ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
167 225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
171# else 229# else
172# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
173# endif 231# endif
174#endif 232#endif
175 233
176#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 236#endif
179 237
180#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 239# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 240# define EV_USE_NANOSLEEP 1
243# else 301# else
244# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
245# endif 303# endif
246#endif 304#endif
247 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
248#if 0 /* debugging */ 314#if 0 /* debugging */
249# define EV_VERIFY 3 315# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 316# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 317# define EV_HEAP_CACHE_AT 1
252#endif 318#endif
261 327
262#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif 330#endif
265 331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 347
268#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
269# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
270# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
285# include <sys/select.h> 365# include <sys/select.h>
286# endif 366# endif
287#endif 367#endif
288 368
289#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
290# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
291#endif 378#endif
292 379
293#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h> 381# include <winsock.h>
295#endif 382#endif
296 383
297#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
300# ifdef __cplusplus 397# ifdef __cplusplus
301extern "C" { 398extern "C" {
302# endif 399# endif
303int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus 401# ifdef __cplusplus
305} 402}
306# endif 403# endif
307#endif 404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
308 434
309/**/ 435/**/
310 436
311#if EV_VERIFY >= 3 437#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
324 */ 450 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
326 452
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 455
331#if __GNUC__ >= 4 456#if __GNUC__ >= 4
332# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
333# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
334#else 459#else
347# define inline_speed static noinline 472# define inline_speed static noinline
348#else 473#else
349# define inline_speed static inline 474# define inline_speed static inline
350#endif 475#endif
351 476
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
354 484
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
357 487
358typedef ev_watcher *W; 488typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
361 491
362#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
364 494
365#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 513#endif
370 514
371#ifdef _WIN32 515#ifdef _WIN32
372# include "ev_win32.c" 516# include "ev_win32.c"
373#endif 517#endif
381{ 525{
382 syserr_cb = cb; 526 syserr_cb = cb;
383} 527}
384 528
385static void noinline 529static void noinline
386syserr (const char *msg) 530ev_syserr (const char *msg)
387{ 531{
388 if (!msg) 532 if (!msg)
389 msg = "(libev) system error"; 533 msg = "(libev) system error";
390 534
391 if (syserr_cb) 535 if (syserr_cb)
437#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
439 583
440/*****************************************************************************/ 584/*****************************************************************************/
441 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
442typedef struct 590typedef struct
443{ 591{
444 WL head; 592 WL head;
445 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
447#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
448 SOCKET handle; 601 SOCKET handle;
449#endif 602#endif
450} ANFD; 603} ANFD;
451 604
605/* stores the pending event set for a given watcher */
452typedef struct 606typedef struct
453{ 607{
454 W w; 608 W w;
455 int events; 609 int events; /* the pending event set for the given watcher */
456} ANPENDING; 610} ANPENDING;
457 611
458#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
460typedef struct 614typedef struct
463} ANFS; 617} ANFS;
464#endif 618#endif
465 619
466/* Heap Entry */ 620/* Heap Entry */
467#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
468 typedef struct { 623 typedef struct {
469 ev_tstamp at; 624 ev_tstamp at;
470 WT w; 625 WT w;
471 } ANHE; 626 } ANHE;
472 627
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 631#else
632 /* a heap element */
477 typedef WT ANHE; 633 typedef WT ANHE;
478 634
479 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 637 #define ANHE_at_cache(he)
505 661
506 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
507 663
508#endif 664#endif
509 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
510/*****************************************************************************/ 678/*****************************************************************************/
511 679
680#ifndef EV_HAVE_EV_TIME
512ev_tstamp 681ev_tstamp
513ev_time (void) 682ev_time (void)
514{ 683{
515#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
516 struct timespec ts; 687 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 690 }
691#endif
692
520 struct timeval tv; 693 struct timeval tv;
521 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 696}
697#endif
525 698
526ev_tstamp inline_size 699inline_size ev_tstamp
527get_clock (void) 700get_clock (void)
528{ 701{
529#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
531 { 704 {
564 struct timeval tv; 737 struct timeval tv;
565 738
566 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
569 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
570#endif 746#endif
571 } 747 }
572} 748}
573 749
574/*****************************************************************************/ 750/*****************************************************************************/
575 751
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 753
578int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
579array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
580{ 758{
581 int ncur = cur + 1; 759 int ncur = cur + 1;
582 760
583 do 761 do
600array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
601{ 779{
602 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
604} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 786
606#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
608 { \ 789 { \
609 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 803 }
623#endif 804#endif
624 805
625#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 808
628/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
629 816
630void noinline 817void noinline
631ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
632{ 819{
633 W w_ = (W)w; 820 W w_ = (W)w;
642 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
644 } 831 }
645} 832}
646 833
647void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 851{
650 int i; 852 int i;
651 853
652 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
654} 856}
655 857
656/*****************************************************************************/ 858/*****************************************************************************/
657 859
658void inline_size 860inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
673{ 862{
674 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
675 ev_io *w; 864 ev_io *w;
676 865
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 870 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
683 } 872 }
684} 873}
685 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
686void 886void
687ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
688{ 888{
689 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
691} 891}
692 892
693void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
694fd_reify (EV_P) 896fd_reify (EV_P)
695{ 897{
696 int i; 898 int i;
697 899
698 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
708 910
709#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
710 if (events) 912 if (events)
711 { 913 {
712 unsigned long arg; 914 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
716 anfd->handle = _get_osfhandle (fd);
717 #endif
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
719 } 917 }
720#endif 918#endif
721 919
722 { 920 {
723 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
725 923
726 anfd->reify = 0; 924 anfd->reify = 0;
727 anfd->events = events; 925 anfd->events = events;
728 926
729 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
731 } 929 }
732 } 930 }
733 931
734 fdchangecnt = 0; 932 fdchangecnt = 0;
735} 933}
736 934
737void inline_size 935/* something about the given fd changed */
936inline_size void
738fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
739{ 938{
740 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
742 941
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
748 } 947 }
749} 948}
750 949
751void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
752fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
753{ 953{
754 ev_io *w; 954 ev_io *w;
755 955
756 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 960 }
761} 961}
762 962
763int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
764fd_valid (int fd) 965fd_valid (int fd)
765{ 966{
766#ifdef _WIN32 967#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
768#else 969#else
790 991
791 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 993 if (anfds [fd].events)
793 { 994 {
794 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
795 return; 996 break;
796 } 997 }
797} 998}
798 999
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1001static void noinline
804 1005
805 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1007 if (anfds [fd].events)
807 { 1008 {
808 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1012 }
811} 1013}
812 1014
813/*****************************************************************************/ 1015/*****************************************************************************/
814 1016
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 1034#define UPHEAP_DONE(p,k) ((p) == (k))
833 1035
834/* away from the root */ 1036/* away from the root */
835void inline_speed 1037inline_speed void
836downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
837{ 1039{
838 ANHE he = heap [k]; 1040 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
840 1042
880#define HEAP0 1 1082#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 1083#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 1084#define UPHEAP_DONE(p,k) (!(p))
883 1085
884/* away from the root */ 1086/* away from the root */
885void inline_speed 1087inline_speed void
886downheap (ANHE *heap, int N, int k) 1088downheap (ANHE *heap, int N, int k)
887{ 1089{
888 ANHE he = heap [k]; 1090 ANHE he = heap [k];
889 1091
890 for (;;) 1092 for (;;)
891 { 1093 {
892 int c = k << 1; 1094 int c = k << 1;
893 1095
894 if (c > N + HEAP0 - 1) 1096 if (c >= N + HEAP0)
895 break; 1097 break;
896 1098
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 1100 ? 1 : 0;
899 1101
910 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
911} 1113}
912#endif 1114#endif
913 1115
914/* towards the root */ 1116/* towards the root */
915void inline_speed 1117inline_speed void
916upheap (ANHE *heap, int k) 1118upheap (ANHE *heap, int k)
917{ 1119{
918 ANHE he = heap [k]; 1120 ANHE he = heap [k];
919 1121
920 for (;;) 1122 for (;;)
931 1133
932 heap [k] = he; 1134 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 1135 ev_active (ANHE_w (he)) = k;
934} 1136}
935 1137
936void inline_size 1138/* move an element suitably so it is in a correct place */
1139inline_size void
937adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
938{ 1141{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 1143 upheap (heap, k);
941 else 1144 else
942 downheap (heap, N, k); 1145 downheap (heap, N, k);
943} 1146}
944 1147
945/* rebuild the heap: this function is used only once and executed rarely */ 1148/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 1149inline_size void
947reheap (ANHE *heap, int N) 1150reheap (ANHE *heap, int N)
948{ 1151{
949 int i; 1152 int i;
950 1153
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 1157 upheap (heap, i + HEAP0);
955} 1158}
956 1159
957/*****************************************************************************/ 1160/*****************************************************************************/
958 1161
1162/* associate signal watchers to a signal signal */
959typedef struct 1163typedef struct
960{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
961 WL head; 1169 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 1170} ANSIG;
964 1171
965static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 1173
982/*****************************************************************************/ 1174/*****************************************************************************/
983 1175
984void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
985fd_intern (int fd) 1179fd_intern (int fd)
986{ 1180{
987#ifdef _WIN32 1181#ifdef _WIN32
988 unsigned long arg = 1; 1182 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994} 1188}
995 1189
996static void noinline 1190static void noinline
997evpipe_init (EV_P) 1191evpipe_init (EV_P)
998{ 1192{
999 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
1000 { 1194 {
1001#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1002 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1003 { 1201 {
1004 evpipe [0] = -1; 1202 evpipe [0] = -1;
1005 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1006 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
1007 } 1205 }
1008 else 1206 else
1009#endif 1207#endif
1010 { 1208 {
1011 while (pipe (evpipe)) 1209 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
1013 1211
1014 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1017 } 1215 }
1018 1216
1019 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 } 1219 }
1022} 1220}
1023 1221
1024void inline_size 1222inline_size void
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{ 1224{
1027 if (!*flag) 1225 if (!*flag)
1028 { 1226 {
1029 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1042 1240
1043 errno = old_errno; 1241 errno = old_errno;
1044 } 1242 }
1045} 1243}
1046 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1047static void 1247static void
1048pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1049{ 1249{
1250 int i;
1251
1050#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1051 if (evfd >= 0) 1253 if (evfd >= 0)
1052 { 1254 {
1053 uint64_t counter; 1255 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1058 { 1260 {
1059 char dummy; 1261 char dummy;
1060 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1061 } 1263 }
1062 1264
1063 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1064 { 1266 {
1065 int signum; 1267 sig_pending = 0;
1066 gotsig = 0;
1067 1268
1068 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1071 } 1272 }
1072 1273
1073#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1074 if (gotasync) 1275 if (async_pending)
1075 { 1276 {
1076 int i; 1277 async_pending = 0;
1077 gotasync = 0;
1078 1278
1079 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1081 { 1281 {
1082 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1090 1290
1091static void 1291static void
1092ev_sighandler (int signum) 1292ev_sighandler (int signum)
1093{ 1293{
1094#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1096#endif 1296#endif
1097 1297
1098#if _WIN32 1298#if _WIN32
1099 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1100#endif 1300#endif
1101 1301
1102 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1103 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1104} 1304}
1105 1305
1106void noinline 1306void noinline
1107ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1108{ 1308{
1109 WL w; 1309 WL w;
1110 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1111#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1113#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1114 1319
1115 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 1321 return;
1322#endif
1119 1323
1120 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1121 1325
1122 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 1328}
1125 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1126/*****************************************************************************/ 1350/*****************************************************************************/
1127 1351
1128static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1129 1353
1130#ifndef _WIN32 1354#ifndef _WIN32
1133 1357
1134#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1136#endif 1360#endif
1137 1361
1138void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1140{ 1365{
1141 ev_child *w; 1366 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 1368
1156 1381
1157#ifndef WCONTINUED 1382#ifndef WCONTINUED
1158# define WCONTINUED 0 1383# define WCONTINUED 0
1159#endif 1384#endif
1160 1385
1386/* called on sigchld etc., calls waitpid */
1161static void 1387static void
1162childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1163{ 1389{
1164 int pid, status; 1390 int pid, status;
1165 1391
1246 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1249#endif 1475#endif
1250#ifdef __APPLE__ 1476#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1253#endif 1480#endif
1254 1481
1255 return flags; 1482 return flags;
1256} 1483}
1257 1484
1271ev_backend (EV_P) 1498ev_backend (EV_P)
1272{ 1499{
1273 return backend; 1500 return backend;
1274} 1501}
1275 1502
1503#if EV_MINIMAL < 2
1276unsigned int 1504unsigned int
1277ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1278{ 1506{
1279 return loop_count; 1507 return loop_count;
1280} 1508}
1281 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1282void 1516void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{ 1518{
1285 io_blocktime = interval; 1519 io_blocktime = interval;
1286} 1520}
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{ 1524{
1291 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1292} 1526}
1293 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1294static void noinline 1553static void noinline
1295loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1296{ 1555{
1297 if (!backend) 1556 if (!backend)
1298 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1299#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1300 { 1570 {
1301 struct timespec ts; 1571 struct timespec ts;
1572
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 1574 have_monotonic = 1;
1304 } 1575 }
1305#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1588
1307 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1308 mn_now = get_clock (); 1590 mn_now = get_clock ();
1309 now_floor = mn_now; 1591 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1311 1596
1312 io_blocktime = 0.; 1597 io_blocktime = 0.;
1313 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1314 backend = 0; 1599 backend = 0;
1315 backend_fd = -1; 1600 backend_fd = -1;
1316 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1317#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1318 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1319#endif 1607#endif
1320 1608#if EV_USE_SIGNALFD
1321 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif 1610#endif
1326
1327 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 1611
1332 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1333 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1334 1614
1335#if EV_USE_PORT 1615#if EV_USE_PORT
1346#endif 1626#endif
1347#if EV_USE_SELECT 1627#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 1629#endif
1350 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1351 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1353 } 1635 }
1354} 1636}
1355 1637
1638/* free up a loop structure */
1356static void noinline 1639static void noinline
1357loop_destroy (EV_P) 1640loop_destroy (EV_P)
1358{ 1641{
1359 int i; 1642 int i;
1360 1643
1361 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1362 { 1645 {
1363 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 1648
1366#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1367 if (evfd >= 0) 1650 if (evfd >= 0)
1368 close (evfd); 1651 close (evfd);
1369#endif 1652#endif
1370 1653
1371 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1372 { 1655 {
1373 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1374 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1375 } 1658 }
1376 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1377 1665
1378#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
1380 close (fs_fd); 1668 close (fs_fd);
1381#endif 1669#endif
1405#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 1694 array_free (idle, [i]);
1407#endif 1695#endif
1408 } 1696 }
1409 1697
1410 ev_free (anfds); anfdmax = 0; 1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 1699
1412 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1417#endif 1706#endif
1426 1715
1427 backend = 0; 1716 backend = 0;
1428} 1717}
1429 1718
1430#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1432#endif 1721#endif
1433 1722
1434void inline_size 1723inline_size void
1435loop_fork (EV_P) 1724loop_fork (EV_P)
1436{ 1725{
1437#if EV_USE_PORT 1726#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 1728#endif
1445#endif 1734#endif
1446#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 1736 infy_fork (EV_A);
1448#endif 1737#endif
1449 1738
1450 if (ev_is_active (&pipeev)) 1739 if (ev_is_active (&pipe_w))
1451 { 1740 {
1452 /* this "locks" the handlers against writing to the pipe */ 1741 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */ 1742 /* while we modify the fd vars */
1454 gotsig = 1; 1743 sig_pending = 1;
1455#if EV_ASYNC_ENABLE 1744#if EV_ASYNC_ENABLE
1456 gotasync = 1; 1745 async_pending = 1;
1457#endif 1746#endif
1458 1747
1459 ev_ref (EV_A); 1748 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 1749 ev_io_stop (EV_A_ &pipe_w);
1461 1750
1462#if EV_USE_EVENTFD 1751#if EV_USE_EVENTFD
1463 if (evfd >= 0) 1752 if (evfd >= 0)
1464 close (evfd); 1753 close (evfd);
1465#endif 1754#endif
1466 1755
1467 if (evpipe [0] >= 0) 1756 if (evpipe [0] >= 0)
1468 { 1757 {
1469 close (evpipe [0]); 1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1470 close (evpipe [1]); 1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1471 } 1760 }
1472 1761
1473 evpipe_init (EV_A); 1762 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 1763 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ); 1764 pipecb (EV_A_ &pipe_w, EV_READ);
1476 } 1765 }
1477 1766
1478 postfork = 0; 1767 postfork = 0;
1479} 1768}
1480 1769
1481#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1482 1771
1483struct ev_loop * 1772struct ev_loop *
1484ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1485{ 1774{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 1776
1488 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1491 1779
1492 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1493 return loop; 1781 return EV_A;
1494 1782
1495 return 0; 1783 return 0;
1496} 1784}
1497 1785
1498void 1786void
1505void 1793void
1506ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1507{ 1795{
1508 postfork = 1; /* must be in line with ev_default_fork */ 1796 postfork = 1; /* must be in line with ev_default_fork */
1509} 1797}
1798#endif /* multiplicity */
1510 1799
1511#if EV_VERIFY 1800#if EV_VERIFY
1512void noinline 1801static void noinline
1513verify_watcher (EV_P_ W w) 1802verify_watcher (EV_P_ W w)
1514{ 1803{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 1805
1517 if (w->pending) 1806 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 1808}
1520 1809
1521static void noinline 1810static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N) 1811verify_heap (EV_P_ ANHE *heap, int N)
1523{ 1812{
1524 int i; 1813 int i;
1525 1814
1526 for (i = HEAP0; i < N + HEAP0; ++i) 1815 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 1816 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 1820
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 1822 }
1534} 1823}
1535 1824
1536static void noinline 1825static void noinline
1537array_verify (EV_P_ W *ws, int cnt) 1826array_verify (EV_P_ W *ws, int cnt)
1538{ 1827{
1539 while (cnt--) 1828 while (cnt--)
1540 { 1829 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 1831 verify_watcher (EV_A_ ws [cnt]);
1543 } 1832 }
1544} 1833}
1545#endif 1834#endif
1546 1835
1836#if EV_MINIMAL < 2
1547void 1837void
1548ev_loop_verify (EV_P) 1838ev_loop_verify (EV_P)
1549{ 1839{
1550#if EV_VERIFY 1840#if EV_VERIFY
1551 int i; 1841 int i;
1553 1843
1554 assert (activecnt >= -1); 1844 assert (activecnt >= -1);
1555 1845
1556 assert (fdchangemax >= fdchangecnt); 1846 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 1847 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 1849
1560 assert (anfdmax >= 0); 1850 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 1851 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next) 1852 for (w = anfds [i].head; w; w = w->next)
1563 { 1853 {
1564 verify_watcher (EV_A_ (W)w); 1854 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 1857 }
1568 1858
1569 assert (timermax >= timercnt); 1859 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 1860 verify_heap (EV_A_ timers, timercnt);
1571 1861
1600 assert (checkmax >= checkcnt); 1890 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 1891 array_verify (EV_A_ (W *)checks, checkcnt);
1602 1892
1603# if 0 1893# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1606# endif
1607#endif 1896# endif
1897#endif
1608} 1898}
1609 1899#endif
1610#endif /* multiplicity */
1611 1900
1612#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1613struct ev_loop * 1902struct ev_loop *
1614ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
1615#else 1904#else
1618#endif 1907#endif
1619{ 1908{
1620 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1621 { 1910 {
1622#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 1913#else
1625 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1626#endif 1915#endif
1627 1916
1628 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1645 1934
1646void 1935void
1647ev_default_destroy (void) 1936ev_default_destroy (void)
1648{ 1937{
1649#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1650 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1651#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1652 1943
1653#ifndef _WIN32 1944#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1656#endif 1947#endif
1660 1951
1661void 1952void
1662ev_default_fork (void) 1953ev_default_fork (void)
1663{ 1954{
1664#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1666#endif 1957#endif
1667 1958
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */ 1959 postfork = 1; /* must be in line with ev_loop_fork */
1670} 1960}
1671 1961
1672/*****************************************************************************/ 1962/*****************************************************************************/
1673 1963
1674void 1964void
1675ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1676{ 1966{
1677 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1678} 1968}
1679 1969
1680void inline_speed 1970unsigned int
1681call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1682{ 1984{
1683 int pri; 1985 int pri;
1684 1986
1685 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1686 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1687 { 1989 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689 1991
1690 if (expect_true (p->w))
1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1693 1994
1694 p->w->pending = 0; 1995 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 1997 EV_FREQUENT_CHECK;
1697 }
1698 } 1998 }
1699} 1999}
1700 2000
1701#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1702void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1703idle_reify (EV_P) 2005idle_reify (EV_P)
1704{ 2006{
1705 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1706 { 2008 {
1707 int pri; 2009 int pri;
1719 } 2021 }
1720 } 2022 }
1721} 2023}
1722#endif 2024#endif
1723 2025
1724void inline_size 2026/* make timers pending */
2027inline_size void
1725timers_reify (EV_P) 2028timers_reify (EV_P)
1726{ 2029{
1727 EV_FREQUENT_CHECK; 2030 EV_FREQUENT_CHECK;
1728 2031
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 2033 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2034 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
1738 ev_at (w) += w->repeat; 2043 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 2044 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 2045 ev_at (w) = mn_now;
1741 2046
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 2048
1744 ANHE_at_cache (timers [HEAP0]); 2049 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
1746 } 2057 }
1747 else 2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 2059
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
1752 } 2061 }
1753} 2062}
1754 2063
1755#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1756void inline_size 2065/* make periodics pending */
2066inline_size void
1757periodics_reify (EV_P) 2067periodics_reify (EV_P)
1758{ 2068{
1759 EV_FREQUENT_CHECK; 2069 EV_FREQUENT_CHECK;
1760 2070
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 2072 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2073 int feed_count = 0;
1764 2074
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2075 do
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 2085
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 2087
1774 ANHE_at_cache (periodics [HEAP0]); 2088 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
1776 } 2115 }
1777 else if (w->interval) 2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 2117
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2118 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 2119 }
1802} 2120}
1803 2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1804static void noinline 2124static void noinline
1805periodics_reschedule (EV_P) 2125periodics_reschedule (EV_P)
1806{ 2126{
1807 int i; 2127 int i;
1808 2128
1821 2141
1822 reheap (periodics, periodiccnt); 2142 reheap (periodics, periodiccnt);
1823} 2143}
1824#endif 2144#endif
1825 2145
1826void inline_speed 2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 2163time_update (EV_P_ ev_tstamp max_block)
1828{ 2164{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 2165#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 2166 if (expect_true (have_monotonic))
1833 { 2167 {
2168 int i;
1834 ev_tstamp odiff = rtmn_diff; 2169 ev_tstamp odiff = rtmn_diff;
1835 2170
1836 mn_now = get_clock (); 2171 mn_now = get_clock ();
1837 2172
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 2200 mn_now = get_clock ();
1866 now_floor = mn_now; 2201 now_floor = mn_now;
1867 } 2202 }
1868 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1871# endif 2208# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 2209 }
1875 else 2210 else
1876#endif 2211#endif
1877 { 2212 {
1878 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1879 2214
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1884#endif 2221#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 2222 }
1893 2223
1894 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1895 } 2225 }
1896} 2226}
1897 2227
1898void 2228void
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1914{ 2230{
2231#if EV_MINIMAL < 2
2232 ++loop_depth;
2233#endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
1915 loop_done = EVUNLOOP_CANCEL; 2237 loop_done = EVUNLOOP_CANCEL;
1916 2238
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 2240
1919 do 2241 do
1920 { 2242 {
1921#if EV_VERIFY >= 2 2243#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 2244 ev_loop_verify (EV_A);
1935 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1937 if (forkcnt) 2259 if (forkcnt)
1938 { 2260 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1941 } 2263 }
1942#endif 2264#endif
1943 2265
1944 /* queue prepare watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1946 { 2268 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1949 } 2271 }
1950 2272
1951 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1952 break; 2274 break;
1953 2275
1954 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1956 loop_fork (EV_A); 2278 loop_fork (EV_A);
1963 ev_tstamp waittime = 0.; 2285 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 2286 ev_tstamp sleeptime = 0.;
1965 2287
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1967 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1968 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100); 2294 time_update (EV_A_ 1e100);
1970 2295
1971 waittime = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1972 2297
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1983 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1984 } 2309 }
1985#endif 2310#endif
1986 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 2313 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 2314 waittime = timeout_blocktime;
1989 2315
1990 sleeptime = waittime - backend_fudge; 2316 /* extra check because io_blocktime is commonly 0 */
1991
1992 if (expect_true (sleeptime > io_blocktime)) 2317 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
1997 ev_sleep (sleeptime); 2326 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 2327 waittime -= sleeptime;
2328 }
1999 } 2329 }
2000 } 2330 }
2001 2331
2332#if EV_MINIMAL < 2
2002 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2004 2338
2005 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 2340 time_update (EV_A_ waittime + sleeptime);
2007 } 2341 }
2008 2342
2019 2353
2020 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2023 2357
2024 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
2025 } 2359 }
2026 while (expect_true ( 2360 while (expect_true (
2027 activecnt 2361 activecnt
2028 && !loop_done 2362 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 )); 2364 ));
2031 2365
2032 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
2034} 2372}
2035 2373
2036void 2374void
2037ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
2038{ 2376{
2039 loop_done = how; 2377 loop_done = how;
2040} 2378}
2041 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
2042/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
2043 2419
2044void inline_size 2420inline_size void
2045wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
2046{ 2422{
2047 elem->next = *head; 2423 elem->next = *head;
2048 *head = elem; 2424 *head = elem;
2049} 2425}
2050 2426
2051void inline_size 2427inline_size void
2052wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
2053{ 2429{
2054 while (*head) 2430 while (*head)
2055 { 2431 {
2056 if (*head == elem) 2432 if (expect_true (*head == elem))
2057 { 2433 {
2058 *head = elem->next; 2434 *head = elem->next;
2059 return; 2435 break;
2060 } 2436 }
2061 2437
2062 head = &(*head)->next; 2438 head = &(*head)->next;
2063 } 2439 }
2064} 2440}
2065 2441
2066void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
2067clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
2068{ 2445{
2069 if (w->pending) 2446 if (w->pending)
2070 { 2447 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 2449 w->pending = 0;
2073 } 2450 }
2074} 2451}
2075 2452
2076int 2453int
2080 int pending = w_->pending; 2457 int pending = w_->pending;
2081 2458
2082 if (expect_true (pending)) 2459 if (expect_true (pending))
2083 { 2460 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2085 w_->pending = 0; 2463 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 2464 return p->events;
2088 } 2465 }
2089 else 2466 else
2090 return 0; 2467 return 0;
2091} 2468}
2092 2469
2093void inline_size 2470inline_size void
2094pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
2095{ 2472{
2096 int pri = w->priority; 2473 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 2476 ev_set_priority (w, pri);
2100} 2477}
2101 2478
2102void inline_speed 2479inline_speed void
2103ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
2104{ 2481{
2105 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
2106 w->active = active; 2483 w->active = active;
2107 ev_ref (EV_A); 2484 ev_ref (EV_A);
2108} 2485}
2109 2486
2110void inline_size 2487inline_size void
2111ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
2112{ 2489{
2113 ev_unref (EV_A); 2490 ev_unref (EV_A);
2114 w->active = 0; 2491 w->active = 0;
2115} 2492}
2122 int fd = w->fd; 2499 int fd = w->fd;
2123 2500
2124 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
2125 return; 2502 return;
2126 2503
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 2506
2129 EV_FREQUENT_CHECK; 2507 EV_FREQUENT_CHECK;
2130 2508
2131 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
2134 2512
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 2514 w->events &= ~EV__IOFDSET;
2137 2515
2138 EV_FREQUENT_CHECK; 2516 EV_FREQUENT_CHECK;
2139} 2517}
2140 2518
2141void noinline 2519void noinline
2143{ 2521{
2144 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
2146 return; 2524 return;
2147 2525
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 2527
2150 EV_FREQUENT_CHECK; 2528 EV_FREQUENT_CHECK;
2151 2529
2152 wlist_del (&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
2163 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
2164 return; 2542 return;
2165 2543
2166 ev_at (w) += mn_now; 2544 ev_at (w) += mn_now;
2167 2545
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 2547
2170 EV_FREQUENT_CHECK; 2548 EV_FREQUENT_CHECK;
2171 2549
2172 ++timercnt; 2550 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 2554 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 2555 upheap (timers, ev_active (w));
2178 2556
2179 EV_FREQUENT_CHECK; 2557 EV_FREQUENT_CHECK;
2180 2558
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 2560}
2183 2561
2184void noinline 2562void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
2186{ 2564{
2191 EV_FREQUENT_CHECK; 2569 EV_FREQUENT_CHECK;
2192 2570
2193 { 2571 {
2194 int active = ev_active (w); 2572 int active = ev_active (w);
2195 2573
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 2575
2198 --timercnt; 2576 --timercnt;
2199 2577
2200 if (expect_true (active < timercnt + HEAP0)) 2578 if (expect_true (active < timercnt + HEAP0))
2201 { 2579 {
2234 } 2612 }
2235 2613
2236 EV_FREQUENT_CHECK; 2614 EV_FREQUENT_CHECK;
2237} 2615}
2238 2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621}
2622
2239#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
2240void noinline 2624void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
2242{ 2626{
2243 if (expect_false (ev_is_active (w))) 2627 if (expect_false (ev_is_active (w)))
2245 2629
2246 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 2632 else if (w->interval)
2249 { 2633 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 2637 }
2254 else 2638 else
2255 ev_at (w) = w->offset; 2639 ev_at (w) = w->offset;
2263 ANHE_at_cache (periodics [ev_active (w)]); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 2648 upheap (periodics, ev_active (w));
2265 2649
2266 EV_FREQUENT_CHECK; 2650 EV_FREQUENT_CHECK;
2267 2651
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 2653}
2270 2654
2271void noinline 2655void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
2273{ 2657{
2278 EV_FREQUENT_CHECK; 2662 EV_FREQUENT_CHECK;
2279 2663
2280 { 2664 {
2281 int active = ev_active (w); 2665 int active = ev_active (w);
2282 2666
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 2668
2285 --periodiccnt; 2669 --periodiccnt;
2286 2670
2287 if (expect_true (active < periodiccnt + HEAP0)) 2671 if (expect_true (active < periodiccnt + HEAP0))
2288 { 2672 {
2310#endif 2694#endif
2311 2695
2312void noinline 2696void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
2314{ 2698{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2319 return; 2700 return;
2320 2701
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 2703
2323 evpipe_init (EV_A); 2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 2707
2325 EV_FREQUENT_CHECK; 2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2326 2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2327 { 2715 {
2328#ifndef _WIN32 2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 2717 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 2719
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2335 2723
2336#ifndef _WIN32 2724 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 2725
2338#endif 2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2339 } 2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2340 2742
2341 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 2745
2344 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2345 { 2750 {
2346#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2347 signal (w->signum, ev_sighandler); 2754 signal (w->signum, ev_sighandler);
2348#else 2755# else
2349 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2350 sa.sa_handler = ev_sighandler; 2760 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2354#endif 2768#endif
2355 } 2769 }
2356 2770
2357 EV_FREQUENT_CHECK; 2771 EV_FREQUENT_CHECK;
2358} 2772}
2359 2773
2360void noinline 2774void noinline
2368 2782
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
2371 2785
2372 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
2373 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2374 2804
2375 EV_FREQUENT_CHECK; 2805 EV_FREQUENT_CHECK;
2376} 2806}
2377 2807
2378void 2808void
2379ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
2380{ 2810{
2381#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 2813#endif
2384 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
2385 return; 2815 return;
2386 2816
2387 EV_FREQUENT_CHECK; 2817 EV_FREQUENT_CHECK;
2412# ifdef _WIN32 2842# ifdef _WIN32
2413# undef lstat 2843# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 2844# define lstat(a,b) _stati64 (a,b)
2415# endif 2845# endif
2416 2846
2417#define DEF_STAT_INTERVAL 5.0074891 2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 2849#define MIN_STAT_INTERVAL 0.1074891
2419 2850
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 2852
2422#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 2854# define EV_INOTIFY_BUFSIZE 8192
2425static void noinline 2856static void noinline
2426infy_add (EV_P_ ev_stat *w) 2857infy_add (EV_P_ ev_stat *w)
2427{ 2858{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 2860
2430 if (w->wd < 0) 2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 2881 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 2886
2434 /* monitor some parent directory for speedup hints */ 2887 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 2889 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 2891 {
2439 char path [4096]; 2892 char path [4096];
2440 strcpy (path, w->path); 2893 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 2899
2447 char *pend = strrchr (path, '/'); 2900 char *pend = strrchr (path, '/');
2448 2901
2449 if (!pend) 2902 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 2903 break;
2451 2904
2452 *pend = 0; 2905 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 2906 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 2907 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 2909 }
2457 } 2910 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 2911
2461 if (w->wd >= 0) 2912 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 2919}
2464 2920
2465static void noinline 2921static void noinline
2466infy_del (EV_P_ ev_stat *w) 2922infy_del (EV_P_ ev_stat *w)
2467{ 2923{
2481 2937
2482static void noinline 2938static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2939infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 2940{
2485 if (slot < 0) 2941 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 2942 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 2944 infy_wd (EV_A_ slot, wd, ev);
2489 else 2945 else
2490 { 2946 {
2491 WL w_; 2947 WL w_;
2497 2953
2498 if (w->wd == wd || wd == -1) 2954 if (w->wd == wd || wd == -1)
2499 { 2955 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2502 w->wd = -1; 2959 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 2960 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 2961 }
2505 2962
2506 stat_timer_cb (EV_A_ &w->timer, 0); 2963 stat_timer_cb (EV_A_ &w->timer, 0);
2519 2976
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522} 2979}
2523 2980
2524void inline_size 2981inline_size void
2982check_2625 (EV_P)
2983{
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002}
3003
3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
2525infy_init (EV_P) 3016infy_init (EV_P)
2526{ 3017{
2527 if (fs_fd != -2) 3018 if (fs_fd != -2)
2528 return; 3019 return;
2529 3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
2530 fs_fd = inotify_init (); 3025 fs_fd = infy_newfd ();
2531 3026
2532 if (fs_fd >= 0) 3027 if (fs_fd >= 0)
2533 { 3028 {
3029 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 3031 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
2537 } 3034 }
2538} 3035}
2539 3036
2540void inline_size 3037inline_size void
2541infy_fork (EV_P) 3038infy_fork (EV_P)
2542{ 3039{
2543 int slot; 3040 int slot;
2544 3041
2545 if (fs_fd < 0) 3042 if (fs_fd < 0)
2546 return; 3043 return;
2547 3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 3047 close (fs_fd);
2549 fs_fd = inotify_init (); 3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
2550 3057
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2552 { 3059 {
2553 WL w_ = fs_hash [slot].head; 3060 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 3061 fs_hash [slot].head = 0;
2561 w->wd = -1; 3068 w->wd = -1;
2562 3069
2563 if (fs_fd >= 0) 3070 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 3071 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
2567 } 3079 }
2568
2569 } 3080 }
2570} 3081}
2571 3082
3083#endif
3084
3085#ifdef _WIN32
3086# define EV_LSTAT(p,b) _stati64 (p, b)
3087#else
3088# define EV_LSTAT(p,b) lstat (p, b)
2572#endif 3089#endif
2573 3090
2574void 3091void
2575ev_stat_stat (EV_P_ ev_stat *w) 3092ev_stat_stat (EV_P_ ev_stat *w)
2576{ 3093{
2603 || w->prev.st_atime != w->attr.st_atime 3120 || w->prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime 3121 || w->prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime 3122 || w->prev.st_ctime != w->attr.st_ctime
2606 ) { 3123 ) {
2607 #if EV_USE_INOTIFY 3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
2608 infy_del (EV_A_ w); 3127 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w); 3128 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */ 3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
2611 #endif 3131 #endif
2612 3132
2613 ev_feed_event (EV_A_ w, EV_STAT); 3133 ev_feed_event (EV_A_ w, EV_STAT);
2614 } 3134 }
2615} 3135}
2618ev_stat_start (EV_P_ ev_stat *w) 3138ev_stat_start (EV_P_ ev_stat *w)
2619{ 3139{
2620 if (expect_false (ev_is_active (w))) 3140 if (expect_false (ev_is_active (w)))
2621 return; 3141 return;
2622 3142
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w); 3143 ev_stat_stat (EV_A_ w);
2628 3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2629 if (w->interval < MIN_STAT_INTERVAL) 3146 w->interval = MIN_STAT_INTERVAL;
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631 3147
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2633 ev_set_priority (&w->timer, ev_priority (w)); 3149 ev_set_priority (&w->timer, ev_priority (w));
2634 3150
2635#if EV_USE_INOTIFY 3151#if EV_USE_INOTIFY
2636 infy_init (EV_A); 3152 infy_init (EV_A);
2637 3153
2638 if (fs_fd >= 0) 3154 if (fs_fd >= 0)
2639 infy_add (EV_A_ w); 3155 infy_add (EV_A_ w);
2640 else 3156 else
2641#endif 3157#endif
3158 {
2642 ev_timer_start (EV_A_ &w->timer); 3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
2643 3162
2644 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
2645 3164
2646 EV_FREQUENT_CHECK; 3165 EV_FREQUENT_CHECK;
2647} 3166}
2656 EV_FREQUENT_CHECK; 3175 EV_FREQUENT_CHECK;
2657 3176
2658#if EV_USE_INOTIFY 3177#if EV_USE_INOTIFY
2659 infy_del (EV_A_ w); 3178 infy_del (EV_A_ w);
2660#endif 3179#endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
2661 ev_timer_stop (EV_A_ &w->timer); 3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
2662 3186
2663 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
2664 3188
2665 EV_FREQUENT_CHECK; 3189 EV_FREQUENT_CHECK;
2666} 3190}
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{ 3332{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810 3334
2811 { 3335 {
2812 struct ev_loop *loop = w->other; 3336 EV_P = w->other;
2813 3337
2814 while (fdchangecnt) 3338 while (fdchangecnt)
2815 { 3339 {
2816 fd_reify (EV_A); 3340 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 } 3342 }
2819 } 3343 }
2820} 3344}
2821 3345
3346static void
3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3348{
3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3350
3351 ev_embed_stop (EV_A_ w);
3352
3353 {
3354 EV_P = w->other;
3355
3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3358 }
3359
3360 ev_embed_start (EV_A_ w);
3361}
3362
2822#if 0 3363#if 0
2823static void 3364static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{ 3366{
2826 ev_idle_stop (EV_A_ idle); 3367 ev_idle_stop (EV_A_ idle);
2832{ 3373{
2833 if (expect_false (ev_is_active (w))) 3374 if (expect_false (ev_is_active (w)))
2834 return; 3375 return;
2835 3376
2836 { 3377 {
2837 struct ev_loop *loop = w->other; 3378 EV_P = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 } 3381 }
2841 3382
2842 EV_FREQUENT_CHECK; 3383 EV_FREQUENT_CHECK;
2843 3384
2846 3387
2847 ev_prepare_init (&w->prepare, embed_prepare_cb); 3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI); 3389 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare); 3390 ev_prepare_start (EV_A_ &w->prepare);
2850 3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852 3396
2853 ev_start (EV_A_ (W)w, 1); 3397 ev_start (EV_A_ (W)w, 1);
2854 3398
2855 EV_FREQUENT_CHECK; 3399 EV_FREQUENT_CHECK;
2862 if (expect_false (!ev_is_active (w))) 3406 if (expect_false (!ev_is_active (w)))
2863 return; 3407 return;
2864 3408
2865 EV_FREQUENT_CHECK; 3409 EV_FREQUENT_CHECK;
2866 3410
2867 ev_io_stop (EV_A_ &w->io); 3411 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare); 3412 ev_prepare_stop (EV_A_ &w->prepare);
2869 3413 ev_fork_stop (EV_A_ &w->fork);
2870 ev_stop (EV_A_ (W)w);
2871 3414
2872 EV_FREQUENT_CHECK; 3415 EV_FREQUENT_CHECK;
2873} 3416}
2874#endif 3417#endif
2875 3418
2952 3495
2953void 3496void
2954ev_async_send (EV_P_ ev_async *w) 3497ev_async_send (EV_P_ ev_async *w)
2955{ 3498{
2956 w->sent = 1; 3499 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync); 3500 evpipe_write (EV_A_ &async_pending);
2958} 3501}
2959#endif 3502#endif
2960 3503
2961/*****************************************************************************/ 3504/*****************************************************************************/
2962 3505
2972once_cb (EV_P_ struct ev_once *once, int revents) 3515once_cb (EV_P_ struct ev_once *once, int revents)
2973{ 3516{
2974 void (*cb)(int revents, void *arg) = once->cb; 3517 void (*cb)(int revents, void *arg) = once->cb;
2975 void *arg = once->arg; 3518 void *arg = once->arg;
2976 3519
2977 ev_io_stop (EV_A_ &once->io); 3520 ev_io_stop (EV_A_ &once->io);
2978 ev_timer_stop (EV_A_ &once->to); 3521 ev_timer_stop (EV_A_ &once->to);
2979 ev_free (once); 3522 ev_free (once);
2980 3523
2981 cb (revents, arg); 3524 cb (revents, arg);
2982} 3525}
2983 3526
2984static void 3527static void
2985once_cb_io (EV_P_ ev_io *w, int revents) 3528once_cb_io (EV_P_ ev_io *w, int revents)
2986{ 3529{
2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2988} 3533}
2989 3534
2990static void 3535static void
2991once_cb_to (EV_P_ ev_timer *w, int revents) 3536once_cb_to (EV_P_ ev_timer *w, int revents)
2992{ 3537{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2994} 3541}
2995 3542
2996void 3543void
2997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3544ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2998{ 3545{
3020 ev_timer_set (&once->to, timeout, 0.); 3567 ev_timer_set (&once->to, timeout, 0.);
3021 ev_timer_start (EV_A_ &once->to); 3568 ev_timer_start (EV_A_ &once->to);
3022 } 3569 }
3023} 3570}
3024 3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
3626
3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
3633
3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
3640
3641#if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645#endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649#if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651#endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675/* EV_STAT 0x00001000 /* stat data changed */
3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677}
3678#endif
3679
3025#if EV_MULTIPLICITY 3680#if EV_MULTIPLICITY
3026 #include "ev_wrap.h" 3681 #include "ev_wrap.h"
3027#endif 3682#endif
3028 3683
3029#ifdef __cplusplus 3684#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines