ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
144# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
145#endif 174#endif
146 175
147#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
149#endif 186#endif
150 187
151#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
153#endif 190#endif
159# define EV_USE_POLL 1 196# define EV_USE_POLL 1
160# endif 197# endif
161#endif 198#endif
162 199
163#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
164# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
165#endif 206#endif
166 207
167#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
169#endif 210#endif
171#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 213# define EV_USE_PORT 0
173#endif 214#endif
174 215
175#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
176# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
177#endif 222#endif
178 223
179#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 225# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
190# else 235# else
191# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
192# endif 237# endif
193#endif 238#endif
194 239
195/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 267
197#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
200#endif 271#endif
202#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
205#endif 276#endif
206 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
207#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 294# include <winsock.h>
209#endif 295#endif
210 296
211#if !EV_STAT_ENABLE 297#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
213#endif 302# endif
214 303int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 304# ifdef __cplusplus
216# include <sys/inotify.h> 305}
306# endif
217#endif 307#endif
218 308
219/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 326
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 330
225#if __GNUC__ >= 3 331#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 334#else
236# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
240#endif 340#endif
241 341
242#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
244 351
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 354
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 355#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 356#define EMPTY2(a,b) /* used to suppress some warnings */
250 357
251typedef ev_watcher *W; 358typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
254 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
256 370
257#ifdef _WIN32 371#ifdef _WIN32
258# include "ev_win32.c" 372# include "ev_win32.c"
259#endif 373#endif
260 374
281 perror (msg); 395 perror (msg);
282 abort (); 396 abort ();
283 } 397 }
284} 398}
285 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
286static void *(*alloc)(void *ptr, size_t size) = realloc; 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 416
288void 417void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 419{
291 alloc = cb; 420 alloc = cb;
292} 421}
293 422
294inline_speed void * 423inline_speed void *
295ev_realloc (void *ptr, size_t size) 424ev_realloc (void *ptr, long size)
296{ 425{
297 ptr = alloc (ptr, size); 426 ptr = alloc (ptr, size);
298 427
299 if (!ptr && size) 428 if (!ptr && size)
300 { 429 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 431 abort ();
303 } 432 }
304 433
305 return ptr; 434 return ptr;
306} 435}
324{ 453{
325 W w; 454 W w;
326 int events; 455 int events;
327} ANPENDING; 456} ANPENDING;
328 457
458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
329typedef struct 460typedef struct
330{ 461{
331#if EV_USE_INOTIFY
332 WL head; 462 WL head;
333#endif
334} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
482#endif
335 483
336#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
337 485
338 struct ev_loop 486 struct ev_loop
339 { 487 {
396{ 544{
397 return ev_rt_now; 545 return ev_rt_now;
398} 546}
399#endif 547#endif
400 548
401#define array_roundsize(type,n) (((n) | 4) & ~3) 549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
578int inline_size
579array_nextsize (int elem, int cur, int cnt)
580{
581 int ncur = cur + 1;
582
583 do
584 ncur <<= 1;
585 while (cnt > ncur);
586
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 {
590 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4;
593 ncur /= elem;
594 }
595
596 return ncur;
597}
598
599static noinline void *
600array_realloc (int elem, void *base, int *cur, int cnt)
601{
602 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur);
604}
402 605
403#define array_needsize(type,base,cur,cnt,init) \ 606#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 607 if (expect_false ((cnt) > (cur))) \
405 { \ 608 { \
406 int newcnt = cur; \ 609 int ocur_ = (cur); \
407 do \ 610 (base) = (type *)array_realloc \
408 { \ 611 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 612 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 613 }
417 614
615#if 0
418#define array_slim(type,stem) \ 616#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 617 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 618 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 619 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 620 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 622 }
623#endif
425 624
426#define array_free(stem, idx) \ 625#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 627
429/*****************************************************************************/ 628/*****************************************************************************/
430 629
431void noinline 630void noinline
432ev_feed_event (EV_P_ void *w, int revents) 631ev_feed_event (EV_P_ void *w, int revents)
433{ 632{
434 W w_ = (W)w; 633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
435 635
436 if (expect_false (w_->pending)) 636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
437 { 639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 643 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 644 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 645}
447 646
448void inline_size 647void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 648queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 649{
451 int i; 650 int i;
452 651
453 for (i = 0; i < eventcnt; ++i) 652 for (i = 0; i < eventcnt; ++i)
485} 684}
486 685
487void 686void
488ev_feed_fd_event (EV_P_ int fd, int revents) 687ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 688{
689 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 690 fd_event (EV_A_ fd, revents);
491} 691}
492 692
493void inline_size 693void inline_size
494fd_reify (EV_P) 694fd_reify (EV_P)
495{ 695{
499 { 699 {
500 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
502 ev_io *w; 702 ev_io *w;
503 703
504 int events = 0; 704 unsigned char events = 0;
505 705
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 707 events |= (unsigned char)w->events;
508 708
509#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
510 if (events) 710 if (events)
511 { 711 {
512 unsigned long argp; 712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
513 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 719 }
516#endif 720#endif
517 721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
518 anfd->reify = 0; 726 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
522 } 732 }
523 733
524 fdchangecnt = 0; 734 fdchangecnt = 0;
525} 735}
526 736
527void inline_size 737void inline_size
528fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
529{ 739{
530 if (expect_false (anfds [fd].reify)) 740 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
534 742
743 if (expect_true (!reify))
744 {
535 ++fdchangecnt; 745 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
538} 749}
539 750
540void inline_speed 751void inline_speed
541fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
542{ 753{
565{ 776{
566 int fd; 777 int fd;
567 778
568 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 780 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
572} 783}
573 784
574/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 786static void noinline
589static void noinline 800static void noinline
590fd_rearm_all (EV_P) 801fd_rearm_all (EV_P)
591{ 802{
592 int fd; 803 int fd;
593 804
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 806 if (anfds [fd].events)
597 { 807 {
598 anfds [fd].events = 0; 808 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 810 }
601} 811}
602 812
603/*****************************************************************************/ 813/*****************************************************************************/
604 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
605void inline_speed 835void inline_speed
606upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
607{ 837{
608 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
609 840
610 while (k && heap [k >> 1]->at > w->at) 841 for (;;)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 } 842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
616 846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
617 heap [k] = w; 874 heap [k] = he;
618 ((W)heap [k])->active = k + 1; 875 ev_active (ANHE_w (he)) = k;
619
620} 876}
621 877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
622void inline_speed 885void inline_speed
623downheap (WT *heap, int N, int k) 886downheap (ANHE *heap, int N, int k)
624{ 887{
625 WT w = heap [k]; 888 ANHE he = heap [k];
626 889
627 while (k < (N >> 1)) 890 for (;;)
628 { 891 {
629 int j = k << 1; 892 int c = k << 1;
630 893
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 894 if (c > N + HEAP0 - 1)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 895 break;
636 896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
637 heap [k] = heap [j]; 903 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
639 k = j; 906 k = c;
640 } 907 }
641 908
642 heap [k] = w; 909 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
644} 934}
645 935
646void inline_size 936void inline_size
647adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
648{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 940 upheap (heap, k);
941 else
650 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
651} 955}
652 956
653/*****************************************************************************/ 957/*****************************************************************************/
654 958
655typedef struct 959typedef struct
656{ 960{
657 WL head; 961 WL head;
658 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
659} ANSIG; 963} ANSIG;
660 964
661static ANSIG *signals; 965static ANSIG *signals;
662static int signalmax; 966static int signalmax;
663 967
664static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 969
668void inline_size 970void inline_size
669signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
670{ 972{
671 while (count--) 973 while (count--)
675 977
676 ++base; 978 ++base;
677 } 979 }
678} 980}
679 981
680static void 982/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 983
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 984void inline_speed
732fd_intern (int fd) 985fd_intern (int fd)
733{ 986{
734#ifdef _WIN32 987#ifdef _WIN32
735 int arg = 1; 988 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 990#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 993#endif
741} 994}
742 995
743static void noinline 996static void noinline
744siginit (EV_P) 997evpipe_init (EV_P)
745{ 998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
746 fd_intern (sigpipe [0]); 1014 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
748 1018
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1019 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
752} 1087}
753 1088
754/*****************************************************************************/ 1089/*****************************************************************************/
755 1090
1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
756static ev_child *childs [EV_PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
757 1129
758#ifndef _WIN32 1130#ifndef _WIN32
759 1131
760static ev_signal childev; 1132static ev_signal childev;
761 1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
762void inline_speed 1138void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
764{ 1140{
765 ev_child *w; 1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1143
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
768 if (w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
769 { 1148 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1150 w->rpid = pid;
772 w->rstatus = status; 1151 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1153 }
1154 }
775} 1155}
776 1156
777#ifndef WCONTINUED 1157#ifndef WCONTINUED
778# define WCONTINUED 0 1158# define WCONTINUED 0
779#endif 1159#endif
788 if (!WCONTINUED 1168 if (!WCONTINUED
789 || errno != EINVAL 1169 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1171 return;
792 1172
793 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1176
797 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1180}
801 1181
802#endif 1182#endif
803 1183
804/*****************************************************************************/ 1184/*****************************************************************************/
876} 1256}
877 1257
878unsigned int 1258unsigned int
879ev_embeddable_backends (void) 1259ev_embeddable_backends (void)
880{ 1260{
881 return EVBACKEND_EPOLL 1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1262
883 | EVBACKEND_PORT; 1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
884} 1268}
885 1269
886unsigned int 1270unsigned int
887ev_backend (EV_P) 1271ev_backend (EV_P)
888{ 1272{
889 return backend; 1273 return backend;
1274}
1275
1276unsigned int
1277ev_loop_count (EV_P)
1278{
1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
890} 1292}
891 1293
892static void noinline 1294static void noinline
893loop_init (EV_P_ unsigned int flags) 1295loop_init (EV_P_ unsigned int flags)
894{ 1296{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1303 have_monotonic = 1;
902 } 1304 }
903#endif 1305#endif
904 1306
905 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1308 mn_now = get_clock ();
907 now_floor = mn_now; 1309 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1320
1321 /* pid check not overridable via env */
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif
909 1326
910 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1328 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1331
915 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1334
924#if EV_USE_PORT 1335#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1337#endif
927#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
935#endif 1346#endif
936#if EV_USE_SELECT 1347#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1349#endif
939 1350
940 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1353 }
943} 1354}
944 1355
945static void noinline 1356static void noinline
946loop_destroy (EV_P) 1357loop_destroy (EV_P)
947{ 1358{
948 int i; 1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
949 1377
950#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
952 close (fs_fd); 1380 close (fs_fd);
953#endif 1381#endif
970#if EV_USE_SELECT 1398#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1399 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1400#endif
973 1401
974 for (i = NUMPRI; i--; ) 1402 for (i = NUMPRI; i--; )
1403 {
975 array_free (pending, [i]); 1404 array_free (pending, [i]);
1405#if EV_IDLE_ENABLE
1406 array_free (idle, [i]);
1407#endif
1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
976 1411
977 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1413 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1414 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1415#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1416 array_free (periodic, EMPTY);
982#endif 1417#endif
1418#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1419 array_free (fork, EMPTY);
1420#endif
984 array_free (prepare, EMPTY0); 1421 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
986 1426
987 backend = 0; 1427 backend = 0;
988} 1428}
989 1429
1430#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
991 1433
992void inline_size 1434void inline_size
993loop_fork (EV_P) 1435loop_fork (EV_P)
994{ 1436{
995#if EV_USE_PORT 1437#if EV_USE_PORT
1003#endif 1445#endif
1004#if EV_USE_INOTIFY 1446#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1447 infy_fork (EV_A);
1006#endif 1448#endif
1007 1449
1008 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
1009 { 1451 {
1010 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1011 1458
1012 ev_ref (EV_A); 1459 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1014 close (sigpipe [0]); 1469 close (evpipe [0]);
1015 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
1016 1472
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1476 }
1022 1477
1023 postfork = 0; 1478 postfork = 0;
1024} 1479}
1025 1480
1026#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1027struct ev_loop * 1483struct ev_loop *
1028ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1029{ 1485{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1487
1047} 1503}
1048 1504
1049void 1505void
1050ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1051{ 1507{
1052 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1053} 1509}
1054 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1055#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1056 1611
1057#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1058struct ev_loop * 1613struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1060#else 1615#else
1061int 1616int
1062ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
1063#endif 1618#endif
1064{ 1619{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
1070 { 1621 {
1071#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1624#else
1076 1627
1077 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
1078 1629
1079 if (ev_backend (EV_A)) 1630 if (ev_backend (EV_A))
1080 { 1631 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1632#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1653#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
1107#endif 1656#endif
1108 1657
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
1116} 1659}
1117 1660
1118void 1661void
1119ev_default_fork (void) 1662ev_default_fork (void)
1121#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1666#endif
1124 1667
1125 if (backend) 1668 if (backend)
1126 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1670}
1128 1671
1129/*****************************************************************************/ 1672/*****************************************************************************/
1130 1673
1131int inline_size 1674void
1132any_pending (EV_P) 1675ev_invoke (EV_P_ void *w, int revents)
1133{ 1676{
1134 int pri; 1677 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1678}
1142 1679
1143void inline_speed 1680void inline_speed
1144call_pending (EV_P) 1681call_pending (EV_P)
1145{ 1682{
1154 { 1691 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1156 1693
1157 p->w->pending = 0; 1694 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1159 } 1697 }
1160 } 1698 }
1161} 1699}
1162 1700
1701#if EV_IDLE_ENABLE
1702void inline_size
1703idle_reify (EV_P)
1704{
1705 if (expect_false (idleall))
1706 {
1707 int pri;
1708
1709 for (pri = NUMPRI; pri--; )
1710 {
1711 if (pendingcnt [pri])
1712 break;
1713
1714 if (idlecnt [pri])
1715 {
1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1717 break;
1718 }
1719 }
1720 }
1721}
1722#endif
1723
1163void inline_size 1724void inline_size
1164timers_reify (EV_P) 1725timers_reify (EV_P)
1165{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1730 {
1168 ev_timer *w = timers [0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1169 1732
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1734
1172 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1173 if (w->repeat) 1736 if (w->repeat)
1174 { 1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1743
1177 ((WT)w)->at += w->repeat; 1744 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1745 downheap (timers, timercnt, HEAP0);
1182 } 1746 }
1183 else 1747 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1749
1750 EV_FREQUENT_CHECK;
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1187 } 1752 }
1188} 1753}
1189 1754
1190#if EV_PERIODIC_ENABLE 1755#if EV_PERIODIC_ENABLE
1191void inline_size 1756void inline_size
1192periodics_reify (EV_P) 1757periodics_reify (EV_P)
1193{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 1762 {
1196 ev_periodic *w = periodics [0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 1764
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1766
1200 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1202 { 1769 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1775 downheap (periodics, periodiccnt, HEAP0);
1206 } 1776 }
1207 else if (w->interval) 1777 else if (w->interval)
1208 { 1778 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1211 downheap ((WT *)periodics, periodiccnt, 0); 1794 downheap (periodics, periodiccnt, HEAP0);
1212 } 1795 }
1213 else 1796 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1798
1799 EV_FREQUENT_CHECK;
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1217 } 1801 }
1218} 1802}
1219 1803
1220static void noinline 1804static void noinline
1221periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1222{ 1806{
1223 int i; 1807 int i;
1224 1808
1225 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1811 {
1228 ev_periodic *w = periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1813
1230 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1816 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1828{
1829 int i;
1830
1831#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic))
1234 } 1833 {
1834 ev_tstamp odiff = rtmn_diff;
1235 1835
1236 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i);
1239}
1240#endif
1241
1242int inline_size
1243time_update_monotonic (EV_P)
1244{
1245 mn_now = get_clock (); 1836 mn_now = get_clock ();
1246 1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1841 {
1249 ev_rt_now = rtmn_diff + mn_now; 1842 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1843 return;
1251 } 1844 }
1252 else 1845
1253 {
1254 now_floor = mn_now; 1846 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1847 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1848
1260void inline_size 1849 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1850 * on the choice of "4": one iteration isn't enough,
1262{ 1851 * in case we get preempted during the calls to
1263 int i; 1852 * ev_time and get_clock. a second call is almost guaranteed
1264 1853 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1854 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1855 * in the unlikely event of having been preempted here.
1267 { 1856 */
1268 if (time_update_monotonic (EV_A)) 1857 for (i = 4; --i; )
1269 { 1858 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1283 1860
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1862 return; /* all is well */
1286 1863
1287 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1865 mn_now = get_clock ();
1289 now_floor = mn_now; 1866 now_floor = mn_now;
1290 } 1867 }
1291 1868
1292# if EV_PERIODIC_ENABLE 1869# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1870 periodics_reschedule (EV_A);
1294# endif 1871# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1874 }
1299 else 1875 else
1300#endif 1876#endif
1301 { 1877 {
1302 ev_rt_now = ev_time (); 1878 ev_rt_now = ev_time ();
1303 1879
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1881 {
1306#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1308#endif 1884#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1313 } 1892 }
1314 1893
1315 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1316 } 1895 }
1317} 1896}
1331static int loop_done; 1910static int loop_done;
1332 1911
1333void 1912void
1334ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1335{ 1914{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1916
1340 while (activecnt) 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1918
1919 do
1341 { 1920 {
1342 /* we might have forked, so reify kernel state if necessary */ 1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1925#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid))
1928 {
1929 curpid = getpid ();
1930 postfork = 1;
1931 }
1932#endif
1933
1343 #if EV_FORK_ENABLE 1934#if EV_FORK_ENABLE
1935 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1936 if (expect_false (postfork))
1345 if (forkcnt) 1937 if (forkcnt)
1346 { 1938 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1940 call_pending (EV_A);
1349 } 1941 }
1350 #endif 1942#endif
1351 1943
1352 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
1354 { 1946 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1948 call_pending (EV_A);
1357 } 1949 }
1358 1950
1951 if (expect_false (!activecnt))
1952 break;
1953
1359 /* we might have forked, so reify kernel state if necessary */ 1954 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1955 if (expect_false (postfork))
1361 loop_fork (EV_A); 1956 loop_fork (EV_A);
1362 1957
1363 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1959 fd_reify (EV_A);
1365 1960
1366 /* calculate blocking time */ 1961 /* calculate blocking time */
1367 { 1962 {
1368 double block; 1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1369 1965
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1967 {
1374 /* update time to cancel out callback processing overhead */ 1968 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1969 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1970
1385 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1386 1972
1387 if (timercnt) 1973 if (timercnt)
1388 { 1974 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1391 } 1977 }
1392 1978
1393#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1980 if (periodiccnt)
1395 { 1981 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1398 } 1984 }
1399#endif 1985#endif
1400 1986
1401 if (expect_false (block < 0.)) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1402 } 2000 }
1403 2001
2002 ++loop_count;
1404 backend_poll (EV_A_ block); 2003 backend_poll (EV_A_ waittime);
2004
2005 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime);
1405 } 2007 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2008
1410 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2011#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2013#endif
1415 2014
2015#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2016 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2017 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2018#endif
1419 2019
1420 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2023
1424 call_pending (EV_A); 2024 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2025 }
2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1429 2031
1430 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1432} 2034}
1433 2035
1460 head = &(*head)->next; 2062 head = &(*head)->next;
1461 } 2063 }
1462} 2064}
1463 2065
1464void inline_speed 2066void inline_speed
1465ev_clear_pending (EV_P_ W w) 2067clear_pending (EV_P_ W w)
1466{ 2068{
1467 if (w->pending) 2069 if (w->pending)
1468 { 2070 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2071 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 2072 w->pending = 0;
1471 } 2073 }
1472} 2074}
1473 2075
2076int
2077ev_clear_pending (EV_P_ void *w)
2078{
2079 W w_ = (W)w;
2080 int pending = w_->pending;
2081
2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
2090 return 0;
2091}
2092
2093void inline_size
2094pri_adjust (EV_P_ W w)
2095{
2096 int pri = w->priority;
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri;
2100}
2101
1474void inline_speed 2102void inline_speed
1475ev_start (EV_P_ W w, int active) 2103ev_start (EV_P_ W w, int active)
1476{ 2104{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2105 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2106 w->active = active;
1481 ev_ref (EV_A); 2107 ev_ref (EV_A);
1482} 2108}
1483 2109
1484void inline_size 2110void inline_size
1488 w->active = 0; 2114 w->active = 0;
1489} 2115}
1490 2116
1491/*****************************************************************************/ 2117/*****************************************************************************/
1492 2118
1493void 2119void noinline
1494ev_io_start (EV_P_ ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1495{ 2121{
1496 int fd = w->fd; 2122 int fd = w->fd;
1497 2123
1498 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1499 return; 2125 return;
1500 2126
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1502 2128
2129 EV_FREQUENT_CHECK;
2130
1503 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1506 2134
1507 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1508} 2136 w->events &= ~EV_IOFDSET;
1509 2137
1510void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1512{ 2143{
1513 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1515 return; 2146 return;
1516 2147
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2149
2150 EV_FREQUENT_CHECK;
2151
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1521 2154
1522 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1523}
1524 2156
1525void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1527{ 2162{
1528 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1529 return; 2164 return;
1530 2165
1531 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1532 2167
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1539 2178
2179 EV_FREQUENT_CHECK;
2180
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2182}
1542 2183
1543void 2184void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2186{
1546 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1548 return; 2189 return;
1549 2190
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 EV_FREQUENT_CHECK;
1551 2192
1552 { 2193 {
1553 int active = ((W)w)->active; 2194 int active = ev_active (w);
1554 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1555 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1556 { 2201 {
1557 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1559 } 2204 }
1560 } 2205 }
1561 2206
1562 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1563 2210
1564 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1565} 2212}
1566 2213
1567void 2214void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1569{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1570 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1571 { 2220 {
1572 if (w->repeat) 2221 if (w->repeat)
1573 { 2222 {
1574 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1576 } 2226 }
1577 else 2227 else
1578 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1579 } 2229 }
1580 else if (w->repeat) 2230 else if (w->repeat)
1581 { 2231 {
1582 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1584 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1585} 2237}
1586 2238
1587#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1588void 2240void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2242{
1591 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1592 return; 2244 return;
1593 2245
1594 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2248 else if (w->interval)
1597 { 2249 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1602 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1607 2265
2266 EV_FREQUENT_CHECK;
2267
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2269}
1610 2270
1611void 2271void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2273{
1614 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1616 return; 2276 return;
1617 2277
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 EV_FREQUENT_CHECK;
1619 2279
1620 { 2280 {
1621 int active = ((W)w)->active; 2281 int active = ev_active (w);
1622 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1623 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2288 {
1625 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1627 } 2291 }
1628 } 2292 }
1629 2293
2294 EV_FREQUENT_CHECK;
2295
1630 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1631} 2297}
1632 2298
1633void 2299void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2301{
1636 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1641 2307
1642#ifndef SA_RESTART 2308#ifndef SA_RESTART
1643# define SA_RESTART 0 2309# define SA_RESTART 0
1644#endif 2310#endif
1645 2311
1646void 2312void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1648{ 2314{
1649#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2317#endif
1652 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1653 return; 2319 return;
1654 2320
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1657 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2343
1661 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1662 { 2345 {
1663#if _WIN32 2346#if _WIN32
1664 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1665#else 2348#else
1666 struct sigaction sa; 2349 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1671#endif 2354#endif
1672 } 2355 }
1673}
1674 2356
1675void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2362{
1678 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1680 return; 2365 return;
1681 2366
2367 EV_FREQUENT_CHECK;
2368
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1684 2371
1685 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1687} 2376}
1688 2377
1689void 2378void
1690ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1691{ 2380{
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2383#endif
1695 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1696 return; 2385 return;
1697 2386
2387 EV_FREQUENT_CHECK;
2388
1698 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1700} 2393}
1701 2394
1702void 2395void
1703ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1704{ 2397{
1705 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1707 return; 2400 return;
1708 2401
2402 EV_FREQUENT_CHECK;
2403
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1711} 2408}
1712 2409
1713#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1714 2411
1715# ifdef _WIN32 2412# ifdef _WIN32
1718# endif 2415# endif
1719 2416
1720#define DEF_STAT_INTERVAL 5.0074891 2417#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 2418#define MIN_STAT_INTERVAL 0.1074891
1722 2419
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2421
1725#if EV_USE_INOTIFY 2422#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2423# define EV_INOTIFY_BUFSIZE 8192
1727 2424
1728static void noinline 2425static void noinline
1733 if (w->wd < 0) 2430 if (w->wd < 0)
1734 { 2431 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2433
1737 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2438 {
1740 char path [4096]; 2439 char path [4096];
1741 strcpy (path, w->path); 2440 strcpy (path, w->path);
1742 2441
1879 w->attr.st_nlink = 0; 2578 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2579 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2580 w->attr.st_nlink = 1;
1882} 2581}
1883 2582
1884void noinline 2583static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2584stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2585{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2586 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2587
1889 /* we copy this here each the time so that */ 2588 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2589 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2590 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2591 ev_stat_stat (EV_A_ w);
1893 2592
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2593 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2594 if (
2595 w->prev.st_dev != w->attr.st_dev
2596 || w->prev.st_ino != w->attr.st_ino
2597 || w->prev.st_mode != w->attr.st_mode
2598 || w->prev.st_nlink != w->attr.st_nlink
2599 || w->prev.st_uid != w->attr.st_uid
2600 || w->prev.st_gid != w->attr.st_gid
2601 || w->prev.st_rdev != w->attr.st_rdev
2602 || w->prev.st_size != w->attr.st_size
2603 || w->prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2606 ) {
1896 #if EV_USE_INOTIFY 2607 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2608 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2609 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2610 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2611 #endif
1929 else 2640 else
1930#endif 2641#endif
1931 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
1932 2643
1933 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
1934} 2647}
1935 2648
1936void 2649void
1937ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2651{
1939 ev_clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
1941 return; 2654 return;
1942 2655
2656 EV_FREQUENT_CHECK;
2657
1943#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
1945#endif 2660#endif
1946 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
1947 2662
1948 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 2664
2665 EV_FREQUENT_CHECK;
2666}
2667#endif
2668
2669#if EV_IDLE_ENABLE
1952void 2670void
1953ev_idle_start (EV_P_ ev_idle *w) 2671ev_idle_start (EV_P_ ev_idle *w)
1954{ 2672{
1955 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
1956 return; 2674 return;
1957 2675
2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2679
2680 {
2681 int active = ++idlecnt [ABSPRI (w)];
2682
2683 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2684 ev_start (EV_A_ (W)w, active);
2685
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2688 }
2689
2690 EV_FREQUENT_CHECK;
1961} 2691}
1962 2692
1963void 2693void
1964ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2695{
1966 ev_clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
1968 return; 2698 return;
1969 2699
2700 EV_FREQUENT_CHECK;
2701
1970 { 2702 {
1971 int active = ((W)w)->active; 2703 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 2704
1973 ((W)idles [active - 1])->active = active; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2707
2708 ev_stop (EV_A_ (W)w);
2709 --idleall;
1974 } 2710 }
1975 2711
1976 ev_stop (EV_A_ (W)w); 2712 EV_FREQUENT_CHECK;
1977} 2713}
2714#endif
1978 2715
1979void 2716void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2718{
1982 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
1983 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
1984 2723
1985 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
1988} 2729}
1989 2730
1990void 2731void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2733{
1993 ev_clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
1995 return; 2736 return;
1996 2737
2738 EV_FREQUENT_CHECK;
2739
1997 { 2740 {
1998 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
1999 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2001 } 2745 }
2002 2746
2003 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2004} 2750}
2005 2751
2006void 2752void
2007ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2008{ 2754{
2009 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2010 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2011 2759
2012 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2015} 2765}
2016 2766
2017void 2767void
2018ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2019{ 2769{
2020 ev_clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2022 return; 2772 return;
2023 2773
2774 EV_FREQUENT_CHECK;
2775
2024 { 2776 {
2025 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2026 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2028 } 2781 }
2029 2782
2030 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2031} 2786}
2032 2787
2033#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2034void noinline 2789void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2791{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2792 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2793}
2039 2794
2040static void 2795static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2796embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2797{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2799
2045 if (ev_cb (w)) 2800 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2801 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2802 else
2048 ev_embed_sweep (loop, w); 2803 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2804}
2805
2806static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810
2811 {
2812 struct ev_loop *loop = w->other;
2813
2814 while (fdchangecnt)
2815 {
2816 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 }
2819 }
2820}
2821
2822#if 0
2823static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{
2826 ev_idle_stop (EV_A_ idle);
2827}
2828#endif
2050 2829
2051void 2830void
2052ev_embed_start (EV_P_ ev_embed *w) 2831ev_embed_start (EV_P_ ev_embed *w)
2053{ 2832{
2054 if (expect_false (ev_is_active (w))) 2833 if (expect_false (ev_is_active (w)))
2055 return; 2834 return;
2056 2835
2057 { 2836 {
2058 struct ev_loop *loop = w->loop; 2837 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2840 }
2841
2842 EV_FREQUENT_CHECK;
2062 2843
2063 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2065 2846
2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare);
2850
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852
2066 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2067} 2856}
2068 2857
2069void 2858void
2070ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2860{
2072 ev_clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2074 return; 2863 return;
2075 2864
2865 EV_FREQUENT_CHECK;
2866
2076 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare);
2077 2869
2078 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2079} 2873}
2080#endif 2874#endif
2081 2875
2082#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2083void 2877void
2084ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2085{ 2879{
2086 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2087 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2088 2884
2089 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2092} 2890}
2093 2891
2094void 2892void
2095ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2894{
2097 ev_clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2099 return; 2897 return;
2100 2898
2899 EV_FREQUENT_CHECK;
2900
2101 { 2901 {
2102 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2103 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2105 } 2906 }
2106 2907
2107 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2911}
2912#endif
2913
2914#if EV_ASYNC_ENABLE
2915void
2916ev_async_start (EV_P_ ev_async *w)
2917{
2918 if (expect_false (ev_is_active (w)))
2919 return;
2920
2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++asynccnt);
2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_async_stop (EV_P_ ev_async *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 asyncs [active - 1] = asyncs [--asynccnt];
2945 ev_active (asyncs [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_async_send (EV_P_ ev_async *w)
2955{
2956 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync);
2108} 2958}
2109#endif 2959#endif
2110 2960
2111/*****************************************************************************/ 2961/*****************************************************************************/
2112 2962
2170 ev_timer_set (&once->to, timeout, 0.); 3020 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3021 ev_timer_start (EV_A_ &once->to);
2172 } 3022 }
2173} 3023}
2174 3024
3025#if EV_MULTIPLICITY
3026 #include "ev_wrap.h"
3027#endif
3028
2175#ifdef __cplusplus 3029#ifdef __cplusplus
2176} 3030}
2177#endif 3031#endif
2178 3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines