pri];
3121
3122 return count;
3123}
3124
3125void noinline
3126ev_invoke_pending (EV_P)
3127{
3128 pendingpri = NUMPRI;
3129
3130 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131 {
3132 --pendingpri;
3133
1686 while (pendingcnt [pri]) 3134 while (pendingcnt [pendingpri])
1687 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689
1690 if (expect_true (p->w))
1691 { 3135 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3136 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1693 3137
1694 p->w->pending = 0; 3138 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 3139 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 3140 EV_FREQUENT_CHECK;
1697 } 3141 }
1698 } 3142 }
1699} 3143}
1700 3144
1701#if EV_IDLE_ENABLE 3145#if EV_IDLE_ENABLE
1702void inline_size 3146/* make idle watchers pending. this handles the "call-idle */
3147/* only when higher priorities are idle" logic */
3148inline_size void
1703idle_reify (EV_P) 3149idle_reify (EV_P)
1704{ 3150{
1705 if (expect_false (idleall)) 3151 if (expect_false (idleall))
1706 { 3152 {
1707 int pri; 3153 int pri;
1719 } 3165 }
1720 } 3166 }
1721} 3167}
1722#endif 3168#endif
1723 3169
1724void inline_size 3170/* make timers pending */
3171inline_size void
1725timers_reify (EV_P) 3172timers_reify (EV_P)
1726{ 3173{
1727 EV_FREQUENT_CHECK; 3174 EV_FREQUENT_CHECK;
1728 3175
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3176 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 3177 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3178 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 3179 {
3180 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181
3182 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183
3184 /* first reschedule or stop timer */
3185 if (w->repeat)
3186 {
1738 ev_at (w) += w->repeat; 3187 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 3188 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 3189 ev_at (w) = mn_now;
1741 3190
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3191 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 3192
1744 ANHE_at_cache (timers [HEAP0]); 3193 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 3194 downheap (timers, timercnt, HEAP0);
3195 }
3196 else
3197 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198
3199 EV_FREQUENT_CHECK;
3200 feed_reverse (EV_A_ (W)w);
1746 } 3201 }
1747 else 3202 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 3203
1750 EV_FREQUENT_CHECK; 3204 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 3205 }
1753} 3206}
1754 3207
1755#if EV_PERIODIC_ENABLE 3208#if EV_PERIODIC_ENABLE
1756void inline_size 3209
3210static void noinline
3211periodic_recalc (EV_P_ ev_periodic *w)
3212{
3213 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215
3216 /* the above almost always errs on the low side */
3217 while (at <= ev_rt_now)
3218 {
3219 ev_tstamp nat = at + w->interval;
3220
3221 /* when resolution fails us, we use ev_rt_now */
3222 if (expect_false (nat == at))
3223 {
3224 at = ev_rt_now;
3225 break;
3226 }
3227
3228 at = nat;
3229 }
3230
3231 ev_at (w) = at;
3232}
3233
3234/* make periodics pending */
3235inline_size void
1757periodics_reify (EV_P) 3236periodics_reify (EV_P)
1758{ 3237{
1759 EV_FREQUENT_CHECK; 3238 EV_FREQUENT_CHECK;
1760 3239
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 3241 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3242 do
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 3243 {
3244 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3245
3246 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3247
3248 /* first reschedule or stop timer */
3249 if (w->reschedule_cb)
3250 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 3252
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3253 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 3254
1774 ANHE_at_cache (periodics [HEAP0]); 3255 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 3256 downheap (periodics, periodiccnt, HEAP0);
3257 }
3258 else if (w->interval)
3259 {
3260 periodic_recalc (EV_A_ w);
3261 ANHE_at_cache (periodics [HEAP0]);
3262 downheap (periodics, periodiccnt, HEAP0);
3263 }
3264 else
3265 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266
3267 EV_FREQUENT_CHECK;
3268 feed_reverse (EV_A_ (W)w);
1776 } 3269 }
1777 else if (w->interval) 3270 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 3271
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3272 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 3273 }
1802} 3274}
1803 3275
3276/* simply recalculate all periodics */
3277/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 3278static void noinline ecb_cold
1805periodics_reschedule (EV_P) 3279periodics_reschedule (EV_P)
1806{ 3280{
1807 int i; 3281 int i;
1808 3282
1809 /* adjust periodics after time jump */ 3283 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3286 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 3287
1814 if (w->reschedule_cb) 3288 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3289 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 3290 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3291 periodic_recalc (EV_A_ w);
1818 3292
1819 ANHE_at_cache (periodics [i]); 3293 ANHE_at_cache (periodics [i]);
1820 } 3294 }
1821 3295
1822 reheap (periodics, periodiccnt); 3296 reheap (periodics, periodiccnt);
1823} 3297}
1824#endif 3298#endif
1825 3299
1826void inline_speed 3300/* adjust all timers by a given offset */
3301static void noinline ecb_cold
3302timers_reschedule (EV_P_ ev_tstamp adjust)
3303{
3304 int i;
3305
3306 for (i = 0; i < timercnt; ++i)
3307 {
3308 ANHE *he = timers + i + HEAP0;
3309 ANHE_w (*he)->at += adjust;
3310 ANHE_at_cache (*he);
3311 }
3312}
3313
3314/* fetch new monotonic and realtime times from the kernel */
3315/* also detect if there was a timejump, and act accordingly */
3316inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 3317time_update (EV_P_ ev_tstamp max_block)
1828{ 3318{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 3319#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 3320 if (expect_true (have_monotonic))
1833 { 3321 {
3322 int i;
1834 ev_tstamp odiff = rtmn_diff; 3323 ev_tstamp odiff = rtmn_diff;
1835 3324
1836 mn_now = get_clock (); 3325 mn_now = get_clock ();
1837 3326
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3327 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 3343 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 3344 * in the unlikely event of having been preempted here.
1856 */ 3345 */
1857 for (i = 4; --i; ) 3346 for (i = 4; --i; )
1858 { 3347 {
3348 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 3349 rtmn_diff = ev_rt_now - mn_now;
1860 3350
3351 diff = odiff - rtmn_diff;
3352
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3353 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 3354 return; /* all is well */
1863 3355
1864 ev_rt_now = ev_time (); 3356 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 3357 mn_now = get_clock ();
1866 now_floor = mn_now; 3358 now_floor = mn_now;
1867 } 3359 }
1868 3360
3361 /* no timer adjustment, as the monotonic clock doesn't jump */
3362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 3363# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 3364 periodics_reschedule (EV_A);
1871# endif 3365# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 3366 }
1875 else 3367 else
1876#endif 3368#endif
1877 { 3369 {
1878 ev_rt_now = ev_time (); 3370 ev_rt_now = ev_time ();
1879 3371
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 3373 {
3374 /* adjust timers. this is easy, as the offset is the same for all of them */
3375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 3376#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 3377 periodics_reschedule (EV_A);
1884#endif 3378#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 3379 }
1893 3380
1894 mn_now = ev_rt_now; 3381 mn_now = ev_rt_now;
1895 } 3382 }
1896} 3383}
1897 3384
1898void 3385int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 3386ev_run (EV_P_ int flags)
1914{ 3387{
3388#if EV_FEATURE_API
3389 ++loop_depth;
3390#endif
3391
3392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393
1915 loop_done = EVUNLOOP_CANCEL; 3394 loop_done = EVBREAK_CANCEL;
1916 3395
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 3397
1919 do 3398 do
1920 { 3399 {
1921#if EV_VERIFY >= 2 3400#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 3401 ev_verify (EV_A);
1923#endif 3402#endif
1924 3403
1925#ifndef _WIN32 3404#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 3405 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 3406 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 3414 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1937 if (forkcnt) 3416 if (forkcnt)
1938 { 3417 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 3419 EV_INVOKE_PENDING;
1941 } 3420 }
1942#endif 3421#endif
1943 3422
3423#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3424 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3425 if (expect_false (preparecnt))
1946 { 3426 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3428 EV_INVOKE_PENDING;
1949 } 3429 }
3430#endif
1950 3431
1951 if (expect_false (!activecnt)) 3432 if (expect_false (loop_done))
1952 break; 3433 break;
1953 3434
1954 /* we might have forked, so reify kernel state if necessary */ 3435 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3436 if (expect_false (postfork))
1956 loop_fork (EV_A); 3437 loop_fork (EV_A);
1961 /* calculate blocking time */ 3442 /* calculate blocking time */
1962 { 3443 {
1963 ev_tstamp waittime = 0.; 3444 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3445 ev_tstamp sleeptime = 0.;
1965 3446
3447 /* remember old timestamp for io_blocktime calculation */
3448 ev_tstamp prev_mn_now = mn_now;
3449
3450 /* update time to cancel out callback processing overhead */
3451 time_update (EV_A_ 1e100);
3452
3453 /* from now on, we want a pipe-wake-up */
3454 pipe_write_wanted = 1;
3455
3456 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3458 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3459 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3460 waittime = MAX_BLOCKTIME;
1972 3461
1973 if (timercnt) 3462 if (timercnt)
1974 { 3463 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3464 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3465 if (waittime > to) waittime = to;
1977 } 3466 }
1978 3467
1979#if EV_PERIODIC_ENABLE 3468#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3469 if (periodiccnt)
1981 { 3470 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3471 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3472 if (waittime > to) waittime = to;
1984 } 3473 }
1985#endif 3474#endif
1986 3475
3476 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3477 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3478 waittime = timeout_blocktime;
1989 3479
1990 sleeptime = waittime - backend_fudge; 3480 /* at this point, we NEED to wait, so we have to ensure */
3481 /* to pass a minimum nonzero value to the backend */
3482 if (expect_false (waittime < backend_mintime))
3483 waittime = backend_mintime;
1991 3484
3485 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3486 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3487 {
3488 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489
3490 if (sleeptime > waittime - backend_mintime)
3491 sleeptime = waittime - backend_mintime;
3492
3493 if (expect_true (sleeptime > 0.))
3494 {
1997 ev_sleep (sleeptime); 3495 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3496 waittime -= sleeptime;
3497 }
1999 } 3498 }
2000 } 3499 }
2001 3500
3501#if EV_FEATURE_API
2002 ++loop_count; 3502 ++loop_count;
3503#endif
3504 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3505 backend_poll (EV_A_ waittime);
3506 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3507
3508 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509
3510 ECB_MEMORY_FENCE_ACQUIRE;
3511 if (pipe_write_skipped)
3512 {
3513 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515 }
3516
2004 3517
2005 /* update ev_rt_now, do magic */ 3518 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3519 time_update (EV_A_ waittime + sleeptime);
2007 } 3520 }
2008 3521
2015#if EV_IDLE_ENABLE 3528#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3529 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3530 idle_reify (EV_A);
2018#endif 3531#endif
2019 3532
3533#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3534 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3535 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3536 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537#endif
2023 3538
2024 call_pending (EV_A); 3539 EV_INVOKE_PENDING;
2025 } 3540 }
2026 while (expect_true ( 3541 while (expect_true (
2027 activecnt 3542 activecnt
2028 && !loop_done 3543 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3544 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3545 ));
2031 3546
2032 if (loop_done == EVUNLOOP_ONE) 3547 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3548 loop_done = EVBREAK_CANCEL;
3549
3550#if EV_FEATURE_API
3551 --loop_depth;
3552#endif
3553
3554 return activecnt;
2034} 3555}
2035 3556
2036void 3557void
2037ev_unloop (EV_P_ int how) 3558ev_break (EV_P_ int how) EV_THROW
2038{ 3559{
2039 loop_done = how; 3560 loop_done = how;
2040} 3561}
2041 3562
3563void
3564ev_ref (EV_P) EV_THROW
3565{
3566 ++activecnt;
3567}
3568
3569void
3570ev_unref (EV_P) EV_THROW
3571{
3572 --activecnt;
3573}
3574
3575void
3576ev_now_update (EV_P) EV_THROW
3577{
3578 time_update (EV_A_ 1e100);
3579}
3580
3581void
3582ev_suspend (EV_P) EV_THROW
3583{
3584 ev_now_update (EV_A);
3585}
3586
3587void
3588ev_resume (EV_P) EV_THROW
3589{
3590 ev_tstamp mn_prev = mn_now;
3591
3592 ev_now_update (EV_A);
3593 timers_reschedule (EV_A_ mn_now - mn_prev);
3594#if EV_PERIODIC_ENABLE
3595 /* TODO: really do this? */
3596 periodics_reschedule (EV_A);
3597#endif
3598}
3599
2042/*****************************************************************************/ 3600/*****************************************************************************/
3601/* singly-linked list management, used when the expected list length is short */
2043 3602
2044void inline_size 3603inline_size void
2045wlist_add (WL *head, WL elem) 3604wlist_add (WL *head, WL elem)
2046{ 3605{
2047 elem->next = *head; 3606 elem->next = *head;
2048 *head = elem; 3607 *head = elem;
2049} 3608}
2050 3609
2051void inline_size 3610inline_size void
2052wlist_del (WL *head, WL elem) 3611wlist_del (WL *head, WL elem)
2053{ 3612{
2054 while (*head) 3613 while (*head)
2055 { 3614 {
2056 if (*head == elem) 3615 if (expect_true (*head == elem))
2057 { 3616 {
2058 *head = elem->next; 3617 *head = elem->next;
2059 return; 3618 break;
2060 } 3619 }
2061 3620
2062 head = &(*head)->next; 3621 head = &(*head)->next;
2063 } 3622 }
2064} 3623}
2065 3624
2066void inline_speed 3625/* internal, faster, version of ev_clear_pending */
3626inline_speed void
2067clear_pending (EV_P_ W w) 3627clear_pending (EV_P_ W w)
2068{ 3628{
2069 if (w->pending) 3629 if (w->pending)
2070 { 3630 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3631 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3632 w->pending = 0;
2073 } 3633 }
2074} 3634}
2075 3635
2076int 3636int
2077ev_clear_pending (EV_P_ void *w) 3637ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3638{
2079 W w_ = (W)w; 3639 W w_ = (W)w;
2080 int pending = w_->pending; 3640 int pending = w_->pending;
2081 3641
2082 if (expect_true (pending)) 3642 if (expect_true (pending))
2083 { 3643 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3644 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 p->w = (W)&pending_w;
2085 w_->pending = 0; 3646 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3647 return p->events;
2088 } 3648 }
2089 else 3649 else
2090 return 0; 3650 return 0;
2091} 3651}
2092 3652
2093void inline_size 3653inline_size void
2094pri_adjust (EV_P_ W w) 3654pri_adjust (EV_P_ W w)
2095{ 3655{
2096 int pri = w->priority; 3656 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3657 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3658 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3659 ev_set_priority (w, pri);
2100} 3660}
2101 3661
2102void inline_speed 3662inline_speed void
2103ev_start (EV_P_ W w, int active) 3663ev_start (EV_P_ W w, int active)
2104{ 3664{
2105 pri_adjust (EV_A_ w); 3665 pri_adjust (EV_A_ w);
2106 w->active = active; 3666 w->active = active;
2107 ev_ref (EV_A); 3667 ev_ref (EV_A);
2108} 3668}
2109 3669
2110void inline_size 3670inline_size void
2111ev_stop (EV_P_ W w) 3671ev_stop (EV_P_ W w)
2112{ 3672{
2113 ev_unref (EV_A); 3673 ev_unref (EV_A);
2114 w->active = 0; 3674 w->active = 0;
2115} 3675}
2116 3676
2117/*****************************************************************************/ 3677/*****************************************************************************/
2118 3678
2119void noinline 3679void noinline
2120ev_io_start (EV_P_ ev_io *w) 3680ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3681{
2122 int fd = w->fd; 3682 int fd = w->fd;
2123 3683
2124 if (expect_false (ev_is_active (w))) 3684 if (expect_false (ev_is_active (w)))
2125 return; 3685 return;
2126 3686
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3687 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3689
2129 EV_FREQUENT_CHECK; 3690 EV_FREQUENT_CHECK;
2130 3691
2131 ev_start (EV_A_ (W)w, 1); 3692 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3693 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3694 wlist_add (&anfds[fd].head, (WL)w);
2134 3695
3696 /* common bug, apparently */
3697 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3698
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3699 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3700 w->events &= ~EV__IOFDSET;
2137 3701
2138 EV_FREQUENT_CHECK; 3702 EV_FREQUENT_CHECK;
2139} 3703}
2140 3704
2141void noinline 3705void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3706ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3707{
2144 clear_pending (EV_A_ (W)w); 3708 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3709 if (expect_false (!ev_is_active (w)))
2146 return; 3710 return;
2147 3711
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3712 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3713
2150 EV_FREQUENT_CHECK; 3714 EV_FREQUENT_CHECK;
2151 3715
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3716 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3717 ev_stop (EV_A_ (W)w);
2154 3718
2155 fd_change (EV_A_ w->fd, 1); 3719 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3720
2157 EV_FREQUENT_CHECK; 3721 EV_FREQUENT_CHECK;
2158} 3722}
2159 3723
2160void noinline 3724void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3725ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3726{
2163 if (expect_false (ev_is_active (w))) 3727 if (expect_false (ev_is_active (w)))
2164 return; 3728 return;
2165 3729
2166 ev_at (w) += mn_now; 3730 ev_at (w) += mn_now;
2167 3731
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3732 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3733
2170 EV_FREQUENT_CHECK; 3734 EV_FREQUENT_CHECK;
2171 3735
2172 ++timercnt; 3736 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3737 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3740 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3741 upheap (timers, ev_active (w));
2178 3742
2179 EV_FREQUENT_CHECK; 3743 EV_FREQUENT_CHECK;
2180 3744
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3745 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3746}
2183 3747
2184void noinline 3748void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3749ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3750{
2187 clear_pending (EV_A_ (W)w); 3751 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3752 if (expect_false (!ev_is_active (w)))
2189 return; 3753 return;
2190 3754
2191 EV_FREQUENT_CHECK; 3755 EV_FREQUENT_CHECK;
2192 3756
2193 { 3757 {
2194 int active = ev_active (w); 3758 int active = ev_active (w);
2195 3759
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3760 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3761
2198 --timercnt; 3762 --timercnt;
2199 3763
2200 if (expect_true (active < timercnt + HEAP0)) 3764 if (expect_true (active < timercnt + HEAP0))
2201 { 3765 {
2202 timers [active] = timers [timercnt + HEAP0]; 3766 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3767 adjustheap (timers, timercnt, active);
2204 } 3768 }
2205 } 3769 }
2206 3770
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3771 ev_at (w) -= mn_now;
2210 3772
2211 ev_stop (EV_A_ (W)w); 3773 ev_stop (EV_A_ (W)w);
3774
3775 EV_FREQUENT_CHECK;
2212} 3776}
2213 3777
2214void noinline 3778void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3779ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3780{
2217 EV_FREQUENT_CHECK; 3781 EV_FREQUENT_CHECK;
3782
3783 clear_pending (EV_A_ (W)w);
2218 3784
2219 if (ev_is_active (w)) 3785 if (ev_is_active (w))
2220 { 3786 {
2221 if (w->repeat) 3787 if (w->repeat)
2222 { 3788 {
2234 } 3800 }
2235 3801
2236 EV_FREQUENT_CHECK; 3802 EV_FREQUENT_CHECK;
2237} 3803}
2238 3804
3805ev_tstamp
3806ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807{
3808 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3809}
3810
2239#if EV_PERIODIC_ENABLE 3811#if EV_PERIODIC_ENABLE
2240void noinline 3812void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3813ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3814{
2243 if (expect_false (ev_is_active (w))) 3815 if (expect_false (ev_is_active (w)))
2244 return; 3816 return;
2245 3817
2246 if (w->reschedule_cb) 3818 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3820 else if (w->interval)
2249 { 3821 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3822 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3823 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3824 }
2254 else 3825 else
2255 ev_at (w) = w->offset; 3826 ev_at (w) = w->offset;
2256 3827
2257 EV_FREQUENT_CHECK; 3828 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3834 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3835 upheap (periodics, ev_active (w));
2265 3836
2266 EV_FREQUENT_CHECK; 3837 EV_FREQUENT_CHECK;
2267 3838
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3839 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3840}
2270 3841
2271void noinline 3842void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3843ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3844{
2274 clear_pending (EV_A_ (W)w); 3845 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3846 if (expect_false (!ev_is_active (w)))
2276 return; 3847 return;
2277 3848
2278 EV_FREQUENT_CHECK; 3849 EV_FREQUENT_CHECK;
2279 3850
2280 { 3851 {
2281 int active = ev_active (w); 3852 int active = ev_active (w);
2282 3853
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3854 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3855
2285 --periodiccnt; 3856 --periodiccnt;
2286 3857
2287 if (expect_true (active < periodiccnt + HEAP0)) 3858 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3859 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3860 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3861 adjustheap (periodics, periodiccnt, active);
2291 } 3862 }
2292 } 3863 }
2293 3864
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
2297} 3868}
2298 3869
2299void noinline 3870void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3871ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3872{
2302 /* TODO: use adjustheap and recalculation */ 3873 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3874 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3875 ev_periodic_start (EV_A_ w);
2305} 3876}
2307 3878
2308#ifndef SA_RESTART 3879#ifndef SA_RESTART
2309# define SA_RESTART 0 3880# define SA_RESTART 0
2310#endif 3881#endif
2311 3882
3883#if EV_SIGNAL_ENABLE
3884
2312void noinline 3885void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3886ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3887{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3888 if (expect_false (ev_is_active (w)))
2319 return; 3889 return;
2320 3890
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3891 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3892
2323 evpipe_init (EV_A); 3893#if EV_MULTIPLICITY
3894 assert (("libev: a signal must not be attached to two different loops",
3895 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3896
2325 EV_FREQUENT_CHECK; 3897 signals [w->signum - 1].loop = EV_A;
3898 ECB_MEMORY_FENCE_RELEASE;
3899#endif
2326 3900
3901 EV_FREQUENT_CHECK;
3902
3903#if EV_USE_SIGNALFD
3904 if (sigfd == -2)
2327 { 3905 {
2328#ifndef _WIN32 3906 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3907 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3908 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3909
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3910 if (sigfd >= 0)
3911 {
3912 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3913
2336#ifndef _WIN32 3914 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3915
2338#endif 3916 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917 ev_set_priority (&sigfd_w, EV_MAXPRI);
3918 ev_io_start (EV_A_ &sigfd_w);
3919 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920 }
2339 } 3921 }
3922
3923 if (sigfd >= 0)
3924 {
3925 /* TODO: check .head */
3926 sigaddset (&sigfd_set, w->signum);
3927 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928
3929 signalfd (sigfd, &sigfd_set, 0);
3930 }
3931#endif
2340 3932
2341 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3934 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3935
2344 if (!((WL)w)->next) 3936 if (!((WL)w)->next)
3937# if EV_USE_SIGNALFD
3938 if (sigfd < 0) /*TODO*/
3939# endif
2345 { 3940 {
2346#if _WIN32 3941# ifdef _WIN32
3942 evpipe_init (EV_A);
3943
2347 signal (w->signum, ev_sighandler); 3944 signal (w->signum, ev_sighandler);
2348#else 3945# else
2349 struct sigaction sa; 3946 struct sigaction sa;
3947
3948 evpipe_init (EV_A);
3949
2350 sa.sa_handler = ev_sighandler; 3950 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3951 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3952 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3953 sigaction (w->signum, &sa, 0);
3954
3955 if (origflags & EVFLAG_NOSIGMASK)
3956 {
3957 sigemptyset (&sa.sa_mask);
3958 sigaddset (&sa.sa_mask, w->signum);
3959 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960 }
2354#endif 3961#endif
2355 } 3962 }
2356 3963
2357 EV_FREQUENT_CHECK; 3964 EV_FREQUENT_CHECK;
2358} 3965}
2359 3966
2360void noinline 3967void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3968ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3969{
2363 clear_pending (EV_A_ (W)w); 3970 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3971 if (expect_false (!ev_is_active (w)))
2365 return; 3972 return;
2366 3973
2368 3975
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3976 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3977 ev_stop (EV_A_ (W)w);
2371 3978
2372 if (!signals [w->signum - 1].head) 3979 if (!signals [w->signum - 1].head)
3980 {
3981#if EV_MULTIPLICITY
3982 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983#endif
3984#if EV_USE_SIGNALFD
3985 if (sigfd >= 0)
3986 {
3987 sigset_t ss;
3988
3989 sigemptyset (&ss);
3990 sigaddset (&ss, w->signum);
3991 sigdelset (&sigfd_set, w->signum);
3992
3993 signalfd (sigfd, &sigfd_set, 0);
3994 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 }
3996 else
3997#endif
2373 signal (w->signum, SIG_DFL); 3998 signal (w->signum, SIG_DFL);
3999 }
2374 4000
2375 EV_FREQUENT_CHECK; 4001 EV_FREQUENT_CHECK;
2376} 4002}
4003
4004#endif
4005
4006#if EV_CHILD_ENABLE
2377 4007
2378void 4008void
2379ev_child_start (EV_P_ ev_child *w) 4009ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 4010{
2381#if EV_MULTIPLICITY 4011#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4012 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 4013#endif
2384 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
2385 return; 4015 return;
2386 4016
2387 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2388 4018
2389 ev_start (EV_A_ (W)w, 1); 4019 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4020 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 4021
2392 EV_FREQUENT_CHECK; 4022 EV_FREQUENT_CHECK;
2393} 4023}
2394 4024
2395void 4025void
2396ev_child_stop (EV_P_ ev_child *w) 4026ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 4027{
2398 clear_pending (EV_A_ (W)w); 4028 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 4029 if (expect_false (!ev_is_active (w)))
2400 return; 4030 return;
2401 4031
2402 EV_FREQUENT_CHECK; 4032 EV_FREQUENT_CHECK;
2403 4033
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4034 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 4035 ev_stop (EV_A_ (W)w);
2406 4036
2407 EV_FREQUENT_CHECK; 4037 EV_FREQUENT_CHECK;
2408} 4038}
4039
4040#endif
2409 4041
2410#if EV_STAT_ENABLE 4042#if EV_STAT_ENABLE
2411 4043
2412# ifdef _WIN32 4044# ifdef _WIN32
2413# undef lstat 4045# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 4046# define lstat(a,b) _stati64 (a,b)
2415# endif 4047# endif
2416 4048
2417#define DEF_STAT_INTERVAL 5.0074891 4049#define DEF_STAT_INTERVAL 5.0074891
4050#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 4051#define MIN_STAT_INTERVAL 0.1074891
2419 4052
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4053static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 4054
2422#if EV_USE_INOTIFY 4055#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 4056
4057/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 4059
2425static void noinline 4060static void noinline
2426infy_add (EV_P_ ev_stat *w) 4061infy_add (EV_P_ ev_stat *w)
2427{ 4062{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4063 w->wd = inotify_add_watch (fs_fd, w->path,
4064 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066 | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 4067
2430 if (w->wd < 0) 4068 if (w->wd >= 0)
4069 {
4070 struct statfs sfs;
4071
4072 /* now local changes will be tracked by inotify, but remote changes won't */
4073 /* unless the filesystem is known to be local, we therefore still poll */
4074 /* also do poll on <2.6.25, but with normal frequency */
4075
4076 if (!fs_2625)
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 else if (!statfs (w->path, &sfs)
4079 && (sfs.f_type == 0x1373 /* devfs */
4080 || sfs.f_type == 0x4006 /* fat */
4081 || sfs.f_type == 0x4d44 /* msdos */
4082 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 || sfs.f_type == 0x72b6 /* jffs2 */
4084 || sfs.f_type == 0x858458f6 /* ramfs */
4085 || sfs.f_type == 0x5346544e /* ntfs */
4086 || sfs.f_type == 0x3153464a /* jfs */
4087 || sfs.f_type == 0x9123683e /* btrfs */
4088 || sfs.f_type == 0x52654973 /* reiser3 */
4089 || sfs.f_type == 0x01021994 /* tmpfs */
4090 || sfs.f_type == 0x58465342 /* xfs */))
4091 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092 else
4093 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 4094 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4095 else
4096 {
4097 /* can't use inotify, continue to stat */
4098 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 4099
2434 /* monitor some parent directory for speedup hints */ 4100 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4101 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 4102 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4103 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 4104 {
2439 char path [4096]; 4105 char path [4096];
2440 strcpy (path, w->path); 4106 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4110 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4111 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 4112
2447 char *pend = strrchr (path, '/'); 4113 char *pend = strrchr (path, '/');
2448 4114
2449 if (!pend) 4115 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 4116 break;
2451 4117
2452 *pend = 0; 4118 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 4119 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 4120 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4121 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 4122 }
2457 } 4123 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 4124
2461 if (w->wd >= 0) 4125 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4126 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127
4128 /* now re-arm timer, if required */
4129 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130 ev_timer_again (EV_A_ &w->timer);
4131 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 4132}
2464 4133
2465static void noinline 4134static void noinline
2466infy_del (EV_P_ ev_stat *w) 4135infy_del (EV_P_ ev_stat *w)
2467{ 4136{
2470 4139
2471 if (wd < 0) 4140 if (wd < 0)
2472 return; 4141 return;
2473 4142
2474 w->wd = -2; 4143 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4144 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 4145 wlist_del (&fs_hash [slot].head, (WL)w);
2477 4146
2478 /* remove this watcher, if others are watching it, they will rearm */ 4147 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 4148 inotify_rm_watch (fs_fd, wd);
2480} 4149}
2481 4150
2482static void noinline 4151static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4152infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 4153{
2485 if (slot < 0) 4154 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 4155 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4156 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 4157 infy_wd (EV_A_ slot, wd, ev);
2489 else 4158 else
2490 { 4159 {
2491 WL w_; 4160 WL w_;
2492 4161
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4162 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 4163 {
2495 ev_stat *w = (ev_stat *)w_; 4164 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 4165 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 4166
2498 if (w->wd == wd || wd == -1) 4167 if (w->wd == wd || wd == -1)
2499 { 4168 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4169 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 4170 {
4171 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 4172 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 4173 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 4174 }
2505 4175
2506 stat_timer_cb (EV_A_ &w->timer, 0); 4176 stat_timer_cb (EV_A_ &w->timer, 0);
2511 4181
2512static void 4182static void
2513infy_cb (EV_P_ ev_io *w, int revents) 4183infy_cb (EV_P_ ev_io *w, int revents)
2514{ 4184{
2515 char buf [EV_INOTIFY_BUFSIZE]; 4185 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 4186 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 4187 int len = read (fs_fd, buf, sizeof (buf));
2519 4188
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4189 for (ofs = 0; ofs < len; )
4190 {
4191 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4192 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193 ofs += sizeof (struct inotify_event) + ev->len;
4194 }
2522} 4195}
2523 4196
2524void inline_size 4197inline_size void ecb_cold
4198ev_check_2625 (EV_P)
4199{
4200 /* kernels < 2.6.25 are borked
4201 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202 */
4203 if (ev_linux_version () < 0x020619)
4204 return;
4205
4206 fs_2625 = 1;
4207}
4208
4209inline_size int
4210infy_newfd (void)
4211{
4212#if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214 if (fd >= 0)
4215 return fd;
4216#endif
4217 return inotify_init ();
4218}
4219
4220inline_size void
2525infy_init (EV_P) 4221infy_init (EV_P)
2526{ 4222{
2527 if (fs_fd != -2) 4223 if (fs_fd != -2)
2528 return; 4224 return;
2529 4225
4226 fs_fd = -1;
4227
4228 ev_check_2625 (EV_A);
4229
2530 fs_fd = inotify_init (); 4230 fs_fd = infy_newfd ();
2531 4231
2532 if (fs_fd >= 0) 4232 if (fs_fd >= 0)
2533 { 4233 {
4234 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4235 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 4236 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 4237 ev_io_start (EV_A_ &fs_w);
4238 ev_unref (EV_A);
2537 } 4239 }
2538} 4240}
2539 4241
2540void inline_size 4242inline_size void
2541infy_fork (EV_P) 4243infy_fork (EV_P)
2542{ 4244{
2543 int slot; 4245 int slot;
2544 4246
2545 if (fs_fd < 0) 4247 if (fs_fd < 0)
2546 return; 4248 return;
2547 4249
4250 ev_ref (EV_A);
4251 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 4252 close (fs_fd);
2549 fs_fd = inotify_init (); 4253 fs_fd = infy_newfd ();
2550 4254
4255 if (fs_fd >= 0)
4256 {
4257 fd_intern (fs_fd);
4258 ev_io_set (&fs_w, fs_fd, EV_READ);
4259 ev_io_start (EV_A_ &fs_w);
4260 ev_unref (EV_A);
4261 }
4262
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4263 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 4264 {
2553 WL w_ = fs_hash [slot].head; 4265 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 4266 fs_hash [slot].head = 0;
2555 4267
2556 while (w_) 4268 while (w_)
2561 w->wd = -1; 4273 w->wd = -1;
2562 4274
2563 if (fs_fd >= 0) 4275 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 4276 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 4277 else
4278 {
4279 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 4281 ev_timer_again (EV_A_ &w->timer);
4282 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283 }
2567 } 4284 }
2568
2569 } 4285 }
2570} 4286}
2571 4287
4288#endif
4289
4290#ifdef _WIN32
4291# define EV_LSTAT(p,b) _stati64 (p, b)
4292#else
4293# define EV_LSTAT(p,b) lstat (p, b)
2572#endif 4294#endif
2573 4295
2574void 4296void
2575ev_stat_stat (EV_P_ ev_stat *w) 4297ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2576{ 4298{
2577 if (lstat (w->path, &w->attr) < 0) 4299 if (lstat (w->path, &w->attr) < 0)
2578 w->attr.st_nlink = 0; 4300 w->attr.st_nlink = 0;
2579 else if (!w->attr.st_nlink) 4301 else if (!w->attr.st_nlink)
2580 w->attr.st_nlink = 1; 4302 w->attr.st_nlink = 1;
2583static void noinline 4305static void noinline
2584stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4306stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2585{ 4307{
2586 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4308 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2587 4309
2588 /* we copy this here each the time so that */ 4310 ev_statdata prev = w->attr;
2589 /* prev has the old value when the callback gets invoked */
2590 w->prev = w->attr;
2591 ev_stat_stat (EV_A_ w); 4311 ev_stat_stat (EV_A_ w);
2592 4312
2593 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4313 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2594 if ( 4314 if (
2595 w->prev.st_dev != w->attr.st_dev 4315 prev.st_dev != w->attr.st_dev
2596 || w->prev.st_ino != w->attr.st_ino 4316 || prev.st_ino != w->attr.st_ino
2597 || w->prev.st_mode != w->attr.st_mode 4317 || prev.st_mode != w->attr.st_mode
2598 || w->prev.st_nlink != w->attr.st_nlink 4318 || prev.st_nlink != w->attr.st_nlink
2599 || w->prev.st_uid != w->attr.st_uid 4319 || prev.st_uid != w->attr.st_uid
2600 || w->prev.st_gid != w->attr.st_gid 4320 || prev.st_gid != w->attr.st_gid
2601 || w->prev.st_rdev != w->attr.st_rdev 4321 || prev.st_rdev != w->attr.st_rdev
2602 || w->prev.st_size != w->attr.st_size 4322 || prev.st_size != w->attr.st_size
2603 || w->prev.st_atime != w->attr.st_atime 4323 || prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime 4324 || prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime 4325 || prev.st_ctime != w->attr.st_ctime
2606 ) { 4326 ) {
4327 /* we only update w->prev on actual differences */
4328 /* in case we test more often than invoke the callback, */
4329 /* to ensure that prev is always different to attr */
4330 w->prev = prev;
4331
2607 #if EV_USE_INOTIFY 4332 #if EV_USE_INOTIFY
4333 if (fs_fd >= 0)
4334 {
2608 infy_del (EV_A_ w); 4335 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w); 4336 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */ 4337 ev_stat_stat (EV_A_ w); /* avoid race... */
4338 }
2611 #endif 4339 #endif
2612 4340
2613 ev_feed_event (EV_A_ w, EV_STAT); 4341 ev_feed_event (EV_A_ w, EV_STAT);
2614 } 4342 }
2615} 4343}
2616 4344
2617void 4345void
2618ev_stat_start (EV_P_ ev_stat *w) 4346ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2619{ 4347{
2620 if (expect_false (ev_is_active (w))) 4348 if (expect_false (ev_is_active (w)))
2621 return; 4349 return;
2622 4350
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w); 4351 ev_stat_stat (EV_A_ w);
2628 4352
4353 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2629 if (w->interval < MIN_STAT_INTERVAL) 4354 w->interval = MIN_STAT_INTERVAL;
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631 4355
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4356 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2633 ev_set_priority (&w->timer, ev_priority (w)); 4357 ev_set_priority (&w->timer, ev_priority (w));
2634 4358
2635#if EV_USE_INOTIFY 4359#if EV_USE_INOTIFY
2636 infy_init (EV_A); 4360 infy_init (EV_A);
2637 4361
2638 if (fs_fd >= 0) 4362 if (fs_fd >= 0)
2639 infy_add (EV_A_ w); 4363 infy_add (EV_A_ w);
2640 else 4364 else
2641#endif 4365#endif
4366 {
2642 ev_timer_start (EV_A_ &w->timer); 4367 ev_timer_again (EV_A_ &w->timer);
4368 ev_unref (EV_A);
4369 }
2643 4370
2644 ev_start (EV_A_ (W)w, 1); 4371 ev_start (EV_A_ (W)w, 1);
2645 4372
2646 EV_FREQUENT_CHECK; 4373 EV_FREQUENT_CHECK;
2647} 4374}
2648 4375
2649void 4376void
2650ev_stat_stop (EV_P_ ev_stat *w) 4377ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2651{ 4378{
2652 clear_pending (EV_A_ (W)w); 4379 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 4380 if (expect_false (!ev_is_active (w)))
2654 return; 4381 return;
2655 4382
2656 EV_FREQUENT_CHECK; 4383 EV_FREQUENT_CHECK;
2657 4384
2658#if EV_USE_INOTIFY 4385#if EV_USE_INOTIFY
2659 infy_del (EV_A_ w); 4386 infy_del (EV_A_ w);
2660#endif 4387#endif
4388
4389 if (ev_is_active (&w->timer))
4390 {
4391 ev_ref (EV_A);
2661 ev_timer_stop (EV_A_ &w->timer); 4392 ev_timer_stop (EV_A_ &w->timer);
4393 }
2662 4394
2663 ev_stop (EV_A_ (W)w); 4395 ev_stop (EV_A_ (W)w);
2664 4396
2665 EV_FREQUENT_CHECK; 4397 EV_FREQUENT_CHECK;
2666} 4398}
2667#endif 4399#endif
2668 4400
2669#if EV_IDLE_ENABLE 4401#if EV_IDLE_ENABLE
2670void 4402void
2671ev_idle_start (EV_P_ ev_idle *w) 4403ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2672{ 4404{
2673 if (expect_false (ev_is_active (w))) 4405 if (expect_false (ev_is_active (w)))
2674 return; 4406 return;
2675 4407
2676 pri_adjust (EV_A_ (W)w); 4408 pri_adjust (EV_A_ (W)w);
2689 4421
2690 EV_FREQUENT_CHECK; 4422 EV_FREQUENT_CHECK;
2691} 4423}
2692 4424
2693void 4425void
2694ev_idle_stop (EV_P_ ev_idle *w) 4426ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2695{ 4427{
2696 clear_pending (EV_A_ (W)w); 4428 clear_pending (EV_A_ (W)w);
2697 if (expect_false (!ev_is_active (w))) 4429 if (expect_false (!ev_is_active (w)))
2698 return; 4430 return;
2699 4431
2711 4443
2712 EV_FREQUENT_CHECK; 4444 EV_FREQUENT_CHECK;
2713} 4445}
2714#endif 4446#endif
2715 4447
4448#if EV_PREPARE_ENABLE
2716void 4449void
2717ev_prepare_start (EV_P_ ev_prepare *w) 4450ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2718{ 4451{
2719 if (expect_false (ev_is_active (w))) 4452 if (expect_false (ev_is_active (w)))
2720 return; 4453 return;
2721 4454
2722 EV_FREQUENT_CHECK; 4455 EV_FREQUENT_CHECK;
2727 4460
2728 EV_FREQUENT_CHECK; 4461 EV_FREQUENT_CHECK;
2729} 4462}
2730 4463
2731void 4464void
2732ev_prepare_stop (EV_P_ ev_prepare *w) 4465ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2733{ 4466{
2734 clear_pending (EV_A_ (W)w); 4467 clear_pending (EV_A_ (W)w);
2735 if (expect_false (!ev_is_active (w))) 4468 if (expect_false (!ev_is_active (w)))
2736 return; 4469 return;
2737 4470
2746 4479
2747 ev_stop (EV_A_ (W)w); 4480 ev_stop (EV_A_ (W)w);
2748 4481
2749 EV_FREQUENT_CHECK; 4482 EV_FREQUENT_CHECK;
2750} 4483}
4484#endif
2751 4485
4486#if EV_CHECK_ENABLE
2752void 4487void
2753ev_check_start (EV_P_ ev_check *w) 4488ev_check_start (EV_P_ ev_check *w) EV_THROW
2754{ 4489{
2755 if (expect_false (ev_is_active (w))) 4490 if (expect_false (ev_is_active (w)))
2756 return; 4491 return;
2757 4492
2758 EV_FREQUENT_CHECK; 4493 EV_FREQUENT_CHECK;
2763 4498
2764 EV_FREQUENT_CHECK; 4499 EV_FREQUENT_CHECK;
2765} 4500}
2766 4501
2767void 4502void
2768ev_check_stop (EV_P_ ev_check *w) 4503ev_check_stop (EV_P_ ev_check *w) EV_THROW
2769{ 4504{
2770 clear_pending (EV_A_ (W)w); 4505 clear_pending (EV_A_ (W)w);
2771 if (expect_false (!ev_is_active (w))) 4506 if (expect_false (!ev_is_active (w)))
2772 return; 4507 return;
2773 4508
2782 4517
2783 ev_stop (EV_A_ (W)w); 4518 ev_stop (EV_A_ (W)w);
2784 4519
2785 EV_FREQUENT_CHECK; 4520 EV_FREQUENT_CHECK;
2786} 4521}
4522#endif
2787 4523
2788#if EV_EMBED_ENABLE 4524#if EV_EMBED_ENABLE
2789void noinline 4525void noinline
2790ev_embed_sweep (EV_P_ ev_embed *w) 4526ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2791{ 4527{
2792 ev_loop (w->other, EVLOOP_NONBLOCK); 4528 ev_run (w->other, EVRUN_NOWAIT);
2793} 4529}
2794 4530
2795static void 4531static void
2796embed_io_cb (EV_P_ ev_io *io, int revents) 4532embed_io_cb (EV_P_ ev_io *io, int revents)
2797{ 4533{
2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4534 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2799 4535
2800 if (ev_cb (w)) 4536 if (ev_cb (w))
2801 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4537 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2802 else 4538 else
2803 ev_loop (w->other, EVLOOP_NONBLOCK); 4539 ev_run (w->other, EVRUN_NOWAIT);
2804} 4540}
2805 4541
2806static void 4542static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4543embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{ 4544{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4545 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810 4546
2811 { 4547 {
2812 struct ev_loop *loop = w->other; 4548 EV_P = w->other;
2813 4549
2814 while (fdchangecnt) 4550 while (fdchangecnt)
2815 { 4551 {
2816 fd_reify (EV_A); 4552 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4553 ev_run (EV_A_ EVRUN_NOWAIT);
2818 } 4554 }
2819 } 4555 }
4556}
4557
4558static void
4559embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562
4563 ev_embed_stop (EV_A_ w);
4564
4565 {
4566 EV_P = w->other;
4567
4568 ev_loop_fork (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571
4572 ev_embed_start (EV_A_ w);
2820} 4573}
2821 4574
2822#if 0 4575#if 0
2823static void 4576static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4577embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2826 ev_idle_stop (EV_A_ idle); 4579 ev_idle_stop (EV_A_ idle);
2827} 4580}
2828#endif 4581#endif
2829 4582
2830void 4583void
2831ev_embed_start (EV_P_ ev_embed *w) 4584ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2832{ 4585{
2833 if (expect_false (ev_is_active (w))) 4586 if (expect_false (ev_is_active (w)))
2834 return; 4587 return;
2835 4588
2836 { 4589 {
2837 struct ev_loop *loop = w->other; 4590 EV_P = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4591 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4592 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 } 4593 }
2841 4594
2842 EV_FREQUENT_CHECK; 4595 EV_FREQUENT_CHECK;
2843 4596
2846 4599
2847 ev_prepare_init (&w->prepare, embed_prepare_cb); 4600 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI); 4601 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare); 4602 ev_prepare_start (EV_A_ &w->prepare);
2850 4603
4604 ev_fork_init (&w->fork, embed_fork_cb);
4605 ev_fork_start (EV_A_ &w->fork);
4606
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4607 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852 4608
2853 ev_start (EV_A_ (W)w, 1); 4609 ev_start (EV_A_ (W)w, 1);
2854 4610
2855 EV_FREQUENT_CHECK; 4611 EV_FREQUENT_CHECK;
2856} 4612}
2857 4613
2858void 4614void
2859ev_embed_stop (EV_P_ ev_embed *w) 4615ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2860{ 4616{
2861 clear_pending (EV_A_ (W)w); 4617 clear_pending (EV_A_ (W)w);
2862 if (expect_false (!ev_is_active (w))) 4618 if (expect_false (!ev_is_active (w)))
2863 return; 4619 return;
2864 4620
2865 EV_FREQUENT_CHECK; 4621 EV_FREQUENT_CHECK;
2866 4622
2867 ev_io_stop (EV_A_ &w->io); 4623 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare); 4624 ev_prepare_stop (EV_A_ &w->prepare);
4625 ev_fork_stop (EV_A_ &w->fork);
2869 4626
2870 ev_stop (EV_A_ (W)w); 4627 ev_stop (EV_A_ (W)w);
2871 4628
2872 EV_FREQUENT_CHECK; 4629 EV_FREQUENT_CHECK;
2873} 4630}
2874#endif 4631#endif
2875 4632
2876#if EV_FORK_ENABLE 4633#if EV_FORK_ENABLE
2877void 4634void
2878ev_fork_start (EV_P_ ev_fork *w) 4635ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2879{ 4636{
2880 if (expect_false (ev_is_active (w))) 4637 if (expect_false (ev_is_active (w)))
2881 return; 4638 return;
2882 4639
2883 EV_FREQUENT_CHECK; 4640 EV_FREQUENT_CHECK;
2888 4645
2889 EV_FREQUENT_CHECK; 4646 EV_FREQUENT_CHECK;
2890} 4647}
2891 4648
2892void 4649void
2893ev_fork_stop (EV_P_ ev_fork *w) 4650ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2894{ 4651{
2895 clear_pending (EV_A_ (W)w); 4652 clear_pending (EV_A_ (W)w);
2896 if (expect_false (!ev_is_active (w))) 4653 if (expect_false (!ev_is_active (w)))
2897 return; 4654 return;
2898 4655
2909 4666
2910 EV_FREQUENT_CHECK; 4667 EV_FREQUENT_CHECK;
2911} 4668}
2912#endif 4669#endif
2913 4670
4671#if EV_CLEANUP_ENABLE
4672void
4673ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674{
4675 if (expect_false (ev_is_active (w)))
4676 return;
4677
4678 EV_FREQUENT_CHECK;
4679
4680 ev_start (EV_A_ (W)w, ++cleanupcnt);
4681 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682 cleanups [cleanupcnt - 1] = w;
4683
4684 /* cleanup watchers should never keep a refcount on the loop */
4685 ev_unref (EV_A);
4686 EV_FREQUENT_CHECK;
4687}
4688
4689void
4690ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691{
4692 clear_pending (EV_A_ (W)w);
4693 if (expect_false (!ev_is_active (w)))
4694 return;
4695
4696 EV_FREQUENT_CHECK;
4697 ev_ref (EV_A);
4698
4699 {
4700 int active = ev_active (w);
4701
4702 cleanups [active - 1] = cleanups [--cleanupcnt];
4703 ev_active (cleanups [active - 1]) = active;
4704 }
4705
4706 ev_stop (EV_A_ (W)w);
4707
4708 EV_FREQUENT_CHECK;
4709}
4710#endif
4711
2914#if EV_ASYNC_ENABLE 4712#if EV_ASYNC_ENABLE
2915void 4713void
2916ev_async_start (EV_P_ ev_async *w) 4714ev_async_start (EV_P_ ev_async *w) EV_THROW
2917{ 4715{
2918 if (expect_false (ev_is_active (w))) 4716 if (expect_false (ev_is_active (w)))
2919 return; 4717 return;
4718
4719 w->sent = 0;
2920 4720
2921 evpipe_init (EV_A); 4721 evpipe_init (EV_A);
2922 4722
2923 EV_FREQUENT_CHECK; 4723 EV_FREQUENT_CHECK;
2924 4724
2928 4728
2929 EV_FREQUENT_CHECK; 4729 EV_FREQUENT_CHECK;
2930} 4730}
2931 4731
2932void 4732void
2933ev_async_stop (EV_P_ ev_async *w) 4733ev_async_stop (EV_P_ ev_async *w) EV_THROW
2934{ 4734{
2935 clear_pending (EV_A_ (W)w); 4735 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w))) 4736 if (expect_false (!ev_is_active (w)))
2937 return; 4737 return;
2938 4738
2949 4749
2950 EV_FREQUENT_CHECK; 4750 EV_FREQUENT_CHECK;
2951} 4751}
2952 4752
2953void 4753void
2954ev_async_send (EV_P_ ev_async *w) 4754ev_async_send (EV_P_ ev_async *w) EV_THROW
2955{ 4755{
2956 w->sent = 1; 4756 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync); 4757 evpipe_write (EV_A_ &async_pending);
2958} 4758}
2959#endif 4759#endif
2960 4760
2961/*****************************************************************************/ 4761/*****************************************************************************/
2962 4762
2972once_cb (EV_P_ struct ev_once *once, int revents) 4772once_cb (EV_P_ struct ev_once *once, int revents)
2973{ 4773{
2974 void (*cb)(int revents, void *arg) = once->cb; 4774 void (*cb)(int revents, void *arg) = once->cb;
2975 void *arg = once->arg; 4775 void *arg = once->arg;
2976 4776
2977 ev_io_stop (EV_A_ &once->io); 4777 ev_io_stop (EV_A_ &once->io);
2978 ev_timer_stop (EV_A_ &once->to); 4778 ev_timer_stop (EV_A_ &once->to);
2979 ev_free (once); 4779 ev_free (once);
2980 4780
2981 cb (revents, arg); 4781 cb (revents, arg);
2982} 4782}
2983 4783
2984static void 4784static void
2985once_cb_io (EV_P_ ev_io *w, int revents) 4785once_cb_io (EV_P_ ev_io *w, int revents)
2986{ 4786{
2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4787 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788
4789 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2988} 4790}
2989 4791
2990static void 4792static void
2991once_cb_to (EV_P_ ev_timer *w, int revents) 4793once_cb_to (EV_P_ ev_timer *w, int revents)
2992{ 4794{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4795 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796
4797 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2994} 4798}
2995 4799
2996void 4800void
2997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4801ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2998{ 4802{
2999 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4803 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3000 4804
3001 if (expect_false (!once)) 4805 if (expect_false (!once))
3002 { 4806 {
3003 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4807 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3004 return; 4808 return;
3005 } 4809 }
3006 4810
3007 once->cb = cb; 4811 once->cb = cb;
3008 once->arg = arg; 4812 once->arg = arg;
3020 ev_timer_set (&once->to, timeout, 0.); 4824 ev_timer_set (&once->to, timeout, 0.);
3021 ev_timer_start (EV_A_ &once->to); 4825 ev_timer_start (EV_A_ &once->to);
3022 } 4826 }
3023} 4827}
3024 4828
4829/*****************************************************************************/
4830
4831#if EV_WALK_ENABLE
4832void ecb_cold
4833ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834{
4835 int i, j;
4836 ev_watcher_list *wl, *wn;
4837
4838 if (types & (EV_IO | EV_EMBED))
4839 for (i = 0; i < anfdmax; ++i)
4840 for (wl = anfds [i].head; wl; )
4841 {
4842 wn = wl->next;
4843
4844#if EV_EMBED_ENABLE
4845 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846 {
4847 if (types & EV_EMBED)
4848 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849 }
4850 else
4851#endif
4852#if EV_USE_INOTIFY
4853 if (ev_cb ((ev_io *)wl) == infy_cb)
4854 ;
4855 else
4856#endif
4857 if ((ev_io *)wl != &pipe_w)
4858 if (types & EV_IO)
4859 cb (EV_A_ EV_IO, wl);
4860
4861 wl = wn;
4862 }
4863
4864 if (types & (EV_TIMER | EV_STAT))
4865 for (i = timercnt + HEAP0; i-- > HEAP0; )
4866#if EV_STAT_ENABLE
4867 /*TODO: timer is not always active*/
4868 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4869 {
4870 if (types & EV_STAT)
4871 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4872 }
4873 else
4874#endif
4875 if (types & EV_TIMER)
4876 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4877
4878#if EV_PERIODIC_ENABLE
4879 if (types & EV_PERIODIC)
4880 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882#endif
4883
4884#if EV_IDLE_ENABLE
4885 if (types & EV_IDLE)
4886 for (j = NUMPRI; j--; )
4887 for (i = idlecnt [j]; i--; )
4888 cb (EV_A_ EV_IDLE, idles [j][i]);
4889#endif
4890
4891#if EV_FORK_ENABLE
4892 if (types & EV_FORK)
4893 for (i = forkcnt; i--; )
4894 if (ev_cb (forks [i]) != embed_fork_cb)
4895 cb (EV_A_ EV_FORK, forks [i]);
4896#endif
4897
4898#if EV_ASYNC_ENABLE
4899 if (types & EV_ASYNC)
4900 for (i = asynccnt; i--; )
4901 cb (EV_A_ EV_ASYNC, asyncs [i]);
4902#endif
4903
4904#if EV_PREPARE_ENABLE
4905 if (types & EV_PREPARE)
4906 for (i = preparecnt; i--; )
4907# if EV_EMBED_ENABLE
4908 if (ev_cb (prepares [i]) != embed_prepare_cb)
4909# endif
4910 cb (EV_A_ EV_PREPARE, prepares [i]);
4911#endif
4912
4913#if EV_CHECK_ENABLE
4914 if (types & EV_CHECK)
4915 for (i = checkcnt; i--; )
4916 cb (EV_A_ EV_CHECK, checks [i]);
4917#endif
4918
4919#if EV_SIGNAL_ENABLE
4920 if (types & EV_SIGNAL)
4921 for (i = 0; i < EV_NSIG - 1; ++i)
4922 for (wl = signals [i].head; wl; )
4923 {
4924 wn = wl->next;
4925 cb (EV_A_ EV_SIGNAL, wl);
4926 wl = wn;
4927 }
4928#endif
4929
4930#if EV_CHILD_ENABLE
4931 if (types & EV_CHILD)
4932 for (i = (EV_PID_HASHSIZE); i--; )
4933 for (wl = childs [i]; wl; )
4934 {
4935 wn = wl->next;
4936 cb (EV_A_ EV_CHILD, wl);
4937 wl = wn;
4938 }
4939#endif
4940/* EV_STAT 0x00001000 /* stat data changed */
4941/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942}
4943#endif
4944
3025#if EV_MULTIPLICITY 4945#if EV_MULTIPLICITY
3026 #include "ev_wrap.h" 4946 #include "ev_wrap.h"
3027#endif 4947#endif
3028 4948
3029#ifdef __cplusplus
3030}
3031#endif
3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines