ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
325 357
326typedef ev_watcher *W; 358typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
329 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
330#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 369#endif
419 W w; 454 W w;
420 int events; 455 int events;
421} ANPENDING; 456} ANPENDING;
422 457
423#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
424typedef struct 460typedef struct
425{ 461{
426 WL head; 462 WL head;
427} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
428#endif 482#endif
429 483
430#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
431 485
432 struct ev_loop 486 struct ev_loop
517 } 571 }
518} 572}
519 573
520/*****************************************************************************/ 574/*****************************************************************************/
521 575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
522int inline_size 578int inline_size
523array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
524{ 580{
525 int ncur = cur + 1; 581 int ncur = cur + 1;
526 582
527 do 583 do
528 ncur <<= 1; 584 ncur <<= 1;
529 while (cnt > ncur); 585 while (cnt > ncur);
530 586
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 589 {
534 ncur *= elem; 590 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 593 ncur /= elem;
538 } 594 }
539 595
540 return ncur; 596 return ncur;
651 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
652 708
653#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
654 if (events) 710 if (events)
655 { 711 {
656 unsigned long argp; 712 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 715 #else
660 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
661 #endif 717 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 719 }
664#endif 720#endif
665 721
666 { 722 {
667 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
720{ 776{
721 int fd; 777 int fd;
722 778
723 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 780 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
727} 783}
728 784
729/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 786static void noinline
754 } 810 }
755} 811}
756 812
757/*****************************************************************************/ 813/*****************************************************************************/
758 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
759void inline_speed 835void inline_speed
760upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
761{ 837{
762 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
763 840
764 while (k) 841 for (;;)
765 { 842 {
766 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 846
768 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
769 break; 863 break;
770 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
771 heap [k] = heap [p]; 927 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 929 k = p;
774 } 930 }
775 931
776 heap [k] = w; 932 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 934}
807 935
808void inline_size 936void inline_size
809adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
810{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 940 upheap (heap, k);
941 else
812 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
813} 955}
814 956
815/*****************************************************************************/ 957/*****************************************************************************/
816 958
817typedef struct 959typedef struct
841 983
842void inline_speed 984void inline_speed
843fd_intern (int fd) 985fd_intern (int fd)
844{ 986{
845#ifdef _WIN32 987#ifdef _WIN32
846 int arg = 1; 988 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 990#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 993#endif
906pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
907{ 1049{
908#if EV_USE_EVENTFD 1050#if EV_USE_EVENTFD
909 if (evfd >= 0) 1051 if (evfd >= 0)
910 { 1052 {
911 uint64_t counter = 1; 1053 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1054 read (evfd, &counter, sizeof (uint64_t));
913 } 1055 }
914 else 1056 else
915#endif 1057#endif
916 { 1058 {
1185 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1328 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1331
1190 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1192 1334
1193#if EV_USE_PORT 1335#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1337#endif
1283#endif 1425#endif
1284 1426
1285 backend = 0; 1427 backend = 0;
1286} 1428}
1287 1429
1430#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1289 1433
1290void inline_size 1434void inline_size
1291loop_fork (EV_P) 1435loop_fork (EV_P)
1292{ 1436{
1293#if EV_USE_PORT 1437#if EV_USE_PORT
1333 1477
1334 postfork = 0; 1478 postfork = 0;
1335} 1479}
1336 1480
1337#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1338struct ev_loop * 1483struct ev_loop *
1339ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1340{ 1485{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1487
1361ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1362{ 1507{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1364} 1509}
1365 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1366#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1367 1611
1368#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1369struct ev_loop * 1613struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1371#else 1615#else
1447 { 1691 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449 1693
1450 p->w->pending = 0; 1694 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1452 } 1697 }
1453 } 1698 }
1454} 1699}
1455
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535 1700
1536#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1537void inline_size 1702void inline_size
1538idle_reify (EV_P) 1703idle_reify (EV_P)
1539{ 1704{
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break; 1717 break;
1553 } 1718 }
1554 } 1719 }
1555 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1556} 1823}
1557#endif 1824#endif
1558 1825
1559void inline_speed 1826void inline_speed
1560time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1589 */ 1856 */
1590 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1591 { 1858 {
1592 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1593 1860
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 1862 return; /* all is well */
1596 1863
1597 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 1865 mn_now = get_clock ();
1599 now_floor = mn_now; 1866 now_floor = mn_now;
1615#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1617#endif 1884#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1620 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1621 } 1892 }
1622 1893
1623 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1624 } 1895 }
1625} 1896}
1645 1916
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647 1918
1648 do 1919 do
1649 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1650#ifndef _WIN32 1925#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1653 { 1928 {
1654 curpid = getpid (); 1929 curpid = getpid ();
1695 1970
1696 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1697 1972
1698 if (timercnt) 1973 if (timercnt)
1699 { 1974 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1702 } 1977 }
1703 1978
1704#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 1980 if (periodiccnt)
1706 { 1981 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1709 } 1984 }
1710#endif 1985#endif
1711 1986
1712 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1849 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1850 return; 2125 return;
1851 2126
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1853 2128
2129 EV_FREQUENT_CHECK;
2130
1854 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1856 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1857 2134
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1860} 2139}
1861 2140
1862void noinline 2141void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1864{ 2143{
1865 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1867 return; 2146 return;
1868 2147
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1870 2151
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1873 2154
1874 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1875} 2158}
1876 2159
1877void noinline 2160void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1879{ 2162{
1880 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1881 return; 2164 return;
1882 2165
1883 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1884 2167
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1891 2178
2179 EV_FREQUENT_CHECK;
2180
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2182}
1894 2183
1895void noinline 2184void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2186{
1898 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1900 return; 2189 return;
1901 2190
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1903 2192
1904 { 2193 {
1905 int active = ((W)w)->active; 2194 int active = ev_active (w);
1906 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1907 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1908 { 2201 {
1909 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1911 } 2204 }
1912 } 2205 }
1913 2206
1914 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1915 2210
1916 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1917} 2212}
1918 2213
1919void noinline 2214void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1921{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1922 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1923 { 2220 {
1924 if (w->repeat) 2221 if (w->repeat)
1925 { 2222 {
1926 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1928 } 2226 }
1929 else 2227 else
1930 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1931 } 2229 }
1932 else if (w->repeat) 2230 else if (w->repeat)
1933 { 2231 {
1934 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1936 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1937} 2237}
1938 2238
1939#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1940void noinline 2240void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2242{
1943 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1944 return; 2244 return;
1945 2245
1946 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2248 else if (w->interval)
1949 { 2249 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2253 }
1954 else 2254 else
1955 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1956 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1961 2265
2266 EV_FREQUENT_CHECK;
2267
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2269}
1964 2270
1965void noinline 2271void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2273{
1968 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1970 return; 2276 return;
1971 2277
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1973 2279
1974 { 2280 {
1975 int active = ((W)w)->active; 2281 int active = ev_active (w);
1976 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1977 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2288 {
1979 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1981 } 2291 }
1982 } 2292 }
1983 2293
2294 EV_FREQUENT_CHECK;
2295
1984 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1985} 2297}
1986 2298
1987void noinline 2299void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
2007 return; 2319 return;
2008 2320
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2010 2322
2011 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2012 2326
2013 { 2327 {
2014#ifndef _WIN32 2328#ifndef _WIN32
2015 sigset_t full, prev; 2329 sigset_t full, prev;
2016 sigfillset (&full); 2330 sigfillset (&full);
2037 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2040#endif 2354#endif
2041 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2042} 2358}
2043 2359
2044void noinline 2360void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2362{
2047 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2049 return; 2365 return;
2050 2366
2367 EV_FREQUENT_CHECK;
2368
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2053 2371
2054 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2055 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2056} 2376}
2057 2377
2058void 2378void
2059ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2060{ 2380{
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2383#endif
2064 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2065 return; 2385 return;
2066 2386
2387 EV_FREQUENT_CHECK;
2388
2067 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2069} 2393}
2070 2394
2071void 2395void
2072ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2073{ 2397{
2074 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2076 return; 2400 return;
2077 2401
2402 EV_FREQUENT_CHECK;
2403
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2080} 2408}
2081 2409
2082#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2083 2411
2084# ifdef _WIN32 2412# ifdef _WIN32
2102 if (w->wd < 0) 2430 if (w->wd < 0)
2103 { 2431 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2433
2106 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2438 {
2109 char path [4096]; 2439 char path [4096];
2110 strcpy (path, w->path); 2440 strcpy (path, w->path);
2111 2441
2310 else 2640 else
2311#endif 2641#endif
2312 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2313 2643
2314 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2315} 2647}
2316 2648
2317void 2649void
2318ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2319{ 2651{
2320 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2322 return; 2654 return;
2323 2655
2656 EV_FREQUENT_CHECK;
2657
2324#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2326#endif 2660#endif
2327 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2328 2662
2329 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2330} 2666}
2331#endif 2667#endif
2332 2668
2333#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2334void 2670void
2336{ 2672{
2337 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2338 return; 2674 return;
2339 2675
2340 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2341 2679
2342 { 2680 {
2343 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2344 2682
2345 ++idleall; 2683 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2347 2685
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2350 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2351} 2691}
2352 2692
2353void 2693void
2354ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2355{ 2695{
2356 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2358 return; 2698 return;
2359 2699
2700 EV_FREQUENT_CHECK;
2701
2360 { 2702 {
2361 int active = ((W)w)->active; 2703 int active = ev_active (w);
2362 2704
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2707
2366 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2367 --idleall; 2709 --idleall;
2368 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2369} 2713}
2370#endif 2714#endif
2371 2715
2372void 2716void
2373ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 2718{
2375 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2376 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2377 2723
2378 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2381} 2729}
2382 2730
2383void 2731void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 2733{
2386 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2388 return; 2736 return;
2389 2737
2738 EV_FREQUENT_CHECK;
2739
2390 { 2740 {
2391 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2392 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2394 } 2745 }
2395 2746
2396 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2397} 2750}
2398 2751
2399void 2752void
2400ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2401{ 2754{
2402 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2403 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2404 2759
2405 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2408} 2765}
2409 2766
2410void 2767void
2411ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2412{ 2769{
2413 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2415 return; 2772 return;
2416 2773
2774 EV_FREQUENT_CHECK;
2775
2417 { 2776 {
2418 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2419 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2421 } 2781 }
2422 2782
2423 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2424} 2786}
2425 2787
2426#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2427void noinline 2789void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2475 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 2840 }
2479 2841
2842 EV_FREQUENT_CHECK;
2843
2480 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2482 2846
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2486 2850
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 2852
2489 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2490} 2856}
2491 2857
2492void 2858void
2493ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2494{ 2860{
2495 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2497 return; 2863 return;
2498 2864
2865 EV_FREQUENT_CHECK;
2866
2499 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2501 2869
2502 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2503} 2873}
2504#endif 2874#endif
2505 2875
2506#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2507void 2877void
2508ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2509{ 2879{
2510 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2511 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2512 2884
2513 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2516} 2890}
2517 2891
2518void 2892void
2519ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2520{ 2894{
2521 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2523 return; 2897 return;
2524 2898
2899 EV_FREQUENT_CHECK;
2900
2525 { 2901 {
2526 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2527 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2529 } 2906 }
2530 2907
2531 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2532} 2911}
2533#endif 2912#endif
2534 2913
2535#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2536void 2915void
2538{ 2917{
2539 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2540 return; 2919 return;
2541 2920
2542 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2543 2924
2544 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2547} 2930}
2548 2931
2549void 2932void
2550ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2551{ 2934{
2552 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2554 return; 2937 return;
2555 2938
2939 EV_FREQUENT_CHECK;
2940
2556 { 2941 {
2557 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2558 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 2945 ev_active (asyncs [active - 1]) = active;
2560 } 2946 }
2561 2947
2562 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2563} 2951}
2564 2952
2565void 2953void
2566ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2567{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines