ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
430 WL head; 462 WL head;
431} ANFS; 463} ANFS;
432#endif 464#endif
433 465
434/* Heap Entry */ 466/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 467#if EV_HEAP_CACHE_AT
437 typedef struct { 468 typedef struct {
469 ev_tstamp at;
438 WT w; 470 WT w;
439 ev_tstamp at;
440 } ANHE; 471 } ANHE;
441 472
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 473 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 474 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 476#else
446 typedef WT ANHE; 477 typedef WT ANHE;
447 478
448 #define ANHE_w(he) (he) 479 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 480 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 481 #define ANHE_at_cache(he)
451#endif 482#endif
452 483
453#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
454 485
455 struct ev_loop 486 struct ev_loop
676 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
677 708
678#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
679 if (events) 710 if (events)
680 { 711 {
681 unsigned long argp; 712 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 715 #else
685 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
686 #endif 717 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 719 }
689#endif 720#endif
690 721
691 { 722 {
692 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
745{ 776{
746 int fd; 777 int fd;
747 778
748 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 780 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
752} 783}
753 784
754/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 786static void noinline
791 * at the moment we allow libev the luxury of two heaps, 822 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 824 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 825 * the difference is about 5% with 50000+ watchers.
795 */ 826 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 827#if EV_USE_4HEAP
798 828
799#define DHEAP 4 829#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 832#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 833
824/* away from the root */ 834/* away from the root */
825void inline_speed 835void inline_speed
826downheap (ANHE *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
827{ 837{
830 840
831 for (;;) 841 for (;;)
832 { 842 {
833 ev_tstamp minat; 843 ev_tstamp minat;
834 ANHE *minpos; 844 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 846
837 // find minimum child 847 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 848 if (expect_true (pos + DHEAP - 1 < E))
839 { 849 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 854 }
845 else if (pos < E) 855 else if (pos < E)
846 { 856 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 863 break;
854 864
855 if (ANHE_at (he) <= minat) 865 if (ANHE_at (he) <= minat)
856 break; 866 break;
857 867
868 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 869 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 870
861 k = minpos - heap; 871 k = minpos - heap;
862 } 872 }
863 873
874 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 875 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 876}
867 877
868#else // 4HEAP 878#else /* 4HEAP */
869 879
870#define HEAP0 1 880#define HEAP0 1
871 881#define HPARENT(k) ((k) >> 1)
872/* towards the root */ 882#define UPHEAP_DONE(p,k) (!(p))
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894 883
895/* away from the root */ 884/* away from the root */
896void inline_speed 885void inline_speed
897downheap (ANHE *heap, int N, int k) 886downheap (ANHE *heap, int N, int k)
898{ 887{
900 889
901 for (;;) 890 for (;;)
902 { 891 {
903 int c = k << 1; 892 int c = k << 1;
904 893
905 if (c > N) 894 if (c > N + HEAP0 - 1)
906 break; 895 break;
907 896
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 898 ? 1 : 0;
910 899
911 if (w->at <= ANHE_at (heap [c])) 900 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 901 break;
913 902
914 heap [k] = heap [c]; 903 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 904 ev_active (ANHE_w (heap [k])) = k;
916 905
920 heap [k] = he; 909 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 910 ev_active (ANHE_w (he)) = k;
922} 911}
923#endif 912#endif
924 913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
925void inline_size 936void inline_size
926adjustheap (ANHE *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
927{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 940 upheap (heap, k);
941 else
929 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
930} 955}
931 956
932/*****************************************************************************/ 957/*****************************************************************************/
933 958
934typedef struct 959typedef struct
958 983
959void inline_speed 984void inline_speed
960fd_intern (int fd) 985fd_intern (int fd)
961{ 986{
962#ifdef _WIN32 987#ifdef _WIN32
963 int arg = 1; 988 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 990#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 993#endif
1452 1477
1453 postfork = 0; 1478 postfork = 0;
1454} 1479}
1455 1480
1456#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1457struct ev_loop * 1483struct ev_loop *
1458ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1459{ 1485{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1487
1479void 1505void
1480ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1481{ 1507{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1483} 1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1485 1611
1486#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1487struct ev_loop * 1613struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1489#else 1615#else
1565 { 1691 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567 1693
1568 p->w->pending = 0; 1694 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1570 } 1697 }
1571 } 1698 }
1572} 1699}
1573 1700
1574#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1595#endif 1722#endif
1596 1723
1597void inline_size 1724void inline_size
1598timers_reify (EV_P) 1725timers_reify (EV_P)
1599{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1730 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603 1732
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605 1734
1606 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1607 if (w->repeat) 1736 if (w->repeat)
1608 { 1737 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat; 1738 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now) 1739 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now; 1740 ev_at (w) = mn_now;
1614 1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1615 ANHE_at_set (timers [HEAP0]); 1744 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1745 downheap (timers, timercnt, HEAP0);
1617 } 1746 }
1618 else 1747 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1749
1750 EV_FREQUENT_CHECK;
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 } 1752 }
1623} 1753}
1624 1754
1625#if EV_PERIODIC_ENABLE 1755#if EV_PERIODIC_ENABLE
1626void inline_size 1756void inline_size
1627periodics_reify (EV_P) 1757periodics_reify (EV_P)
1628{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1762 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632 1764
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634 1766
1635 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1636 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1637 { 1769 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1640 ANHE_at_set (periodics [HEAP0]); 1774 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1775 downheap (periodics, periodiccnt, HEAP0);
1642 } 1776 }
1643 else if (w->interval) 1777 else if (w->interval)
1644 { 1778 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1648 ANHE_at_set (periodics [HEAP0]); 1793 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1794 downheap (periodics, periodiccnt, HEAP0);
1650 } 1795 }
1651 else 1796 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1798
1799 EV_FREQUENT_CHECK;
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 } 1801 }
1656} 1802}
1657 1803
1658static void noinline 1804static void noinline
1668 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1816 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1818
1673 ANHE_at_set (periodics [i]); 1819 ANHE_at_cache (periodics [i]);
1674 } 1820 }
1675 1821
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0); 1822 reheap (periodics, periodiccnt);
1679} 1823}
1680#endif 1824#endif
1681 1825
1682void inline_speed 1826void inline_speed
1683time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1741 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1743 { 1887 {
1744 ANHE *he = timers + i + HEAP0; 1888 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he); 1890 ANHE_at_cache (*he);
1747 } 1891 }
1748 } 1892 }
1749 1893
1750 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1751 } 1895 }
1772 1916
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 1918
1775 do 1919 do
1776 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1777#ifndef _WIN32 1925#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1780 { 1928 {
1781 curpid = getpid (); 1929 curpid = getpid ();
1976 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1977 return; 2125 return;
1978 2126
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1980 2128
2129 EV_FREQUENT_CHECK;
2130
1981 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1983 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1984 2134
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1987} 2139}
1988 2140
1989void noinline 2141void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1991{ 2143{
1993 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1994 return; 2146 return;
1995 2147
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997 2149
2150 EV_FREQUENT_CHECK;
2151
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
2000 2154
2001 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
2002} 2158}
2003 2159
2004void noinline 2160void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
2006{ 2162{
2009 2165
2010 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
2011 2167
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2176 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2177 upheap (timers, ev_active (w));
2178
2179 EV_FREQUENT_CHECK;
2019 2180
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2182}
2022 2183
2023void noinline 2184void noinline
2025{ 2186{
2026 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
2028 return; 2189 return;
2029 2190
2191 EV_FREQUENT_CHECK;
2192
2030 { 2193 {
2031 int active = ev_active (w); 2194 int active = ev_active (w);
2032 2195
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2197
2198 --timercnt;
2199
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2200 if (expect_true (active < timercnt + HEAP0))
2036 { 2201 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2202 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
2039 } 2204 }
2040
2041 --timercnt;
2042 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
2043 2208
2044 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
2045 2210
2046 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
2047} 2212}
2048 2213
2049void noinline 2214void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
2051{ 2216{
2217 EV_FREQUENT_CHECK;
2218
2052 if (ev_is_active (w)) 2219 if (ev_is_active (w))
2053 { 2220 {
2054 if (w->repeat) 2221 if (w->repeat)
2055 { 2222 {
2056 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2224 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2225 adjustheap (timers, timercnt, ev_active (w));
2059 } 2226 }
2060 else 2227 else
2061 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
2062 } 2229 }
2063 else if (w->repeat) 2230 else if (w->repeat)
2064 { 2231 {
2065 ev_at (w) = w->repeat; 2232 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
2067 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2068} 2237}
2069 2238
2070#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
2071void noinline 2240void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2253 }
2085 else 2254 else
2086 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
2087 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2263 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2264 upheap (periodics, ev_active (w));
2265
2266 EV_FREQUENT_CHECK;
2092 2267
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2269}
2095 2270
2096void noinline 2271void noinline
2098{ 2273{
2099 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
2101 return; 2276 return;
2102 2277
2278 EV_FREQUENT_CHECK;
2279
2103 { 2280 {
2104 int active = ev_active (w); 2281 int active = ev_active (w);
2105 2282
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2284
2285 --periodiccnt;
2286
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2287 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2288 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
2112 } 2291 }
2113
2114 --periodiccnt;
2115 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
2116 2295
2117 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
2118} 2297}
2119 2298
2120void noinline 2299void noinline
2140 return; 2319 return;
2141 2320
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143 2322
2144 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2145 2326
2146 { 2327 {
2147#ifndef _WIN32 2328#ifndef _WIN32
2148 sigset_t full, prev; 2329 sigset_t full, prev;
2149 sigfillset (&full); 2330 sigfillset (&full);
2170 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2173#endif 2354#endif
2174 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2175} 2358}
2176 2359
2177void noinline 2360void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2362{
2180 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2182 return; 2365 return;
2183 2366
2367 EV_FREQUENT_CHECK;
2368
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2186 2371
2187 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2189} 2376}
2190 2377
2191void 2378void
2192ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2193{ 2380{
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2383#endif
2197 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2198 return; 2385 return;
2199 2386
2387 EV_FREQUENT_CHECK;
2388
2200 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2202} 2393}
2203 2394
2204void 2395void
2205ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2206{ 2397{
2207 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2209 return; 2400 return;
2210 2401
2402 EV_FREQUENT_CHECK;
2403
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2213} 2408}
2214 2409
2215#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2216 2411
2217# ifdef _WIN32 2412# ifdef _WIN32
2445 else 2640 else
2446#endif 2641#endif
2447 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2448 2643
2449 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2450} 2647}
2451 2648
2452void 2649void
2453ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2651{
2455 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2457 return; 2654 return;
2458 2655
2656 EV_FREQUENT_CHECK;
2657
2459#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2461#endif 2660#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2463 2662
2464 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2465} 2666}
2466#endif 2667#endif
2467 2668
2468#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2469void 2670void
2471{ 2672{
2472 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2473 return; 2674 return;
2474 2675
2475 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2476 2679
2477 { 2680 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2479 2682
2480 ++idleall; 2683 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2482 2685
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2485 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2486} 2691}
2487 2692
2488void 2693void
2489ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2695{
2491 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2493 return; 2698 return;
2494 2699
2700 EV_FREQUENT_CHECK;
2701
2495 { 2702 {
2496 int active = ev_active (w); 2703 int active = ev_active (w);
2497 2704
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2707
2501 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2502 --idleall; 2709 --idleall;
2503 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2504} 2713}
2505#endif 2714#endif
2506 2715
2507void 2716void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2718{
2510 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2511 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2512 2723
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2516} 2729}
2517 2730
2518void 2731void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2733{
2521 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2523 return; 2736 return;
2524 2737
2738 EV_FREQUENT_CHECK;
2739
2525 { 2740 {
2526 int active = ev_active (w); 2741 int active = ev_active (w);
2527 2742
2528 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2744 ev_active (prepares [active - 1]) = active;
2530 } 2745 }
2531 2746
2532 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2533} 2750}
2534 2751
2535void 2752void
2536ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2537{ 2754{
2538 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2539 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2540 2759
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2544} 2765}
2545 2766
2546void 2767void
2547ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2548{ 2769{
2549 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2551 return; 2772 return;
2552 2773
2774 EV_FREQUENT_CHECK;
2775
2553 { 2776 {
2554 int active = ev_active (w); 2777 int active = ev_active (w);
2555 2778
2556 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2780 ev_active (checks [active - 1]) = active;
2558 } 2781 }
2559 2782
2560 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2561} 2786}
2562 2787
2563#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2564void noinline 2789void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2612 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 2840 }
2616 2841
2842 EV_FREQUENT_CHECK;
2843
2617 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2619 2846
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2623 2850
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 2852
2626 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2627} 2856}
2628 2857
2629void 2858void
2630ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2631{ 2860{
2632 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2634 return; 2863 return;
2635 2864
2865 EV_FREQUENT_CHECK;
2866
2636 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2638 2869
2639 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2640} 2873}
2641#endif 2874#endif
2642 2875
2643#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2644void 2877void
2645ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2646{ 2879{
2647 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2648 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2649 2884
2650 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2653} 2890}
2654 2891
2655void 2892void
2656ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2657{ 2894{
2658 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2660 return; 2897 return;
2661 2898
2899 EV_FREQUENT_CHECK;
2900
2662 { 2901 {
2663 int active = ev_active (w); 2902 int active = ev_active (w);
2664 2903
2665 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 2905 ev_active (forks [active - 1]) = active;
2667 } 2906 }
2668 2907
2669 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2670} 2911}
2671#endif 2912#endif
2672 2913
2673#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2674void 2915void
2676{ 2917{
2677 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2678 return; 2919 return;
2679 2920
2680 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2681 2924
2682 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2685} 2930}
2686 2931
2687void 2932void
2688ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2689{ 2934{
2690 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2692 return; 2937 return;
2693 2938
2939 EV_FREQUENT_CHECK;
2940
2694 { 2941 {
2695 int active = ev_active (w); 2942 int active = ev_active (w);
2696 2943
2697 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 2945 ev_active (asyncs [active - 1]) = active;
2699 } 2946 }
2700 2947
2701 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2702} 2951}
2703 2952
2704void 2953void
2705ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2706{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines