ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
422 W w; 454 W w;
423 int events; 455 int events;
424} ANPENDING; 456} ANPENDING;
425 457
426#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
427typedef struct 460typedef struct
428{ 461{
429 WL head; 462 WL head;
430} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
431#endif 482#endif
432 483
433#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
434 485
435 struct ev_loop 486 struct ev_loop
656 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
657 708
658#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
659 if (events) 710 if (events)
660 { 711 {
661 unsigned long argp; 712 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 715 #else
665 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
666 #endif 717 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 719 }
669#endif 720#endif
670 721
671 { 722 {
672 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
725{ 776{
726 int fd; 777 int fd;
727 778
728 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 780 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
732} 783}
733 784
734/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 786static void noinline
760} 811}
761 812
762/*****************************************************************************/ 813/*****************************************************************************/
763 814
764/* 815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
765 * at the moment we allow libev the luxury of two heaps, 822 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 824 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 825 * the difference is about 5% with 50000+ watchers.
769 */ 826 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 827#if EV_USE_4HEAP
772 828
773#define DHEAP 4 829#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
835void inline_speed
836downheap (ANHE *heap, int N, int k)
837{
838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
840
841 for (;;)
842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
775 913
776/* towards the root */ 914/* towards the root */
777void inline_speed 915void inline_speed
778upheap (WT *heap, int k) 916upheap (ANHE *heap, int k)
779{ 917{
780 WT w = heap [k]; 918 ANHE he = heap [k];
781 919
782 for (;;) 920 for (;;)
783 { 921 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 922 int p = HPARENT (k);
785 923
786 if (p == k || heap [p]->at <= w->at) 924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 925 break;
788 926
789 heap [k] = heap [p]; 927 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 928 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 929 k = p;
792 } 930 }
793 931
794 heap [k] = w; 932 heap [k] = he;
795 ev_active (heap [k]) = k; 933 ev_active (ANHE_w (he)) = k;
796} 934}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat;
808 WT *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810
811 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E))
813 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break;
833
834 ev_active (*minpos) = k;
835 heap [k] = *minpos;
836
837 k = minpos - heap;
838 }
839
840 heap [k] = w;
841 ev_active (heap [k]) = k;
842}
843
844#else // 4HEAP
845
846#define HEAP0 1
847
848/* towards the root */
849void inline_speed
850upheap (WT *heap, int k)
851{
852 WT w = heap [k];
853
854 for (;;)
855 {
856 int p = k >> 1;
857
858 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at)
860 break;
861
862 heap [k] = heap [p];
863 ev_active (heap [k]) = k;
864 k = p;
865 }
866
867 heap [k] = w;
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break;
883
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c];
891 ((W)heap [k])->active = k;
892
893 k = c;
894 }
895
896 heap [k] = w;
897 ev_active (heap [k]) = k;
898}
899#endif
900 935
901void inline_size 936void inline_size
902adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
903{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 940 upheap (heap, k);
941 else
905 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
906} 955}
907 956
908/*****************************************************************************/ 957/*****************************************************************************/
909 958
910typedef struct 959typedef struct
934 983
935void inline_speed 984void inline_speed
936fd_intern (int fd) 985fd_intern (int fd)
937{ 986{
938#ifdef _WIN32 987#ifdef _WIN32
939 int arg = 1; 988 unsigned long arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else 990#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif 993#endif
1428 1477
1429 postfork = 0; 1478 postfork = 0;
1430} 1479}
1431 1480
1432#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1433struct ev_loop * 1483struct ev_loop *
1434ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1435{ 1485{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437 1487
1455void 1505void
1456ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1457{ 1507{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1459} 1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1460#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1461 1611
1462#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1463struct ev_loop * 1613struct ev_loop *
1464ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1465#else 1615#else
1541 { 1691 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1543 1693
1544 p->w->pending = 0; 1694 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1546 } 1697 }
1547 } 1698 }
1548} 1699}
1549 1700
1550#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1571#endif 1722#endif
1572 1723
1573void inline_size 1724void inline_size
1574timers_reify (EV_P) 1725timers_reify (EV_P)
1575{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1730 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1732
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1734
1582 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1583 if (w->repeat) 1736 if (w->repeat)
1584 { 1737 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat; 1738 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1739 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1740 ev_at (w) = mn_now;
1590 1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1745 downheap (timers, timercnt, HEAP0);
1592 } 1746 }
1593 else 1747 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1749
1750 EV_FREQUENT_CHECK;
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1597 } 1752 }
1598} 1753}
1599 1754
1600#if EV_PERIODIC_ENABLE 1755#if EV_PERIODIC_ENABLE
1601void inline_size 1756void inline_size
1602periodics_reify (EV_P) 1757periodics_reify (EV_P)
1603{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1762 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1764
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1766
1610 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1612 { 1769 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1775 downheap (periodics, periodiccnt, HEAP0);
1616 } 1776 }
1617 else if (w->interval) 1777 else if (w->interval)
1618 { 1778 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1794 downheap (periodics, periodiccnt, HEAP0);
1623 } 1795 }
1624 else 1796 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1798
1799 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1628 } 1801 }
1629} 1802}
1630 1803
1631static void noinline 1804static void noinline
1632periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1633{ 1806{
1634 int i; 1807 int i;
1635 1808
1636 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1811 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1813
1641 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1816 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1818
1647 /* now rebuild the heap */ 1819 ANHE_at_cache (periodics [i]);
1648 for (i = periodiccnt >> 1; --i; ) 1820 }
1821
1649 downheap (periodics, periodiccnt, i + HEAP0); 1822 reheap (periodics, periodiccnt);
1650} 1823}
1651#endif 1824#endif
1652 1825
1653void inline_speed 1826void inline_speed
1654time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1708 { 1881 {
1709#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1711#endif 1884#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1715 } 1892 }
1716 1893
1717 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1718 } 1895 }
1719} 1896}
1739 1916
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1741 1918
1742 do 1919 do
1743 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1744#ifndef _WIN32 1925#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1747 { 1928 {
1748 curpid = getpid (); 1929 curpid = getpid ();
1789 1970
1790 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1791 1972
1792 if (timercnt) 1973 if (timercnt)
1793 { 1974 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1796 } 1977 }
1797 1978
1798#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1980 if (periodiccnt)
1800 { 1981 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1803 } 1984 }
1804#endif 1985#endif
1805 1986
1806 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1943 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1944 return; 2125 return;
1945 2126
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1947 2128
2129 EV_FREQUENT_CHECK;
2130
1948 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1950 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1951 2134
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1954} 2139}
1955 2140
1956void noinline 2141void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1958{ 2143{
1959 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1961 return; 2146 return;
1962 2147
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1964 2151
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1967 2154
1968 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1969} 2158}
1970 2159
1971void noinline 2160void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1973{ 2162{
1976 2165
1977 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
1978 2167
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2176 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2177 upheap (timers, ev_active (w));
1985 2178
2179 EV_FREQUENT_CHECK;
2180
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2182}
1988 2183
1989void noinline 2184void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2186{
1992 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1994 return; 2189 return;
1995 2190
2191 EV_FREQUENT_CHECK;
2192
1996 { 2193 {
1997 int active = ev_active (w); 2194 int active = ev_active (w);
1998 2195
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2197
2198 --timercnt;
2199
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2200 if (expect_true (active < timercnt + HEAP0))
2002 { 2201 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2202 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
2005 } 2204 }
2006
2007 --timercnt;
2008 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
2009 2208
2010 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
2011 2210
2012 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
2013} 2212}
2014 2213
2015void noinline 2214void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
2017{ 2216{
2217 EV_FREQUENT_CHECK;
2218
2018 if (ev_is_active (w)) 2219 if (ev_is_active (w))
2019 { 2220 {
2020 if (w->repeat) 2221 if (w->repeat)
2021 { 2222 {
2022 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2225 adjustheap (timers, timercnt, ev_active (w));
2024 } 2226 }
2025 else 2227 else
2026 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
2027 } 2229 }
2028 else if (w->repeat) 2230 else if (w->repeat)
2029 { 2231 {
2030 ev_at (w) = w->repeat; 2232 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
2032 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2033} 2237}
2034 2238
2035#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
2036void noinline 2240void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2253 }
2050 else 2254 else
2051 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
2052 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2263 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2264 upheap (periodics, ev_active (w));
2057 2265
2266 EV_FREQUENT_CHECK;
2267
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2269}
2060 2270
2061void noinline 2271void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2273{
2064 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
2066 return; 2276 return;
2067 2277
2278 EV_FREQUENT_CHECK;
2279
2068 { 2280 {
2069 int active = ev_active (w); 2281 int active = ev_active (w);
2070 2282
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2284
2285 --periodiccnt;
2286
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2287 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2288 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
2077 } 2291 }
2078
2079 --periodiccnt;
2080 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
2081 2295
2082 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
2083} 2297}
2084 2298
2085void noinline 2299void noinline
2105 return; 2319 return;
2106 2320
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2108 2322
2109 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2110 2326
2111 { 2327 {
2112#ifndef _WIN32 2328#ifndef _WIN32
2113 sigset_t full, prev; 2329 sigset_t full, prev;
2114 sigfillset (&full); 2330 sigfillset (&full);
2135 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2138#endif 2354#endif
2139 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2140} 2358}
2141 2359
2142void noinline 2360void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2362{
2145 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2147 return; 2365 return;
2148 2366
2367 EV_FREQUENT_CHECK;
2368
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2151 2371
2152 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2154} 2376}
2155 2377
2156void 2378void
2157ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2158{ 2380{
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2383#endif
2162 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2163 return; 2385 return;
2164 2386
2387 EV_FREQUENT_CHECK;
2388
2165 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2167} 2393}
2168 2394
2169void 2395void
2170ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2171{ 2397{
2172 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2174 return; 2400 return;
2175 2401
2402 EV_FREQUENT_CHECK;
2403
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2178} 2408}
2179 2409
2180#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2181 2411
2182# ifdef _WIN32 2412# ifdef _WIN32
2410 else 2640 else
2411#endif 2641#endif
2412 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2413 2643
2414 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2415} 2647}
2416 2648
2417void 2649void
2418ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2419{ 2651{
2420 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2422 return; 2654 return;
2423 2655
2656 EV_FREQUENT_CHECK;
2657
2424#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2426#endif 2660#endif
2427 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2428 2662
2429 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2430} 2666}
2431#endif 2667#endif
2432 2668
2433#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2434void 2670void
2436{ 2672{
2437 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2438 return; 2674 return;
2439 2675
2440 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2441 2679
2442 { 2680 {
2443 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2444 2682
2445 ++idleall; 2683 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2447 2685
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2450 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2451} 2691}
2452 2692
2453void 2693void
2454ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2455{ 2695{
2456 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2458 return; 2698 return;
2459 2699
2700 EV_FREQUENT_CHECK;
2701
2460 { 2702 {
2461 int active = ev_active (w); 2703 int active = ev_active (w);
2462 2704
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 2707
2466 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2467 --idleall; 2709 --idleall;
2468 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2469} 2713}
2470#endif 2714#endif
2471 2715
2472void 2716void
2473ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 2718{
2475 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2476 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2477 2723
2478 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2481} 2729}
2482 2730
2483void 2731void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 2733{
2486 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2488 return; 2736 return;
2489 2737
2738 EV_FREQUENT_CHECK;
2739
2490 { 2740 {
2491 int active = ev_active (w); 2741 int active = ev_active (w);
2492 2742
2493 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 2744 ev_active (prepares [active - 1]) = active;
2495 } 2745 }
2496 2746
2497 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2498} 2750}
2499 2751
2500void 2752void
2501ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2502{ 2754{
2503 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2504 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2505 2759
2506 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2509} 2765}
2510 2766
2511void 2767void
2512ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2513{ 2769{
2514 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2516 return; 2772 return;
2517 2773
2774 EV_FREQUENT_CHECK;
2775
2518 { 2776 {
2519 int active = ev_active (w); 2777 int active = ev_active (w);
2520 2778
2521 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 2780 ev_active (checks [active - 1]) = active;
2523 } 2781 }
2524 2782
2525 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2526} 2786}
2527 2787
2528#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2529void noinline 2789void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2577 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 2840 }
2581 2841
2842 EV_FREQUENT_CHECK;
2843
2582 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2584 2846
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2588 2850
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 2852
2591 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2592} 2856}
2593 2857
2594void 2858void
2595ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2596{ 2860{
2597 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2599 return; 2863 return;
2600 2864
2865 EV_FREQUENT_CHECK;
2866
2601 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2603 2869
2604 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2605} 2873}
2606#endif 2874#endif
2607 2875
2608#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2609void 2877void
2610ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2611{ 2879{
2612 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2613 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2614 2884
2615 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2618} 2890}
2619 2891
2620void 2892void
2621ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2622{ 2894{
2623 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2625 return; 2897 return;
2626 2898
2899 EV_FREQUENT_CHECK;
2900
2627 { 2901 {
2628 int active = ev_active (w); 2902 int active = ev_active (w);
2629 2903
2630 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 2905 ev_active (forks [active - 1]) = active;
2632 } 2906 }
2633 2907
2634 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2635} 2911}
2636#endif 2912#endif
2637 2913
2638#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2639void 2915void
2641{ 2917{
2642 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2643 return; 2919 return;
2644 2920
2645 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2646 2924
2647 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2650} 2930}
2651 2931
2652void 2932void
2653ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2654{ 2934{
2655 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2657 return; 2937 return;
2658 2938
2939 EV_FREQUENT_CHECK;
2940
2659 { 2941 {
2660 int active = ev_active (w); 2942 int active = ev_active (w);
2661 2943
2662 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 2945 ev_active (asyncs [active - 1]) = active;
2664 } 2946 }
2665 2947
2666 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2667} 2951}
2668 2952
2669void 2953void
2670ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2671{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines