ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC vs.
Revision 1.456 by root, Thu Jul 4 22:32:23 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 267# else
172# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
173# endif 269# endif
174#endif 270#endif
175 271
176#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 274#endif
179 275
180#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 279# else
184# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
185# endif 281# endif
186#endif 282#endif
187 283
188#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 286#endif
191 287
192#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
193# ifdef _WIN32 289# ifdef _WIN32
194# define EV_USE_POLL 0 290# define EV_USE_POLL 0
195# else 291# else
196# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 293# endif
198#endif 294#endif
199 295
200#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 299# else
204# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
205# endif 301# endif
206#endif 302#endif
207 303
213# define EV_USE_PORT 0 309# define EV_USE_PORT 0
214#endif 310#endif
215 311
216#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 315# else
220# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
221# endif 317# endif
222#endif 318#endif
223 319
224#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 322#endif
231 323
232#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 326#endif
239 327
240#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 331# else
244# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
245# endif 341# endif
246#endif 342#endif
247 343
248#if 0 /* debugging */ 344#if 0 /* debugging */
249# define EV_VERIFY 3 345# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
252#endif 348#endif
253 349
254#ifndef EV_VERIFY 350#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 352#endif
257 353
258#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 356#endif
261 357
262#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
264#endif 390#endif
265 391
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 393
268#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
279# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
281#endif 407#endif
282 408
283#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 412# include <sys/select.h>
286# endif 413# endif
287#endif 414#endif
288 415
289#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
290# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
291#endif 423# endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif 424#endif
296 425
297#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 428# include <stdint.h>
300# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
301extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
302# endif 431# endif
303int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 433# ifdef O_CLOEXEC
305} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
306# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
307#endif 462#endif
308 463
309/**/ 464/**/
310 465
311#if EV_VERIFY >= 3 466#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 467# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 468#else
314# define EV_FREQUENT_CHECK do { } while (0) 469# define EV_FREQUENT_CHECK do { } while (0)
315#endif 470#endif
316 471
317/* 472/*
318 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 475 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 478
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 529 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
334#else 545#else
335# define expect(expr,value) (expr) 546 #include <inttypes.h>
336# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
338# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
339# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
340#endif 560 #endif
561#endif
341 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #endif
643 #endif
644#endif
645
646#ifndef ECB_MEMORY_FENCE
647 #if ECB_GCC_VERSION(4,7)
648 /* see comment below (stdatomic.h) about the C11 memory model. */
649 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
650
651 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
652 * without risking compile time errors with other compilers. We *could*
653 * define our own ecb_clang_has_feature, but I just can't be bothered to work
654 * around this shit time and again.
655 * #elif defined __clang && __has_feature (cxx_atomic)
656 * // see comment below (stdatomic.h) about the C11 memory model.
657 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
658 */
659
660 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
661 #define ECB_MEMORY_FENCE __sync_synchronize ()
662 #elif _MSC_VER >= 1400 /* VC++ 2005 */
663 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
664 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
665 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
666 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
667 #elif defined _WIN32
668 #include <WinNT.h>
669 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
670 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #include <mbarrier.h>
672 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
673 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
674 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
675 #elif __xlC__
676 #define ECB_MEMORY_FENCE __sync ()
677 #endif
678#endif
679
680#ifndef ECB_MEMORY_FENCE
681 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
682 /* we assume that these memory fences work on all variables/all memory accesses, */
683 /* not just C11 atomics and atomic accesses */
684 #include <stdatomic.h>
685 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
686 /* any fence other than seq_cst, which isn't very efficient for us. */
687 /* Why that is, we don't know - either the C11 memory model is quite useless */
688 /* for most usages, or gcc and clang have a bug */
689 /* I *currently* lean towards the latter, and inefficiently implement */
690 /* all three of ecb's fences as a seq_cst fence */
691 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
692 #endif
693#endif
694
695#ifndef ECB_MEMORY_FENCE
696 #if !ECB_AVOID_PTHREADS
697 /*
698 * if you get undefined symbol references to pthread_mutex_lock,
699 * or failure to find pthread.h, then you should implement
700 * the ECB_MEMORY_FENCE operations for your cpu/compiler
701 * OR provide pthread.h and link against the posix thread library
702 * of your system.
703 */
704 #include <pthread.h>
705 #define ECB_NEEDS_PTHREADS 1
706 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
707
708 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
709 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
710 #endif
711#endif
712
713#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
714 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
715#endif
716
717#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
718 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
719#endif
720
721/*****************************************************************************/
722
723#if __cplusplus
724 #define ecb_inline static inline
725#elif ECB_GCC_VERSION(2,5)
726 #define ecb_inline static __inline__
727#elif ECB_C99
728 #define ecb_inline static inline
729#else
730 #define ecb_inline static
731#endif
732
733#if ECB_GCC_VERSION(3,3)
734 #define ecb_restrict __restrict__
735#elif ECB_C99
736 #define ecb_restrict restrict
737#else
738 #define ecb_restrict
739#endif
740
741typedef int ecb_bool;
742
743#define ECB_CONCAT_(a, b) a ## b
744#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
745#define ECB_STRINGIFY_(a) # a
746#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
747
748#define ecb_function_ ecb_inline
749
750#if ECB_GCC_VERSION(3,1)
751 #define ecb_attribute(attrlist) __attribute__(attrlist)
752 #define ecb_is_constant(expr) __builtin_constant_p (expr)
753 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
754 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
755#else
756 #define ecb_attribute(attrlist)
757 #define ecb_is_constant(expr) 0
758 #define ecb_expect(expr,value) (expr)
759 #define ecb_prefetch(addr,rw,locality)
760#endif
761
762/* no emulation for ecb_decltype */
763#if ECB_GCC_VERSION(4,5)
764 #define ecb_decltype(x) __decltype(x)
765#elif ECB_GCC_VERSION(3,0)
766 #define ecb_decltype(x) __typeof(x)
767#endif
768
769#define ecb_noinline ecb_attribute ((__noinline__))
770#define ecb_unused ecb_attribute ((__unused__))
771#define ecb_const ecb_attribute ((__const__))
772#define ecb_pure ecb_attribute ((__pure__))
773
774#if ECB_C11
775 #define ecb_noreturn _Noreturn
776#else
777 #define ecb_noreturn ecb_attribute ((__noreturn__))
778#endif
779
780#if ECB_GCC_VERSION(4,3)
781 #define ecb_artificial ecb_attribute ((__artificial__))
782 #define ecb_hot ecb_attribute ((__hot__))
783 #define ecb_cold ecb_attribute ((__cold__))
784#else
785 #define ecb_artificial
786 #define ecb_hot
787 #define ecb_cold
788#endif
789
790/* put around conditional expressions if you are very sure that the */
791/* expression is mostly true or mostly false. note that these return */
792/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 793#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 794#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
795/* for compatibility to the rest of the world */
796#define ecb_likely(expr) ecb_expect_true (expr)
797#define ecb_unlikely(expr) ecb_expect_false (expr)
798
799/* count trailing zero bits and count # of one bits */
800#if ECB_GCC_VERSION(3,4)
801 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
802 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
803 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
804 #define ecb_ctz32(x) __builtin_ctz (x)
805 #define ecb_ctz64(x) __builtin_ctzll (x)
806 #define ecb_popcount32(x) __builtin_popcount (x)
807 /* no popcountll */
808#else
809 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
810 ecb_function_ int
811 ecb_ctz32 (uint32_t x)
812 {
813 int r = 0;
814
815 x &= ~x + 1; /* this isolates the lowest bit */
816
817#if ECB_branchless_on_i386
818 r += !!(x & 0xaaaaaaaa) << 0;
819 r += !!(x & 0xcccccccc) << 1;
820 r += !!(x & 0xf0f0f0f0) << 2;
821 r += !!(x & 0xff00ff00) << 3;
822 r += !!(x & 0xffff0000) << 4;
823#else
824 if (x & 0xaaaaaaaa) r += 1;
825 if (x & 0xcccccccc) r += 2;
826 if (x & 0xf0f0f0f0) r += 4;
827 if (x & 0xff00ff00) r += 8;
828 if (x & 0xffff0000) r += 16;
829#endif
830
831 return r;
832 }
833
834 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
835 ecb_function_ int
836 ecb_ctz64 (uint64_t x)
837 {
838 int shift = x & 0xffffffffU ? 0 : 32;
839 return ecb_ctz32 (x >> shift) + shift;
840 }
841
842 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
843 ecb_function_ int
844 ecb_popcount32 (uint32_t x)
845 {
846 x -= (x >> 1) & 0x55555555;
847 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
848 x = ((x >> 4) + x) & 0x0f0f0f0f;
849 x *= 0x01010101;
850
851 return x >> 24;
852 }
853
854 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
855 ecb_function_ int ecb_ld32 (uint32_t x)
856 {
857 int r = 0;
858
859 if (x >> 16) { x >>= 16; r += 16; }
860 if (x >> 8) { x >>= 8; r += 8; }
861 if (x >> 4) { x >>= 4; r += 4; }
862 if (x >> 2) { x >>= 2; r += 2; }
863 if (x >> 1) { r += 1; }
864
865 return r;
866 }
867
868 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
869 ecb_function_ int ecb_ld64 (uint64_t x)
870 {
871 int r = 0;
872
873 if (x >> 32) { x >>= 32; r += 32; }
874
875 return r + ecb_ld32 (x);
876 }
877#endif
878
879ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
880ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
881ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
882ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
883
884ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
885ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
886{
887 return ( (x * 0x0802U & 0x22110U)
888 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
889}
890
891ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
892ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
893{
894 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
895 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
896 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
897 x = ( x >> 8 ) | ( x << 8);
898
899 return x;
900}
901
902ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
903ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
904{
905 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
906 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
907 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
908 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
909 x = ( x >> 16 ) | ( x << 16);
910
911 return x;
912}
913
914/* popcount64 is only available on 64 bit cpus as gcc builtin */
915/* so for this version we are lazy */
916ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
917ecb_function_ int
918ecb_popcount64 (uint64_t x)
919{
920 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
921}
922
923ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
924ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
925ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
926ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
927ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
928ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
929ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
930ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
931
932ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
933ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
934ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
935ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
936ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
937ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
938ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
939ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
940
941#if ECB_GCC_VERSION(4,3)
942 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
943 #define ecb_bswap32(x) __builtin_bswap32 (x)
944 #define ecb_bswap64(x) __builtin_bswap64 (x)
945#else
946 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
947 ecb_function_ uint16_t
948 ecb_bswap16 (uint16_t x)
949 {
950 return ecb_rotl16 (x, 8);
951 }
952
953 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
954 ecb_function_ uint32_t
955 ecb_bswap32 (uint32_t x)
956 {
957 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
958 }
959
960 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
961 ecb_function_ uint64_t
962 ecb_bswap64 (uint64_t x)
963 {
964 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
965 }
966#endif
967
968#if ECB_GCC_VERSION(4,5)
969 #define ecb_unreachable() __builtin_unreachable ()
970#else
971 /* this seems to work fine, but gcc always emits a warning for it :/ */
972 ecb_inline void ecb_unreachable (void) ecb_noreturn;
973 ecb_inline void ecb_unreachable (void) { }
974#endif
975
976/* try to tell the compiler that some condition is definitely true */
977#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
978
979ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
980ecb_inline unsigned char
981ecb_byteorder_helper (void)
982{
983 /* the union code still generates code under pressure in gcc, */
984 /* but less than using pointers, and always seems to */
985 /* successfully return a constant. */
986 /* the reason why we have this horrible preprocessor mess */
987 /* is to avoid it in all cases, at least on common architectures */
988 /* or when using a recent enough gcc version (>= 4.6) */
989#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
990 return 0x44;
991#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
992 return 0x44;
993#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
994 return 0x11;
995#else
996 union
997 {
998 uint32_t i;
999 uint8_t c;
1000 } u = { 0x11223344 };
1001 return u.c;
1002#endif
1003}
1004
1005ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1006ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1007ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1008ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1009
1010#if ECB_GCC_VERSION(3,0) || ECB_C99
1011 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1012#else
1013 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1014#endif
1015
1016#if __cplusplus
1017 template<typename T>
1018 static inline T ecb_div_rd (T val, T div)
1019 {
1020 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1021 }
1022 template<typename T>
1023 static inline T ecb_div_ru (T val, T div)
1024 {
1025 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1026 }
1027#else
1028 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1029 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1030#endif
1031
1032#if ecb_cplusplus_does_not_suck
1033 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1034 template<typename T, int N>
1035 static inline int ecb_array_length (const T (&arr)[N])
1036 {
1037 return N;
1038 }
1039#else
1040 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1041#endif
1042
1043/*******************************************************************************/
1044/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1045
1046/* basically, everything uses "ieee pure-endian" floating point numbers */
1047/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1048#if 0 \
1049 || __i386 || __i386__ \
1050 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1051 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1052 || defined __arm__ && defined __ARM_EABI__ \
1053 || defined __s390__ || defined __s390x__ \
1054 || defined __mips__ \
1055 || defined __alpha__ \
1056 || defined __hppa__ \
1057 || defined __ia64__ \
1058 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1059 #define ECB_STDFP 1
1060 #include <string.h> /* for memcpy */
1061#else
1062 #define ECB_STDFP 0
1063 #include <math.h> /* for frexp*, ldexp* */
1064#endif
1065
1066#ifndef ECB_NO_LIBM
1067
1068 /* convert a float to ieee single/binary32 */
1069 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1070 ecb_function_ uint32_t
1071 ecb_float_to_binary32 (float x)
1072 {
1073 uint32_t r;
1074
1075 #if ECB_STDFP
1076 memcpy (&r, &x, 4);
1077 #else
1078 /* slow emulation, works for anything but -0 */
1079 uint32_t m;
1080 int e;
1081
1082 if (x == 0e0f ) return 0x00000000U;
1083 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1084 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1085 if (x != x ) return 0x7fbfffffU;
1086
1087 m = frexpf (x, &e) * 0x1000000U;
1088
1089 r = m & 0x80000000U;
1090
1091 if (r)
1092 m = -m;
1093
1094 if (e <= -126)
1095 {
1096 m &= 0xffffffU;
1097 m >>= (-125 - e);
1098 e = -126;
1099 }
1100
1101 r |= (e + 126) << 23;
1102 r |= m & 0x7fffffU;
1103 #endif
1104
1105 return r;
1106 }
1107
1108 /* converts an ieee single/binary32 to a float */
1109 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1110 ecb_function_ float
1111 ecb_binary32_to_float (uint32_t x)
1112 {
1113 float r;
1114
1115 #if ECB_STDFP
1116 memcpy (&r, &x, 4);
1117 #else
1118 /* emulation, only works for normals and subnormals and +0 */
1119 int neg = x >> 31;
1120 int e = (x >> 23) & 0xffU;
1121
1122 x &= 0x7fffffU;
1123
1124 if (e)
1125 x |= 0x800000U;
1126 else
1127 e = 1;
1128
1129 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1130 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1131
1132 r = neg ? -r : r;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* convert a double to ieee double/binary64 */
1139 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1140 ecb_function_ uint64_t
1141 ecb_double_to_binary64 (double x)
1142 {
1143 uint64_t r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 8);
1147 #else
1148 /* slow emulation, works for anything but -0 */
1149 uint64_t m;
1150 int e;
1151
1152 if (x == 0e0 ) return 0x0000000000000000U;
1153 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1154 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1155 if (x != x ) return 0X7ff7ffffffffffffU;
1156
1157 m = frexp (x, &e) * 0x20000000000000U;
1158
1159 r = m & 0x8000000000000000;;
1160
1161 if (r)
1162 m = -m;
1163
1164 if (e <= -1022)
1165 {
1166 m &= 0x1fffffffffffffU;
1167 m >>= (-1021 - e);
1168 e = -1022;
1169 }
1170
1171 r |= ((uint64_t)(e + 1022)) << 52;
1172 r |= m & 0xfffffffffffffU;
1173 #endif
1174
1175 return r;
1176 }
1177
1178 /* converts an ieee double/binary64 to a double */
1179 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1180 ecb_function_ double
1181 ecb_binary64_to_double (uint64_t x)
1182 {
1183 double r;
1184
1185 #if ECB_STDFP
1186 memcpy (&r, &x, 8);
1187 #else
1188 /* emulation, only works for normals and subnormals and +0 */
1189 int neg = x >> 63;
1190 int e = (x >> 52) & 0x7ffU;
1191
1192 x &= 0xfffffffffffffU;
1193
1194 if (e)
1195 x |= 0x10000000000000U;
1196 else
1197 e = 1;
1198
1199 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1200 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1201
1202 r = neg ? -r : r;
1203 #endif
1204
1205 return r;
1206 }
1207
1208#endif
1209
1210#endif
1211
1212/* ECB.H END */
1213
1214#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1215/* if your architecture doesn't need memory fences, e.g. because it is
1216 * single-cpu/core, or if you use libev in a project that doesn't use libev
1217 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1218 * libev, in which cases the memory fences become nops.
1219 * alternatively, you can remove this #error and link against libpthread,
1220 * which will then provide the memory fences.
1221 */
1222# error "memory fences not defined for your architecture, please report"
1223#endif
1224
1225#ifndef ECB_MEMORY_FENCE
1226# define ECB_MEMORY_FENCE do { } while (0)
1227# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1228# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1229#endif
1230
1231#define expect_false(cond) ecb_expect_false (cond)
1232#define expect_true(cond) ecb_expect_true (cond)
1233#define noinline ecb_noinline
1234
344#define inline_size static inline 1235#define inline_size ecb_inline
345 1236
346#if EV_MINIMAL 1237#if EV_FEATURE_CODE
1238# define inline_speed ecb_inline
1239#else
347# define inline_speed static noinline 1240# define inline_speed static noinline
1241#endif
1242
1243#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1244
1245#if EV_MINPRI == EV_MAXPRI
1246# define ABSPRI(w) (((W)w), 0)
348#else 1247#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1248# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1249#endif
354 1250
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1251#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 1252#define EMPTY2(a,b) /* used to suppress some warnings */
357 1253
358typedef ev_watcher *W; 1254typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 1256typedef ev_watcher_time *WT;
361 1257
362#define ev_active(w) ((W)(w))->active 1258#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 1259#define ev_at(w) ((WT)(w))->at
364 1260
1261#if EV_USE_REALTIME
1262/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1263/* giving it a reasonably high chance of working on typical architectures */
1264static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1265#endif
1266
365#if EV_USE_MONOTONIC 1267#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1268static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1269#endif
1270
1271#ifndef EV_FD_TO_WIN32_HANDLE
1272# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1273#endif
1274#ifndef EV_WIN32_HANDLE_TO_FD
1275# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1276#endif
1277#ifndef EV_WIN32_CLOSE_FD
1278# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1279#endif
370 1280
371#ifdef _WIN32 1281#ifdef _WIN32
372# include "ev_win32.c" 1282# include "ev_win32.c"
373#endif 1283#endif
374 1284
375/*****************************************************************************/ 1285/*****************************************************************************/
376 1286
1287/* define a suitable floor function (only used by periodics atm) */
1288
1289#if EV_USE_FLOOR
1290# include <math.h>
1291# define ev_floor(v) floor (v)
1292#else
1293
1294#include <float.h>
1295
1296/* a floor() replacement function, should be independent of ev_tstamp type */
1297static ev_tstamp noinline
1298ev_floor (ev_tstamp v)
1299{
1300 /* the choice of shift factor is not terribly important */
1301#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1303#else
1304 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1305#endif
1306
1307 /* argument too large for an unsigned long? */
1308 if (expect_false (v >= shift))
1309 {
1310 ev_tstamp f;
1311
1312 if (v == v - 1.)
1313 return v; /* very large number */
1314
1315 f = shift * ev_floor (v * (1. / shift));
1316 return f + ev_floor (v - f);
1317 }
1318
1319 /* special treatment for negative args? */
1320 if (expect_false (v < 0.))
1321 {
1322 ev_tstamp f = -ev_floor (-v);
1323
1324 return f - (f == v ? 0 : 1);
1325 }
1326
1327 /* fits into an unsigned long */
1328 return (unsigned long)v;
1329}
1330
1331#endif
1332
1333/*****************************************************************************/
1334
1335#ifdef __linux
1336# include <sys/utsname.h>
1337#endif
1338
1339static unsigned int noinline ecb_cold
1340ev_linux_version (void)
1341{
1342#ifdef __linux
1343 unsigned int v = 0;
1344 struct utsname buf;
1345 int i;
1346 char *p = buf.release;
1347
1348 if (uname (&buf))
1349 return 0;
1350
1351 for (i = 3+1; --i; )
1352 {
1353 unsigned int c = 0;
1354
1355 for (;;)
1356 {
1357 if (*p >= '0' && *p <= '9')
1358 c = c * 10 + *p++ - '0';
1359 else
1360 {
1361 p += *p == '.';
1362 break;
1363 }
1364 }
1365
1366 v = (v << 8) | c;
1367 }
1368
1369 return v;
1370#else
1371 return 0;
1372#endif
1373}
1374
1375/*****************************************************************************/
1376
1377#if EV_AVOID_STDIO
1378static void noinline ecb_cold
1379ev_printerr (const char *msg)
1380{
1381 write (STDERR_FILENO, msg, strlen (msg));
1382}
1383#endif
1384
377static void (*syserr_cb)(const char *msg); 1385static void (*syserr_cb)(const char *msg) EV_THROW;
378 1386
379void 1387void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1388ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
381{ 1389{
382 syserr_cb = cb; 1390 syserr_cb = cb;
383} 1391}
384 1392
385static void noinline 1393static void noinline ecb_cold
386syserr (const char *msg) 1394ev_syserr (const char *msg)
387{ 1395{
388 if (!msg) 1396 if (!msg)
389 msg = "(libev) system error"; 1397 msg = "(libev) system error";
390 1398
391 if (syserr_cb) 1399 if (syserr_cb)
392 syserr_cb (msg); 1400 syserr_cb (msg);
393 else 1401 else
394 { 1402 {
1403#if EV_AVOID_STDIO
1404 ev_printerr (msg);
1405 ev_printerr (": ");
1406 ev_printerr (strerror (errno));
1407 ev_printerr ("\n");
1408#else
395 perror (msg); 1409 perror (msg);
1410#endif
396 abort (); 1411 abort ();
397 } 1412 }
398} 1413}
399 1414
400static void * 1415static void *
401ev_realloc_emul (void *ptr, long size) 1416ev_realloc_emul (void *ptr, long size) EV_THROW
402{ 1417{
403 /* some systems, notably openbsd and darwin, fail to properly 1418 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1419 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1420 * the single unix specification, so work around them here.
1421 * recently, also (at least) fedora and debian started breaking it,
1422 * despite documenting it otherwise.
406 */ 1423 */
407 1424
408 if (size) 1425 if (size)
409 return realloc (ptr, size); 1426 return realloc (ptr, size);
410 1427
411 free (ptr); 1428 free (ptr);
412 return 0; 1429 return 0;
413} 1430}
414 1431
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1432static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1433
417void 1434void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1435ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
419{ 1436{
420 alloc = cb; 1437 alloc = cb;
421} 1438}
422 1439
423inline_speed void * 1440inline_speed void *
425{ 1442{
426 ptr = alloc (ptr, size); 1443 ptr = alloc (ptr, size);
427 1444
428 if (!ptr && size) 1445 if (!ptr && size)
429 { 1446 {
1447#if EV_AVOID_STDIO
1448 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1449#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1450 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1451#endif
431 abort (); 1452 abort ();
432 } 1453 }
433 1454
434 return ptr; 1455 return ptr;
435} 1456}
437#define ev_malloc(size) ev_realloc (0, (size)) 1458#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1459#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1460
440/*****************************************************************************/ 1461/*****************************************************************************/
441 1462
1463/* set in reify when reification needed */
1464#define EV_ANFD_REIFY 1
1465
1466/* file descriptor info structure */
442typedef struct 1467typedef struct
443{ 1468{
444 WL head; 1469 WL head;
445 unsigned char events; 1470 unsigned char events; /* the events watched for */
1471 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1472 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1473 unsigned char unused;
1474#if EV_USE_EPOLL
1475 unsigned int egen; /* generation counter to counter epoll bugs */
1476#endif
447#if EV_SELECT_IS_WINSOCKET 1477#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1478 SOCKET handle;
449#endif 1479#endif
1480#if EV_USE_IOCP
1481 OVERLAPPED or, ow;
1482#endif
450} ANFD; 1483} ANFD;
451 1484
1485/* stores the pending event set for a given watcher */
452typedef struct 1486typedef struct
453{ 1487{
454 W w; 1488 W w;
455 int events; 1489 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1490} ANPENDING;
457 1491
458#if EV_USE_INOTIFY 1492#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1493/* hash table entry per inotify-id */
460typedef struct 1494typedef struct
463} ANFS; 1497} ANFS;
464#endif 1498#endif
465 1499
466/* Heap Entry */ 1500/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1501#if EV_HEAP_CACHE_AT
1502 /* a heap element */
468 typedef struct { 1503 typedef struct {
469 ev_tstamp at; 1504 ev_tstamp at;
470 WT w; 1505 WT w;
471 } ANHE; 1506 } ANHE;
472 1507
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1508 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1509 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1510 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1511#else
1512 /* a heap element */
477 typedef WT ANHE; 1513 typedef WT ANHE;
478 1514
479 #define ANHE_w(he) (he) 1515 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1516 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1517 #define ANHE_at_cache(he)
492 #undef VAR 1528 #undef VAR
493 }; 1529 };
494 #include "ev_wrap.h" 1530 #include "ev_wrap.h"
495 1531
496 static struct ev_loop default_loop_struct; 1532 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1533 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1534
499#else 1535#else
500 1536
501 ev_tstamp ev_rt_now; 1537 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1538 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1539 #include "ev_vars.h"
504 #undef VAR 1540 #undef VAR
505 1541
506 static int ev_default_loop_ptr; 1542 static int ev_default_loop_ptr;
507 1543
508#endif 1544#endif
509 1545
1546#if EV_FEATURE_API
1547# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1548# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1549# define EV_INVOKE_PENDING invoke_cb (EV_A)
1550#else
1551# define EV_RELEASE_CB (void)0
1552# define EV_ACQUIRE_CB (void)0
1553# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1554#endif
1555
1556#define EVBREAK_RECURSE 0x80
1557
510/*****************************************************************************/ 1558/*****************************************************************************/
511 1559
1560#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1561ev_tstamp
513ev_time (void) 1562ev_time (void) EV_THROW
514{ 1563{
515#if EV_USE_REALTIME 1564#if EV_USE_REALTIME
1565 if (expect_true (have_realtime))
1566 {
516 struct timespec ts; 1567 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1568 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1569 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1570 }
1571#endif
1572
520 struct timeval tv; 1573 struct timeval tv;
521 gettimeofday (&tv, 0); 1574 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1575 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1576}
1577#endif
525 1578
526ev_tstamp inline_size 1579inline_size ev_tstamp
527get_clock (void) 1580get_clock (void)
528{ 1581{
529#if EV_USE_MONOTONIC 1582#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1583 if (expect_true (have_monotonic))
531 { 1584 {
538 return ev_time (); 1591 return ev_time ();
539} 1592}
540 1593
541#if EV_MULTIPLICITY 1594#if EV_MULTIPLICITY
542ev_tstamp 1595ev_tstamp
543ev_now (EV_P) 1596ev_now (EV_P) EV_THROW
544{ 1597{
545 return ev_rt_now; 1598 return ev_rt_now;
546} 1599}
547#endif 1600#endif
548 1601
549void 1602void
550ev_sleep (ev_tstamp delay) 1603ev_sleep (ev_tstamp delay) EV_THROW
551{ 1604{
552 if (delay > 0.) 1605 if (delay > 0.)
553 { 1606 {
554#if EV_USE_NANOSLEEP 1607#if EV_USE_NANOSLEEP
555 struct timespec ts; 1608 struct timespec ts;
556 1609
557 ts.tv_sec = (time_t)delay; 1610 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1611 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1612#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1613 Sleep ((unsigned long)(delay * 1e3));
563#else 1614#else
564 struct timeval tv; 1615 struct timeval tv;
565 1616
566 tv.tv_sec = (time_t)delay; 1617 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1618 /* something not guaranteed by newer posix versions, but guaranteed */
568 1619 /* by older ones */
1620 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1621 select (0, 0, 0, 0, &tv);
570#endif 1622#endif
571 } 1623 }
572} 1624}
573 1625
574/*****************************************************************************/ 1626/*****************************************************************************/
575 1627
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1629
578int inline_size 1630/* find a suitable new size for the given array, */
1631/* hopefully by rounding to a nice-to-malloc size */
1632inline_size int
579array_nextsize (int elem, int cur, int cnt) 1633array_nextsize (int elem, int cur, int cnt)
580{ 1634{
581 int ncur = cur + 1; 1635 int ncur = cur + 1;
582 1636
583 do 1637 do
584 ncur <<= 1; 1638 ncur <<= 1;
585 while (cnt > ncur); 1639 while (cnt > ncur);
586 1640
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1641 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1642 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1643 {
590 ncur *= elem; 1644 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1645 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1646 ncur = ncur - sizeof (void *) * 4;
594 } 1648 }
595 1649
596 return ncur; 1650 return ncur;
597} 1651}
598 1652
599static noinline void * 1653static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1654array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1655{
602 *cur = array_nextsize (elem, *cur, cnt); 1656 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1657 return ev_realloc (base, elem * *cur);
604} 1658}
1659
1660#define array_init_zero(base,count) \
1661 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1662
606#define array_needsize(type,base,cur,cnt,init) \ 1663#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1664 if (expect_false ((cnt) > (cur))) \
608 { \ 1665 { \
609 int ocur_ = (cur); \ 1666 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1667 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1668 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1669 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1670 }
614 1671
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1678 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1679 }
623#endif 1680#endif
624 1681
625#define array_free(stem, idx) \ 1682#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1683 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1684
628/*****************************************************************************/ 1685/*****************************************************************************/
629 1686
1687/* dummy callback for pending events */
1688static void noinline
1689pendingcb (EV_P_ ev_prepare *w, int revents)
1690{
1691}
1692
630void noinline 1693void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1694ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1695{
633 W w_ = (W)w; 1696 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1697 int pri = ABSPRI (w_);
635 1698
636 if (expect_false (w_->pending)) 1699 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1703 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1704 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1705 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1706 pendings [pri][w_->pending - 1].events = revents;
644 } 1707 }
645}
646 1708
647void inline_speed 1709 pendingpri = NUMPRI - 1;
1710}
1711
1712inline_speed void
1713feed_reverse (EV_P_ W w)
1714{
1715 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1716 rfeeds [rfeedcnt++] = w;
1717}
1718
1719inline_size void
1720feed_reverse_done (EV_P_ int revents)
1721{
1722 do
1723 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1724 while (rfeedcnt);
1725}
1726
1727inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1728queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1729{
650 int i; 1730 int i;
651 1731
652 for (i = 0; i < eventcnt; ++i) 1732 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1733 ev_feed_event (EV_A_ events [i], type);
654} 1734}
655 1735
656/*****************************************************************************/ 1736/*****************************************************************************/
657 1737
658void inline_size 1738inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1739fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1740{
674 ANFD *anfd = anfds + fd; 1741 ANFD *anfd = anfds + fd;
675 ev_io *w; 1742 ev_io *w;
676 1743
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1744 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1748 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1749 ev_feed_event (EV_A_ (W)w, ev);
683 } 1750 }
684} 1751}
685 1752
1753/* do not submit kernel events for fds that have reify set */
1754/* because that means they changed while we were polling for new events */
1755inline_speed void
1756fd_event (EV_P_ int fd, int revents)
1757{
1758 ANFD *anfd = anfds + fd;
1759
1760 if (expect_true (!anfd->reify))
1761 fd_event_nocheck (EV_A_ fd, revents);
1762}
1763
686void 1764void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1765ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1766{
689 if (fd >= 0 && fd < anfdmax) 1767 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1768 fd_event_nocheck (EV_A_ fd, revents);
691} 1769}
692 1770
693void inline_size 1771/* make sure the external fd watch events are in-sync */
1772/* with the kernel/libev internal state */
1773inline_size void
694fd_reify (EV_P) 1774fd_reify (EV_P)
695{ 1775{
696 int i; 1776 int i;
1777
1778#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1779 for (i = 0; i < fdchangecnt; ++i)
1780 {
1781 int fd = fdchanges [i];
1782 ANFD *anfd = anfds + fd;
1783
1784 if (anfd->reify & EV__IOFDSET && anfd->head)
1785 {
1786 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1787
1788 if (handle != anfd->handle)
1789 {
1790 unsigned long arg;
1791
1792 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1793
1794 /* handle changed, but fd didn't - we need to do it in two steps */
1795 backend_modify (EV_A_ fd, anfd->events, 0);
1796 anfd->events = 0;
1797 anfd->handle = handle;
1798 }
1799 }
1800 }
1801#endif
697 1802
698 for (i = 0; i < fdchangecnt; ++i) 1803 for (i = 0; i < fdchangecnt; ++i)
699 { 1804 {
700 int fd = fdchanges [i]; 1805 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1806 ANFD *anfd = anfds + fd;
702 ev_io *w; 1807 ev_io *w;
703 1808
704 unsigned char events = 0; 1809 unsigned char o_events = anfd->events;
1810 unsigned char o_reify = anfd->reify;
705 1811
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1812 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1813
709#if EV_SELECT_IS_WINSOCKET 1814 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1815 {
712 unsigned long arg; 1816 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1817
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1818 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1819 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1820
717 #endif 1821 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1822 o_reify = EV__IOFDSET; /* actually |= */
719 } 1823 }
720#endif
721 1824
722 { 1825 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1826 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1827 }
733 1828
734 fdchangecnt = 0; 1829 fdchangecnt = 0;
735} 1830}
736 1831
737void inline_size 1832/* something about the given fd changed */
1833inline_size void
738fd_change (EV_P_ int fd, int flags) 1834fd_change (EV_P_ int fd, int flags)
739{ 1835{
740 unsigned char reify = anfds [fd].reify; 1836 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1837 anfds [fd].reify |= flags;
742 1838
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1843 fdchanges [fdchangecnt - 1] = fd;
748 } 1844 }
749} 1845}
750 1846
751void inline_speed 1847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1848inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1849fd_kill (EV_P_ int fd)
753{ 1850{
754 ev_io *w; 1851 ev_io *w;
755 1852
756 while ((w = (ev_io *)anfds [fd].head)) 1853 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1855 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 1857 }
761} 1858}
762 1859
763int inline_size 1860/* check whether the given fd is actually valid, for error recovery */
1861inline_size int ecb_cold
764fd_valid (int fd) 1862fd_valid (int fd)
765{ 1863{
766#ifdef _WIN32 1864#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 1865 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 1866#else
769 return fcntl (fd, F_GETFD) != -1; 1867 return fcntl (fd, F_GETFD) != -1;
770#endif 1868#endif
771} 1869}
772 1870
773/* called on EBADF to verify fds */ 1871/* called on EBADF to verify fds */
774static void noinline 1872static void noinline ecb_cold
775fd_ebadf (EV_P) 1873fd_ebadf (EV_P)
776{ 1874{
777 int fd; 1875 int fd;
778 1876
779 for (fd = 0; fd < anfdmax; ++fd) 1877 for (fd = 0; fd < anfdmax; ++fd)
781 if (!fd_valid (fd) && errno == EBADF) 1879 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 1880 fd_kill (EV_A_ fd);
783} 1881}
784 1882
785/* called on ENOMEM in select/poll to kill some fds and retry */ 1883/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 1884static void noinline ecb_cold
787fd_enomem (EV_P) 1885fd_enomem (EV_P)
788{ 1886{
789 int fd; 1887 int fd;
790 1888
791 for (fd = anfdmax; fd--; ) 1889 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 1890 if (anfds [fd].events)
793 { 1891 {
794 fd_kill (EV_A_ fd); 1892 fd_kill (EV_A_ fd);
795 return; 1893 break;
796 } 1894 }
797} 1895}
798 1896
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1897/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1898static void noinline
804 1902
805 for (fd = 0; fd < anfdmax; ++fd) 1903 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1904 if (anfds [fd].events)
807 { 1905 {
808 anfds [fd].events = 0; 1906 anfds [fd].events = 0;
1907 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1908 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1909 }
811} 1910}
812 1911
1912/* used to prepare libev internal fd's */
1913/* this is not fork-safe */
1914inline_speed void
1915fd_intern (int fd)
1916{
1917#ifdef _WIN32
1918 unsigned long arg = 1;
1919 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1920#else
1921 fcntl (fd, F_SETFD, FD_CLOEXEC);
1922 fcntl (fd, F_SETFL, O_NONBLOCK);
1923#endif
1924}
1925
813/*****************************************************************************/ 1926/*****************************************************************************/
814 1927
815/* 1928/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 1929 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1930 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 1931 * the branching factor of the d-tree.
819 */ 1932 */
820 1933
821/* 1934/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1943#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1944#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 1945#define UPHEAP_DONE(p,k) ((p) == (k))
833 1946
834/* away from the root */ 1947/* away from the root */
835void inline_speed 1948inline_speed void
836downheap (ANHE *heap, int N, int k) 1949downheap (ANHE *heap, int N, int k)
837{ 1950{
838 ANHE he = heap [k]; 1951 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 1952 ANHE *E = heap + N + HEAP0;
840 1953
880#define HEAP0 1 1993#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 1994#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 1995#define UPHEAP_DONE(p,k) (!(p))
883 1996
884/* away from the root */ 1997/* away from the root */
885void inline_speed 1998inline_speed void
886downheap (ANHE *heap, int N, int k) 1999downheap (ANHE *heap, int N, int k)
887{ 2000{
888 ANHE he = heap [k]; 2001 ANHE he = heap [k];
889 2002
890 for (;;) 2003 for (;;)
891 { 2004 {
892 int c = k << 1; 2005 int c = k << 1;
893 2006
894 if (c > N + HEAP0 - 1) 2007 if (c >= N + HEAP0)
895 break; 2008 break;
896 2009
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2010 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 2011 ? 1 : 0;
899 2012
910 ev_active (ANHE_w (he)) = k; 2023 ev_active (ANHE_w (he)) = k;
911} 2024}
912#endif 2025#endif
913 2026
914/* towards the root */ 2027/* towards the root */
915void inline_speed 2028inline_speed void
916upheap (ANHE *heap, int k) 2029upheap (ANHE *heap, int k)
917{ 2030{
918 ANHE he = heap [k]; 2031 ANHE he = heap [k];
919 2032
920 for (;;) 2033 for (;;)
931 2044
932 heap [k] = he; 2045 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 2046 ev_active (ANHE_w (he)) = k;
934} 2047}
935 2048
936void inline_size 2049/* move an element suitably so it is in a correct place */
2050inline_size void
937adjustheap (ANHE *heap, int N, int k) 2051adjustheap (ANHE *heap, int N, int k)
938{ 2052{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2053 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 2054 upheap (heap, k);
941 else 2055 else
942 downheap (heap, N, k); 2056 downheap (heap, N, k);
943} 2057}
944 2058
945/* rebuild the heap: this function is used only once and executed rarely */ 2059/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 2060inline_size void
947reheap (ANHE *heap, int N) 2061reheap (ANHE *heap, int N)
948{ 2062{
949 int i; 2063 int i;
950 2064
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2065 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 2068 upheap (heap, i + HEAP0);
955} 2069}
956 2070
957/*****************************************************************************/ 2071/*****************************************************************************/
958 2072
2073/* associate signal watchers to a signal signal */
959typedef struct 2074typedef struct
960{ 2075{
2076 EV_ATOMIC_T pending;
2077#if EV_MULTIPLICITY
2078 EV_P;
2079#endif
961 WL head; 2080 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 2081} ANSIG;
964 2082
965static ANSIG *signals; 2083static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 2084
982/*****************************************************************************/ 2085/*****************************************************************************/
983 2086
984void inline_speed 2087#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 2088
996static void noinline 2089static void noinline ecb_cold
997evpipe_init (EV_P) 2090evpipe_init (EV_P)
998{ 2091{
999 if (!ev_is_active (&pipeev)) 2092 if (!ev_is_active (&pipe_w))
2093 {
2094 int fds [2];
2095
2096# if EV_USE_EVENTFD
2097 fds [0] = -1;
2098 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2099 if (fds [1] < 0 && errno == EINVAL)
2100 fds [1] = eventfd (0, 0);
2101
2102 if (fds [1] < 0)
2103# endif
2104 {
2105 while (pipe (fds))
2106 ev_syserr ("(libev) error creating signal/async pipe");
2107
2108 fd_intern (fds [0]);
2109 }
2110
2111 evpipe [0] = fds [0];
2112
2113 if (evpipe [1] < 0)
2114 evpipe [1] = fds [1]; /* first call, set write fd */
2115 else
2116 {
2117 /* on subsequent calls, do not change evpipe [1] */
2118 /* so that evpipe_write can always rely on its value. */
2119 /* this branch does not do anything sensible on windows, */
2120 /* so must not be executed on windows */
2121
2122 dup2 (fds [1], evpipe [1]);
2123 close (fds [1]);
2124 }
2125
2126 fd_intern (evpipe [1]);
2127
2128 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2129 ev_io_start (EV_A_ &pipe_w);
2130 ev_unref (EV_A); /* watcher should not keep loop alive */
1000 { 2131 }
2132}
2133
2134inline_speed void
2135evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2136{
2137 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2138
2139 if (expect_true (*flag))
2140 return;
2141
2142 *flag = 1;
2143 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2144
2145 pipe_write_skipped = 1;
2146
2147 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2148
2149 if (pipe_write_wanted)
2150 {
2151 int old_errno;
2152
2153 pipe_write_skipped = 0;
2154 ECB_MEMORY_FENCE_RELEASE;
2155
2156 old_errno = errno; /* save errno because write will clobber it */
2157
1001#if EV_USE_EVENTFD 2158#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0) 2159 if (evpipe [0] < 0)
1003 { 2160 {
1004 evpipe [0] = -1; 2161 uint64_t counter = 1;
1005 fd_intern (evfd); 2162 write (evpipe [1], &counter, sizeof (uint64_t));
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 } 2163 }
1008 else 2164 else
1009#endif 2165#endif
1010 { 2166 {
1011 while (pipe (evpipe)) 2167#ifdef _WIN32
1012 syserr ("(libev) error creating signal/async pipe"); 2168 WSABUF buf;
1013 2169 DWORD sent;
1014 fd_intern (evpipe [0]); 2170 buf.buf = &buf;
1015 fd_intern (evpipe [1]); 2171 buf.len = 1;
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 2172 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2173#else
2174 write (evpipe [1], &(evpipe [1]), 1);
2175#endif
1017 } 2176 }
1018 2177
1019 ev_io_start (EV_A_ &pipeev); 2178 errno = old_errno;
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 { 2179 }
1029 int old_errno = errno; /* save errno because write might clobber it */ 2180}
1030 2181
1031 *flag = 1; 2182/* called whenever the libev signal pipe */
2183/* got some events (signal, async) */
2184static void
2185pipecb (EV_P_ ev_io *iow, int revents)
2186{
2187 int i;
1032 2188
2189 if (revents & EV_READ)
2190 {
1033#if EV_USE_EVENTFD 2191#if EV_USE_EVENTFD
1034 if (evfd >= 0) 2192 if (evpipe [0] < 0)
1035 { 2193 {
1036 uint64_t counter = 1; 2194 uint64_t counter;
1037 write (evfd, &counter, sizeof (uint64_t)); 2195 read (evpipe [1], &counter, sizeof (uint64_t));
1038 } 2196 }
1039 else 2197 else
1040#endif 2198#endif
1041 write (evpipe [1], &old_errno, 1); 2199 {
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy; 2200 char dummy[4];
2201#ifdef _WIN32
2202 WSABUF buf;
2203 DWORD recvd;
2204 DWORD flags = 0;
2205 buf.buf = dummy;
2206 buf.len = sizeof (dummy);
2207 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2208#else
1060 read (evpipe [0], &dummy, 1); 2209 read (evpipe [0], &dummy, sizeof (dummy));
2210#endif
2211 }
2212 }
2213
2214 pipe_write_skipped = 0;
2215
2216 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2217
2218#if EV_SIGNAL_ENABLE
2219 if (sig_pending)
1061 } 2220 {
2221 sig_pending = 0;
1062 2222
1063 if (gotsig && ev_is_default_loop (EV_A)) 2223 ECB_MEMORY_FENCE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 2224
1068 for (signum = signalmax; signum--; ) 2225 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 2226 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 2227 ev_feed_signal_event (EV_A_ i + 1);
1071 } 2228 }
2229#endif
1072 2230
1073#if EV_ASYNC_ENABLE 2231#if EV_ASYNC_ENABLE
1074 if (gotasync) 2232 if (async_pending)
1075 { 2233 {
1076 int i; 2234 async_pending = 0;
1077 gotasync = 0; 2235
2236 ECB_MEMORY_FENCE;
1078 2237
1079 for (i = asynccnt; i--; ) 2238 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 2239 if (asyncs [i]->sent)
1081 { 2240 {
1082 asyncs [i]->sent = 0; 2241 asyncs [i]->sent = 0;
2242 ECB_MEMORY_FENCE_RELEASE;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2243 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 } 2244 }
1085 } 2245 }
1086#endif 2246#endif
1087} 2247}
1088 2248
1089/*****************************************************************************/ 2249/*****************************************************************************/
1090 2250
2251void
2252ev_feed_signal (int signum) EV_THROW
2253{
2254#if EV_MULTIPLICITY
2255 EV_P;
2256 ECB_MEMORY_FENCE_ACQUIRE;
2257 EV_A = signals [signum - 1].loop;
2258
2259 if (!EV_A)
2260 return;
2261#endif
2262
2263 signals [signum - 1].pending = 1;
2264 evpipe_write (EV_A_ &sig_pending);
2265}
2266
1091static void 2267static void
1092ev_sighandler (int signum) 2268ev_sighandler (int signum)
1093{ 2269{
2270#ifdef _WIN32
2271 signal (signum, ev_sighandler);
2272#endif
2273
2274 ev_feed_signal (signum);
2275}
2276
2277void noinline
2278ev_feed_signal_event (EV_P_ int signum) EV_THROW
2279{
2280 WL w;
2281
2282 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2283 return;
2284
2285 --signum;
2286
1094#if EV_MULTIPLICITY 2287#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 2288 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2289 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2290
1098#if _WIN32 2291 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2292 return;
2293#endif
1119 2294
1120 signals [signum].gotsig = 0; 2295 signals [signum].pending = 0;
2296 ECB_MEMORY_FENCE_RELEASE;
1121 2297
1122 for (w = signals [signum].head; w; w = w->next) 2298 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2299 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2300}
1125 2301
2302#if EV_USE_SIGNALFD
2303static void
2304sigfdcb (EV_P_ ev_io *iow, int revents)
2305{
2306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2307
2308 for (;;)
2309 {
2310 ssize_t res = read (sigfd, si, sizeof (si));
2311
2312 /* not ISO-C, as res might be -1, but works with SuS */
2313 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2314 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2315
2316 if (res < (ssize_t)sizeof (si))
2317 break;
2318 }
2319}
2320#endif
2321
2322#endif
2323
1126/*****************************************************************************/ 2324/*****************************************************************************/
1127 2325
2326#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2327static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2328
1132static ev_signal childev; 2329static ev_signal childev;
1133 2330
1134#ifndef WIFCONTINUED 2331#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2332# define WIFCONTINUED(status) 0
1136#endif 2333#endif
1137 2334
1138void inline_speed 2335/* handle a single child status event */
2336inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2337child_reap (EV_P_ int chain, int pid, int status)
1140{ 2338{
1141 ev_child *w; 2339 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2340 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2341
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2342 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2343 {
1146 if ((w->pid == pid || !w->pid) 2344 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2345 && (!traced || (w->flags & 1)))
1148 { 2346 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2347 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2354
1157#ifndef WCONTINUED 2355#ifndef WCONTINUED
1158# define WCONTINUED 0 2356# define WCONTINUED 0
1159#endif 2357#endif
1160 2358
2359/* called on sigchld etc., calls waitpid */
1161static void 2360static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2361childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2362{
1164 int pid, status; 2363 int pid, status;
1165 2364
1173 /* make sure we are called again until all children have been reaped */ 2372 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2373 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2374 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2375
1177 child_reap (EV_A_ pid, pid, status); 2376 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2377 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2378 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2379}
1181 2380
1182#endif 2381#endif
1183 2382
1184/*****************************************************************************/ 2383/*****************************************************************************/
1185 2384
2385#if EV_USE_IOCP
2386# include "ev_iocp.c"
2387#endif
1186#if EV_USE_PORT 2388#if EV_USE_PORT
1187# include "ev_port.c" 2389# include "ev_port.c"
1188#endif 2390#endif
1189#if EV_USE_KQUEUE 2391#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2392# include "ev_kqueue.c"
1197#endif 2399#endif
1198#if EV_USE_SELECT 2400#if EV_USE_SELECT
1199# include "ev_select.c" 2401# include "ev_select.c"
1200#endif 2402#endif
1201 2403
1202int 2404int ecb_cold
1203ev_version_major (void) 2405ev_version_major (void) EV_THROW
1204{ 2406{
1205 return EV_VERSION_MAJOR; 2407 return EV_VERSION_MAJOR;
1206} 2408}
1207 2409
1208int 2410int ecb_cold
1209ev_version_minor (void) 2411ev_version_minor (void) EV_THROW
1210{ 2412{
1211 return EV_VERSION_MINOR; 2413 return EV_VERSION_MINOR;
1212} 2414}
1213 2415
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2416/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2417int inline_size ecb_cold
1216enable_secure (void) 2418enable_secure (void)
1217{ 2419{
1218#ifdef _WIN32 2420#ifdef _WIN32
1219 return 0; 2421 return 0;
1220#else 2422#else
1221 return getuid () != geteuid () 2423 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2424 || getgid () != getegid ();
1223#endif 2425#endif
1224} 2426}
1225 2427
1226unsigned int 2428unsigned int ecb_cold
1227ev_supported_backends (void) 2429ev_supported_backends (void) EV_THROW
1228{ 2430{
1229 unsigned int flags = 0; 2431 unsigned int flags = 0;
1230 2432
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2438
1237 return flags; 2439 return flags;
1238} 2440}
1239 2441
1240unsigned int 2442unsigned int ecb_cold
1241ev_recommended_backends (void) 2443ev_recommended_backends (void) EV_THROW
1242{ 2444{
1243 unsigned int flags = ev_supported_backends (); 2445 unsigned int flags = ev_supported_backends ();
1244 2446
1245#ifndef __NetBSD__ 2447#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2448 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2449 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2450 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2451#endif
1250#ifdef __APPLE__ 2452#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2453 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2456#endif
2457#ifdef __FreeBSD__
2458 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2459#endif
1254 2460
1255 return flags; 2461 return flags;
1256} 2462}
1257 2463
2464unsigned int ecb_cold
2465ev_embeddable_backends (void) EV_THROW
2466{
2467 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2468
2469 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2470 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2471 flags &= ~EVBACKEND_EPOLL;
2472
2473 return flags;
2474}
2475
1258unsigned int 2476unsigned int
1259ev_embeddable_backends (void) 2477ev_backend (EV_P) EV_THROW
1260{ 2478{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2479 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2480}
1269 2481
2482#if EV_FEATURE_API
1270unsigned int 2483unsigned int
1271ev_backend (EV_P) 2484ev_iteration (EV_P) EV_THROW
1272{ 2485{
1273 return backend; 2486 return loop_count;
1274} 2487}
1275 2488
1276unsigned int 2489unsigned int
1277ev_loop_count (EV_P) 2490ev_depth (EV_P) EV_THROW
1278{ 2491{
1279 return loop_count; 2492 return loop_depth;
1280} 2493}
1281 2494
1282void 2495void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2496ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2497{
1285 io_blocktime = interval; 2498 io_blocktime = interval;
1286} 2499}
1287 2500
1288void 2501void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2502ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2503{
1291 timeout_blocktime = interval; 2504 timeout_blocktime = interval;
1292} 2505}
1293 2506
2507void
2508ev_set_userdata (EV_P_ void *data) EV_THROW
2509{
2510 userdata = data;
2511}
2512
2513void *
2514ev_userdata (EV_P) EV_THROW
2515{
2516 return userdata;
2517}
2518
2519void
2520ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2521{
2522 invoke_cb = invoke_pending_cb;
2523}
2524
2525void
2526ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2527{
2528 release_cb = release;
2529 acquire_cb = acquire;
2530}
2531#endif
2532
2533/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2534static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2535loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2536{
1297 if (!backend) 2537 if (!backend)
1298 { 2538 {
2539 origflags = flags;
2540
2541#if EV_USE_REALTIME
2542 if (!have_realtime)
2543 {
2544 struct timespec ts;
2545
2546 if (!clock_gettime (CLOCK_REALTIME, &ts))
2547 have_realtime = 1;
2548 }
2549#endif
2550
1299#if EV_USE_MONOTONIC 2551#if EV_USE_MONOTONIC
2552 if (!have_monotonic)
1300 { 2553 {
1301 struct timespec ts; 2554 struct timespec ts;
2555
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2556 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2557 have_monotonic = 1;
1304 } 2558 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2559#endif
1320 2560
1321 /* pid check not overridable via env */ 2561 /* pid check not overridable via env */
1322#ifndef _WIN32 2562#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2563 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2567 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2568 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2569 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2570 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2571
1332 if (!(flags & 0x0000ffffU)) 2572 ev_rt_now = ev_time ();
2573 mn_now = get_clock ();
2574 now_floor = mn_now;
2575 rtmn_diff = ev_rt_now - mn_now;
2576#if EV_FEATURE_API
2577 invoke_cb = ev_invoke_pending;
2578#endif
2579
2580 io_blocktime = 0.;
2581 timeout_blocktime = 0.;
2582 backend = 0;
2583 backend_fd = -1;
2584 sig_pending = 0;
2585#if EV_ASYNC_ENABLE
2586 async_pending = 0;
2587#endif
2588 pipe_write_skipped = 0;
2589 pipe_write_wanted = 0;
2590 evpipe [0] = -1;
2591 evpipe [1] = -1;
2592#if EV_USE_INOTIFY
2593 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2594#endif
2595#if EV_USE_SIGNALFD
2596 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2597#endif
2598
2599 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2600 flags |= ev_recommended_backends ();
1334 2601
2602#if EV_USE_IOCP
2603 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2604#endif
1335#if EV_USE_PORT 2605#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2606 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2607#endif
1338#if EV_USE_KQUEUE 2608#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2609 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2616#endif
1347#if EV_USE_SELECT 2617#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2618 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2619#endif
1350 2620
2621 ev_prepare_init (&pending_w, pendingcb);
2622
2623#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2624 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2625 ev_set_priority (&pipe_w, EV_MAXPRI);
2626#endif
1353 } 2627 }
1354} 2628}
1355 2629
1356static void noinline 2630/* free up a loop structure */
2631void ecb_cold
1357loop_destroy (EV_P) 2632ev_loop_destroy (EV_P)
1358{ 2633{
1359 int i; 2634 int i;
1360 2635
2636#if EV_MULTIPLICITY
2637 /* mimic free (0) */
2638 if (!EV_A)
2639 return;
2640#endif
2641
2642#if EV_CLEANUP_ENABLE
2643 /* queue cleanup watchers (and execute them) */
2644 if (expect_false (cleanupcnt))
2645 {
2646 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2647 EV_INVOKE_PENDING;
2648 }
2649#endif
2650
2651#if EV_CHILD_ENABLE
2652 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2653 {
2654 ev_ref (EV_A); /* child watcher */
2655 ev_signal_stop (EV_A_ &childev);
2656 }
2657#endif
2658
1361 if (ev_is_active (&pipeev)) 2659 if (ev_is_active (&pipe_w))
1362 { 2660 {
1363 ev_ref (EV_A); /* signal watcher */ 2661 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2662 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2663
2664 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2665 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2666 }
2667
1366#if EV_USE_EVENTFD 2668#if EV_USE_SIGNALFD
1367 if (evfd >= 0) 2669 if (ev_is_active (&sigfd_w))
1368 close (evfd); 2670 close (sigfd);
1369#endif 2671#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377 2672
1378#if EV_USE_INOTIFY 2673#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2674 if (fs_fd >= 0)
1380 close (fs_fd); 2675 close (fs_fd);
1381#endif 2676#endif
1382 2677
1383 if (backend_fd >= 0) 2678 if (backend_fd >= 0)
1384 close (backend_fd); 2679 close (backend_fd);
1385 2680
2681#if EV_USE_IOCP
2682 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2683#endif
1386#if EV_USE_PORT 2684#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2685 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2686#endif
1389#if EV_USE_KQUEUE 2687#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2688 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2703#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2704 array_free (idle, [i]);
1407#endif 2705#endif
1408 } 2706 }
1409 2707
1410 ev_free (anfds); anfdmax = 0; 2708 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2709
1412 /* have to use the microsoft-never-gets-it-right macro */ 2710 /* have to use the microsoft-never-gets-it-right macro */
2711 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2712 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2713 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2714#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2715 array_free (periodic, EMPTY);
1417#endif 2716#endif
1418#if EV_FORK_ENABLE 2717#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2718 array_free (fork, EMPTY);
1420#endif 2719#endif
2720#if EV_CLEANUP_ENABLE
2721 array_free (cleanup, EMPTY);
2722#endif
1421 array_free (prepare, EMPTY); 2723 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2724 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2725#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2726 array_free (async, EMPTY);
1425#endif 2727#endif
1426 2728
1427 backend = 0; 2729 backend = 0;
2730
2731#if EV_MULTIPLICITY
2732 if (ev_is_default_loop (EV_A))
2733#endif
2734 ev_default_loop_ptr = 0;
2735#if EV_MULTIPLICITY
2736 else
2737 ev_free (EV_A);
2738#endif
1428} 2739}
1429 2740
1430#if EV_USE_INOTIFY 2741#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2742inline_size void infy_fork (EV_P);
1432#endif 2743#endif
1433 2744
1434void inline_size 2745inline_size void
1435loop_fork (EV_P) 2746loop_fork (EV_P)
1436{ 2747{
1437#if EV_USE_PORT 2748#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2749 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2750#endif
1445#endif 2756#endif
1446#if EV_USE_INOTIFY 2757#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2758 infy_fork (EV_A);
1448#endif 2759#endif
1449 2760
2761#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1450 if (ev_is_active (&pipeev)) 2762 if (ev_is_active (&pipe_w))
1451 { 2763 {
1452 /* this "locks" the handlers against writing to the pipe */ 2764 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2765
1459 ev_ref (EV_A); 2766 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2767 ev_io_stop (EV_A_ &pipe_w);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466 2768
1467 if (evpipe [0] >= 0) 2769 if (evpipe [0] >= 0)
1468 { 2770 EV_WIN32_CLOSE_FD (evpipe [0]);
1469 close (evpipe [0]);
1470 close (evpipe [1]);
1471 }
1472 2771
1473 evpipe_init (EV_A); 2772 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2773 /* iterate over everything, in case we missed something before */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2774 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1476 } 2775 }
2776#endif
1477 2777
1478 postfork = 0; 2778 postfork = 0;
1479} 2779}
1480 2780
1481#if EV_MULTIPLICITY 2781#if EV_MULTIPLICITY
1482 2782
1483struct ev_loop * 2783struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2784ev_loop_new (unsigned int flags) EV_THROW
1485{ 2785{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2786 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2787
1488 memset (loop, 0, sizeof (struct ev_loop)); 2788 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2789 loop_init (EV_A_ flags);
1491 2790
1492 if (ev_backend (EV_A)) 2791 if (ev_backend (EV_A))
1493 return loop; 2792 return EV_A;
1494 2793
2794 ev_free (EV_A);
1495 return 0; 2795 return 0;
1496} 2796}
1497 2797
1498void 2798#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2799
1511#if EV_VERIFY 2800#if EV_VERIFY
1512void noinline 2801static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2802verify_watcher (EV_P_ W w)
1514{ 2803{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2805
1517 if (w->pending) 2806 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2808}
1520 2809
1521static void noinline 2810static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2811verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2812{
1524 int i; 2813 int i;
1525 2814
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2815 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2816 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2820
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2822 }
1534} 2823}
1535 2824
1536static void noinline 2825static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2826array_verify (EV_P_ W *ws, int cnt)
1538{ 2827{
1539 while (cnt--) 2828 while (cnt--)
1540 { 2829 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2831 verify_watcher (EV_A_ ws [cnt]);
1543 } 2832 }
1544} 2833}
1545#endif 2834#endif
1546 2835
1547void 2836#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2837void ecb_cold
2838ev_verify (EV_P) EV_THROW
1549{ 2839{
1550#if EV_VERIFY 2840#if EV_VERIFY
1551 int i; 2841 int i;
1552 WL w; 2842 WL w, w2;
1553 2843
1554 assert (activecnt >= -1); 2844 assert (activecnt >= -1);
1555 2845
1556 assert (fdchangemax >= fdchangecnt); 2846 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2847 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2849
1560 assert (anfdmax >= 0); 2850 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2851 for (i = 0; i < anfdmax; ++i)
2852 {
2853 int j = 0;
2854
1562 for (w = anfds [i].head; w; w = w->next) 2855 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2856 {
1564 verify_watcher (EV_A_ (W)w); 2857 verify_watcher (EV_A_ (W)w);
2858
2859 if (j++ & 1)
2860 {
2861 assert (("libev: io watcher list contains a loop", w != w2));
2862 w2 = w2->next;
2863 }
2864
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2865 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2866 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 2867 }
2868 }
1568 2869
1569 assert (timermax >= timercnt); 2870 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 2871 verify_heap (EV_A_ timers, timercnt);
1571 2872
1572#if EV_PERIODIC_ENABLE 2873#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 2888#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 2889 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 2890 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 2891#endif
1591 2892
2893#if EV_CLEANUP_ENABLE
2894 assert (cleanupmax >= cleanupcnt);
2895 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2896#endif
2897
1592#if EV_ASYNC_ENABLE 2898#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 2899 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 2900 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 2901#endif
1596 2902
2903#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 2904 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 2905 array_verify (EV_A_ (W *)prepares, preparecnt);
2906#endif
1599 2907
2908#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 2909 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 2910 array_verify (EV_A_ (W *)checks, checkcnt);
2911#endif
1602 2912
1603# if 0 2913# if 0
2914#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2915 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2917#endif
1606# endif 2918# endif
1607#endif 2919#endif
1608} 2920}
1609 2921#endif
1610#endif /* multiplicity */
1611 2922
1612#if EV_MULTIPLICITY 2923#if EV_MULTIPLICITY
1613struct ev_loop * 2924struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 2925#else
1616int 2926int
2927#endif
1617ev_default_loop (unsigned int flags) 2928ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 2929{
1620 if (!ev_default_loop_ptr) 2930 if (!ev_default_loop_ptr)
1621 { 2931 {
1622#if EV_MULTIPLICITY 2932#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 2934#else
1625 ev_default_loop_ptr = 1; 2935 ev_default_loop_ptr = 1;
1626#endif 2936#endif
1627 2937
1628 loop_init (EV_A_ flags); 2938 loop_init (EV_A_ flags);
1629 2939
1630 if (ev_backend (EV_A)) 2940 if (ev_backend (EV_A))
1631 { 2941 {
1632#ifndef _WIN32 2942#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 2943 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 2944 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 2945 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2946 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 2947#endif
1642 2952
1643 return ev_default_loop_ptr; 2953 return ev_default_loop_ptr;
1644} 2954}
1645 2955
1646void 2956void
1647ev_default_destroy (void) 2957ev_loop_fork (EV_P) EV_THROW
1648{ 2958{
1649#if EV_MULTIPLICITY 2959 postfork = 1;
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */
1670} 2960}
1671 2961
1672/*****************************************************************************/ 2962/*****************************************************************************/
1673 2963
1674void 2964void
1675ev_invoke (EV_P_ void *w, int revents) 2965ev_invoke (EV_P_ void *w, int revents)
1676{ 2966{
1677 EV_CB_INVOKE ((W)w, revents); 2967 EV_CB_INVOKE ((W)w, revents);
1678} 2968}
1679 2969
1680void inline_speed 2970unsigned int
1681call_pending (EV_P) 2971ev_pending_count (EV_P) EV_THROW
1682{ 2972{
1683 int pri; 2973 int pri;
2974 unsigned int count = 0;
1684 2975
1685 for (pri = NUMPRI; pri--; ) 2976 for (pri = NUMPRI; pri--; )
2977 count += pendingcnt [pri];
2978
2979 return count;
2980}
2981
2982void noinline
2983ev_invoke_pending (EV_P)
2984{
2985 pendingpri = NUMPRI;
2986
2987 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2988 {
2989 --pendingpri;
2990
1686 while (pendingcnt [pri]) 2991 while (pendingcnt [pendingpri])
1687 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689
1690 if (expect_true (p->w))
1691 { 2992 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2993 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1693 2994
1694 p->w->pending = 0; 2995 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 2996 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 2997 EV_FREQUENT_CHECK;
1697 } 2998 }
1698 } 2999 }
1699} 3000}
1700 3001
1701#if EV_IDLE_ENABLE 3002#if EV_IDLE_ENABLE
1702void inline_size 3003/* make idle watchers pending. this handles the "call-idle */
3004/* only when higher priorities are idle" logic */
3005inline_size void
1703idle_reify (EV_P) 3006idle_reify (EV_P)
1704{ 3007{
1705 if (expect_false (idleall)) 3008 if (expect_false (idleall))
1706 { 3009 {
1707 int pri; 3010 int pri;
1719 } 3022 }
1720 } 3023 }
1721} 3024}
1722#endif 3025#endif
1723 3026
1724void inline_size 3027/* make timers pending */
3028inline_size void
1725timers_reify (EV_P) 3029timers_reify (EV_P)
1726{ 3030{
1727 EV_FREQUENT_CHECK; 3031 EV_FREQUENT_CHECK;
1728 3032
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 3034 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3035 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 3036 {
3037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3038
3039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3040
3041 /* first reschedule or stop timer */
3042 if (w->repeat)
3043 {
1738 ev_at (w) += w->repeat; 3044 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 3045 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 3046 ev_at (w) = mn_now;
1741 3047
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 3049
1744 ANHE_at_cache (timers [HEAP0]); 3050 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 3051 downheap (timers, timercnt, HEAP0);
3052 }
3053 else
3054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3055
3056 EV_FREQUENT_CHECK;
3057 feed_reverse (EV_A_ (W)w);
1746 } 3058 }
1747 else 3059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 3060
1750 EV_FREQUENT_CHECK; 3061 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 3062 }
1753} 3063}
1754 3064
1755#if EV_PERIODIC_ENABLE 3065#if EV_PERIODIC_ENABLE
1756void inline_size 3066
3067static void noinline
3068periodic_recalc (EV_P_ ev_periodic *w)
3069{
3070 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3071 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3072
3073 /* the above almost always errs on the low side */
3074 while (at <= ev_rt_now)
3075 {
3076 ev_tstamp nat = at + w->interval;
3077
3078 /* when resolution fails us, we use ev_rt_now */
3079 if (expect_false (nat == at))
3080 {
3081 at = ev_rt_now;
3082 break;
3083 }
3084
3085 at = nat;
3086 }
3087
3088 ev_at (w) = at;
3089}
3090
3091/* make periodics pending */
3092inline_size void
1757periodics_reify (EV_P) 3093periodics_reify (EV_P)
1758{ 3094{
1759 EV_FREQUENT_CHECK; 3095 EV_FREQUENT_CHECK;
1760 3096
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 3098 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3099 do
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 3100 {
3101 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3102
3103 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3104
3105 /* first reschedule or stop timer */
3106 if (w->reschedule_cb)
3107 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3108 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 3109
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3110 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 3111
1774 ANHE_at_cache (periodics [HEAP0]); 3112 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 3113 downheap (periodics, periodiccnt, HEAP0);
3114 }
3115 else if (w->interval)
3116 {
3117 periodic_recalc (EV_A_ w);
3118 ANHE_at_cache (periodics [HEAP0]);
3119 downheap (periodics, periodiccnt, HEAP0);
3120 }
3121 else
3122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3123
3124 EV_FREQUENT_CHECK;
3125 feed_reverse (EV_A_ (W)w);
1776 } 3126 }
1777 else if (w->interval) 3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 3128
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3129 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 3130 }
1802} 3131}
1803 3132
3133/* simply recalculate all periodics */
3134/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 3135static void noinline ecb_cold
1805periodics_reschedule (EV_P) 3136periodics_reschedule (EV_P)
1806{ 3137{
1807 int i; 3138 int i;
1808 3139
1809 /* adjust periodics after time jump */ 3140 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3143 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 3144
1814 if (w->reschedule_cb) 3145 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3146 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 3147 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3148 periodic_recalc (EV_A_ w);
1818 3149
1819 ANHE_at_cache (periodics [i]); 3150 ANHE_at_cache (periodics [i]);
1820 } 3151 }
1821 3152
1822 reheap (periodics, periodiccnt); 3153 reheap (periodics, periodiccnt);
1823} 3154}
1824#endif 3155#endif
1825 3156
1826void inline_speed 3157/* adjust all timers by a given offset */
3158static void noinline ecb_cold
3159timers_reschedule (EV_P_ ev_tstamp adjust)
3160{
3161 int i;
3162
3163 for (i = 0; i < timercnt; ++i)
3164 {
3165 ANHE *he = timers + i + HEAP0;
3166 ANHE_w (*he)->at += adjust;
3167 ANHE_at_cache (*he);
3168 }
3169}
3170
3171/* fetch new monotonic and realtime times from the kernel */
3172/* also detect if there was a timejump, and act accordingly */
3173inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 3174time_update (EV_P_ ev_tstamp max_block)
1828{ 3175{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 3176#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 3177 if (expect_true (have_monotonic))
1833 { 3178 {
3179 int i;
1834 ev_tstamp odiff = rtmn_diff; 3180 ev_tstamp odiff = rtmn_diff;
1835 3181
1836 mn_now = get_clock (); 3182 mn_now = get_clock ();
1837 3183
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3184 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 3200 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 3201 * in the unlikely event of having been preempted here.
1856 */ 3202 */
1857 for (i = 4; --i; ) 3203 for (i = 4; --i; )
1858 { 3204 {
3205 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 3206 rtmn_diff = ev_rt_now - mn_now;
1860 3207
3208 diff = odiff - rtmn_diff;
3209
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3210 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 3211 return; /* all is well */
1863 3212
1864 ev_rt_now = ev_time (); 3213 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 3214 mn_now = get_clock ();
1866 now_floor = mn_now; 3215 now_floor = mn_now;
1867 } 3216 }
1868 3217
3218 /* no timer adjustment, as the monotonic clock doesn't jump */
3219 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 3220# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 3221 periodics_reschedule (EV_A);
1871# endif 3222# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 3223 }
1875 else 3224 else
1876#endif 3225#endif
1877 { 3226 {
1878 ev_rt_now = ev_time (); 3227 ev_rt_now = ev_time ();
1879 3228
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3229 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 3230 {
3231 /* adjust timers. this is easy, as the offset is the same for all of them */
3232 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 3233#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 3234 periodics_reschedule (EV_A);
1884#endif 3235#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 3236 }
1893 3237
1894 mn_now = ev_rt_now; 3238 mn_now = ev_rt_now;
1895 } 3239 }
1896} 3240}
1897 3241
1898void 3242int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 3243ev_run (EV_P_ int flags)
1914{ 3244{
3245#if EV_FEATURE_API
3246 ++loop_depth;
3247#endif
3248
3249 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3250
1915 loop_done = EVUNLOOP_CANCEL; 3251 loop_done = EVBREAK_CANCEL;
1916 3252
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3253 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 3254
1919 do 3255 do
1920 { 3256 {
1921#if EV_VERIFY >= 2 3257#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 3258 ev_verify (EV_A);
1923#endif 3259#endif
1924 3260
1925#ifndef _WIN32 3261#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 3262 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 3263 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 3271 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 3272 if (expect_false (postfork))
1937 if (forkcnt) 3273 if (forkcnt)
1938 { 3274 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3275 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 3276 EV_INVOKE_PENDING;
1941 } 3277 }
1942#endif 3278#endif
1943 3279
3280#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3281 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3282 if (expect_false (preparecnt))
1946 { 3283 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3285 EV_INVOKE_PENDING;
1949 } 3286 }
3287#endif
1950 3288
1951 if (expect_false (!activecnt)) 3289 if (expect_false (loop_done))
1952 break; 3290 break;
1953 3291
1954 /* we might have forked, so reify kernel state if necessary */ 3292 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3293 if (expect_false (postfork))
1956 loop_fork (EV_A); 3294 loop_fork (EV_A);
1961 /* calculate blocking time */ 3299 /* calculate blocking time */
1962 { 3300 {
1963 ev_tstamp waittime = 0.; 3301 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3302 ev_tstamp sleeptime = 0.;
1965 3303
3304 /* remember old timestamp for io_blocktime calculation */
3305 ev_tstamp prev_mn_now = mn_now;
3306
3307 /* update time to cancel out callback processing overhead */
3308 time_update (EV_A_ 1e100);
3309
3310 /* from now on, we want a pipe-wake-up */
3311 pipe_write_wanted = 1;
3312
3313 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3314
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3315 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3316 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3317 waittime = MAX_BLOCKTIME;
1972 3318
1973 if (timercnt) 3319 if (timercnt)
1974 { 3320 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3322 if (waittime > to) waittime = to;
1977 } 3323 }
1978 3324
1979#if EV_PERIODIC_ENABLE 3325#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3326 if (periodiccnt)
1981 { 3327 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3329 if (waittime > to) waittime = to;
1984 } 3330 }
1985#endif 3331#endif
1986 3332
3333 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3334 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3335 waittime = timeout_blocktime;
1989 3336
1990 sleeptime = waittime - backend_fudge; 3337 /* at this point, we NEED to wait, so we have to ensure */
3338 /* to pass a minimum nonzero value to the backend */
3339 if (expect_false (waittime < backend_mintime))
3340 waittime = backend_mintime;
1991 3341
3342 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3343 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3344 {
3345 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3346
3347 if (sleeptime > waittime - backend_mintime)
3348 sleeptime = waittime - backend_mintime;
3349
3350 if (expect_true (sleeptime > 0.))
3351 {
1997 ev_sleep (sleeptime); 3352 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3353 waittime -= sleeptime;
3354 }
1999 } 3355 }
2000 } 3356 }
2001 3357
3358#if EV_FEATURE_API
2002 ++loop_count; 3359 ++loop_count;
3360#endif
3361 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3362 backend_poll (EV_A_ waittime);
3363 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3364
3365 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3366
3367 ECB_MEMORY_FENCE_ACQUIRE;
3368 if (pipe_write_skipped)
3369 {
3370 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3371 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3372 }
3373
2004 3374
2005 /* update ev_rt_now, do magic */ 3375 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3376 time_update (EV_A_ waittime + sleeptime);
2007 } 3377 }
2008 3378
2015#if EV_IDLE_ENABLE 3385#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3386 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3387 idle_reify (EV_A);
2018#endif 3388#endif
2019 3389
3390#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3391 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3392 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3393 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3394#endif
2023 3395
2024 call_pending (EV_A); 3396 EV_INVOKE_PENDING;
2025 } 3397 }
2026 while (expect_true ( 3398 while (expect_true (
2027 activecnt 3399 activecnt
2028 && !loop_done 3400 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3401 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3402 ));
2031 3403
2032 if (loop_done == EVUNLOOP_ONE) 3404 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3405 loop_done = EVBREAK_CANCEL;
3406
3407#if EV_FEATURE_API
3408 --loop_depth;
3409#endif
3410
3411 return activecnt;
2034} 3412}
2035 3413
2036void 3414void
2037ev_unloop (EV_P_ int how) 3415ev_break (EV_P_ int how) EV_THROW
2038{ 3416{
2039 loop_done = how; 3417 loop_done = how;
2040} 3418}
2041 3419
3420void
3421ev_ref (EV_P) EV_THROW
3422{
3423 ++activecnt;
3424}
3425
3426void
3427ev_unref (EV_P) EV_THROW
3428{
3429 --activecnt;
3430}
3431
3432void
3433ev_now_update (EV_P) EV_THROW
3434{
3435 time_update (EV_A_ 1e100);
3436}
3437
3438void
3439ev_suspend (EV_P) EV_THROW
3440{
3441 ev_now_update (EV_A);
3442}
3443
3444void
3445ev_resume (EV_P) EV_THROW
3446{
3447 ev_tstamp mn_prev = mn_now;
3448
3449 ev_now_update (EV_A);
3450 timers_reschedule (EV_A_ mn_now - mn_prev);
3451#if EV_PERIODIC_ENABLE
3452 /* TODO: really do this? */
3453 periodics_reschedule (EV_A);
3454#endif
3455}
3456
2042/*****************************************************************************/ 3457/*****************************************************************************/
3458/* singly-linked list management, used when the expected list length is short */
2043 3459
2044void inline_size 3460inline_size void
2045wlist_add (WL *head, WL elem) 3461wlist_add (WL *head, WL elem)
2046{ 3462{
2047 elem->next = *head; 3463 elem->next = *head;
2048 *head = elem; 3464 *head = elem;
2049} 3465}
2050 3466
2051void inline_size 3467inline_size void
2052wlist_del (WL *head, WL elem) 3468wlist_del (WL *head, WL elem)
2053{ 3469{
2054 while (*head) 3470 while (*head)
2055 { 3471 {
2056 if (*head == elem) 3472 if (expect_true (*head == elem))
2057 { 3473 {
2058 *head = elem->next; 3474 *head = elem->next;
2059 return; 3475 break;
2060 } 3476 }
2061 3477
2062 head = &(*head)->next; 3478 head = &(*head)->next;
2063 } 3479 }
2064} 3480}
2065 3481
2066void inline_speed 3482/* internal, faster, version of ev_clear_pending */
3483inline_speed void
2067clear_pending (EV_P_ W w) 3484clear_pending (EV_P_ W w)
2068{ 3485{
2069 if (w->pending) 3486 if (w->pending)
2070 { 3487 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3488 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3489 w->pending = 0;
2073 } 3490 }
2074} 3491}
2075 3492
2076int 3493int
2077ev_clear_pending (EV_P_ void *w) 3494ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3495{
2079 W w_ = (W)w; 3496 W w_ = (W)w;
2080 int pending = w_->pending; 3497 int pending = w_->pending;
2081 3498
2082 if (expect_true (pending)) 3499 if (expect_true (pending))
2083 { 3500 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3501 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3502 p->w = (W)&pending_w;
2085 w_->pending = 0; 3503 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3504 return p->events;
2088 } 3505 }
2089 else 3506 else
2090 return 0; 3507 return 0;
2091} 3508}
2092 3509
2093void inline_size 3510inline_size void
2094pri_adjust (EV_P_ W w) 3511pri_adjust (EV_P_ W w)
2095{ 3512{
2096 int pri = w->priority; 3513 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3514 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3515 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3516 ev_set_priority (w, pri);
2100} 3517}
2101 3518
2102void inline_speed 3519inline_speed void
2103ev_start (EV_P_ W w, int active) 3520ev_start (EV_P_ W w, int active)
2104{ 3521{
2105 pri_adjust (EV_A_ w); 3522 pri_adjust (EV_A_ w);
2106 w->active = active; 3523 w->active = active;
2107 ev_ref (EV_A); 3524 ev_ref (EV_A);
2108} 3525}
2109 3526
2110void inline_size 3527inline_size void
2111ev_stop (EV_P_ W w) 3528ev_stop (EV_P_ W w)
2112{ 3529{
2113 ev_unref (EV_A); 3530 ev_unref (EV_A);
2114 w->active = 0; 3531 w->active = 0;
2115} 3532}
2116 3533
2117/*****************************************************************************/ 3534/*****************************************************************************/
2118 3535
2119void noinline 3536void noinline
2120ev_io_start (EV_P_ ev_io *w) 3537ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3538{
2122 int fd = w->fd; 3539 int fd = w->fd;
2123 3540
2124 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2125 return; 3542 return;
2126 3543
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3544 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3545 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3546
2129 EV_FREQUENT_CHECK; 3547 EV_FREQUENT_CHECK;
2130 3548
2131 ev_start (EV_A_ (W)w, 1); 3549 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3550 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3551 wlist_add (&anfds[fd].head, (WL)w);
2134 3552
3553 /* common bug, apparently */
3554 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3555
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3557 w->events &= ~EV__IOFDSET;
2137 3558
2138 EV_FREQUENT_CHECK; 3559 EV_FREQUENT_CHECK;
2139} 3560}
2140 3561
2141void noinline 3562void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3563ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3564{
2144 clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2146 return; 3567 return;
2147 3568
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3570
2150 EV_FREQUENT_CHECK; 3571 EV_FREQUENT_CHECK;
2151 3572
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3573 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3574 ev_stop (EV_A_ (W)w);
2154 3575
2155 fd_change (EV_A_ w->fd, 1); 3576 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3577
2157 EV_FREQUENT_CHECK; 3578 EV_FREQUENT_CHECK;
2158} 3579}
2159 3580
2160void noinline 3581void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3582ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3583{
2163 if (expect_false (ev_is_active (w))) 3584 if (expect_false (ev_is_active (w)))
2164 return; 3585 return;
2165 3586
2166 ev_at (w) += mn_now; 3587 ev_at (w) += mn_now;
2167 3588
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3590
2170 EV_FREQUENT_CHECK; 3591 EV_FREQUENT_CHECK;
2171 3592
2172 ++timercnt; 3593 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3597 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3598 upheap (timers, ev_active (w));
2178 3599
2179 EV_FREQUENT_CHECK; 3600 EV_FREQUENT_CHECK;
2180 3601
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3603}
2183 3604
2184void noinline 3605void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3606ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3607{
2187 clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3609 if (expect_false (!ev_is_active (w)))
2189 return; 3610 return;
2190 3611
2191 EV_FREQUENT_CHECK; 3612 EV_FREQUENT_CHECK;
2192 3613
2193 { 3614 {
2194 int active = ev_active (w); 3615 int active = ev_active (w);
2195 3616
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3618
2198 --timercnt; 3619 --timercnt;
2199 3620
2200 if (expect_true (active < timercnt + HEAP0)) 3621 if (expect_true (active < timercnt + HEAP0))
2201 { 3622 {
2202 timers [active] = timers [timercnt + HEAP0]; 3623 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3624 adjustheap (timers, timercnt, active);
2204 } 3625 }
2205 } 3626 }
2206 3627
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3628 ev_at (w) -= mn_now;
2210 3629
2211 ev_stop (EV_A_ (W)w); 3630 ev_stop (EV_A_ (W)w);
3631
3632 EV_FREQUENT_CHECK;
2212} 3633}
2213 3634
2214void noinline 3635void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3636ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3637{
2217 EV_FREQUENT_CHECK; 3638 EV_FREQUENT_CHECK;
3639
3640 clear_pending (EV_A_ (W)w);
2218 3641
2219 if (ev_is_active (w)) 3642 if (ev_is_active (w))
2220 { 3643 {
2221 if (w->repeat) 3644 if (w->repeat)
2222 { 3645 {
2234 } 3657 }
2235 3658
2236 EV_FREQUENT_CHECK; 3659 EV_FREQUENT_CHECK;
2237} 3660}
2238 3661
3662ev_tstamp
3663ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3664{
3665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3666}
3667
2239#if EV_PERIODIC_ENABLE 3668#if EV_PERIODIC_ENABLE
2240void noinline 3669void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3670ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3671{
2243 if (expect_false (ev_is_active (w))) 3672 if (expect_false (ev_is_active (w)))
2244 return; 3673 return;
2245 3674
2246 if (w->reschedule_cb) 3675 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3677 else if (w->interval)
2249 { 3678 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3680 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3681 }
2254 else 3682 else
2255 ev_at (w) = w->offset; 3683 ev_at (w) = w->offset;
2256 3684
2257 EV_FREQUENT_CHECK; 3685 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3691 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3692 upheap (periodics, ev_active (w));
2265 3693
2266 EV_FREQUENT_CHECK; 3694 EV_FREQUENT_CHECK;
2267 3695
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3696 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3697}
2270 3698
2271void noinline 3699void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3700ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3701{
2274 clear_pending (EV_A_ (W)w); 3702 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3703 if (expect_false (!ev_is_active (w)))
2276 return; 3704 return;
2277 3705
2278 EV_FREQUENT_CHECK; 3706 EV_FREQUENT_CHECK;
2279 3707
2280 { 3708 {
2281 int active = ev_active (w); 3709 int active = ev_active (w);
2282 3710
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3711 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3712
2285 --periodiccnt; 3713 --periodiccnt;
2286 3714
2287 if (expect_true (active < periodiccnt + HEAP0)) 3715 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3716 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3717 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3718 adjustheap (periodics, periodiccnt, active);
2291 } 3719 }
2292 } 3720 }
2293 3721
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3722 ev_stop (EV_A_ (W)w);
3723
3724 EV_FREQUENT_CHECK;
2297} 3725}
2298 3726
2299void noinline 3727void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3728ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3729{
2302 /* TODO: use adjustheap and recalculation */ 3730 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3731 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3732 ev_periodic_start (EV_A_ w);
2305} 3733}
2307 3735
2308#ifndef SA_RESTART 3736#ifndef SA_RESTART
2309# define SA_RESTART 0 3737# define SA_RESTART 0
2310#endif 3738#endif
2311 3739
3740#if EV_SIGNAL_ENABLE
3741
2312void noinline 3742void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3743ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3744{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3745 if (expect_false (ev_is_active (w)))
2319 return; 3746 return;
2320 3747
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3748 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3749
2323 evpipe_init (EV_A); 3750#if EV_MULTIPLICITY
3751 assert (("libev: a signal must not be attached to two different loops",
3752 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3753
2325 EV_FREQUENT_CHECK; 3754 signals [w->signum - 1].loop = EV_A;
3755 ECB_MEMORY_FENCE_RELEASE;
3756#endif
2326 3757
3758 EV_FREQUENT_CHECK;
3759
3760#if EV_USE_SIGNALFD
3761 if (sigfd == -2)
2327 { 3762 {
2328#ifndef _WIN32 3763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3764 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3766
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3767 if (sigfd >= 0)
3768 {
3769 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3770
2336#ifndef _WIN32 3771 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3772
2338#endif 3773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3774 ev_set_priority (&sigfd_w, EV_MAXPRI);
3775 ev_io_start (EV_A_ &sigfd_w);
3776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3777 }
2339 } 3778 }
3779
3780 if (sigfd >= 0)
3781 {
3782 /* TODO: check .head */
3783 sigaddset (&sigfd_set, w->signum);
3784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3785
3786 signalfd (sigfd, &sigfd_set, 0);
3787 }
3788#endif
2340 3789
2341 ev_start (EV_A_ (W)w, 1); 3790 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3791 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3792
2344 if (!((WL)w)->next) 3793 if (!((WL)w)->next)
3794# if EV_USE_SIGNALFD
3795 if (sigfd < 0) /*TODO*/
3796# endif
2345 { 3797 {
2346#if _WIN32 3798# ifdef _WIN32
3799 evpipe_init (EV_A);
3800
2347 signal (w->signum, ev_sighandler); 3801 signal (w->signum, ev_sighandler);
2348#else 3802# else
2349 struct sigaction sa; 3803 struct sigaction sa;
3804
3805 evpipe_init (EV_A);
3806
2350 sa.sa_handler = ev_sighandler; 3807 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3808 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3810 sigaction (w->signum, &sa, 0);
3811
3812 if (origflags & EVFLAG_NOSIGMASK)
3813 {
3814 sigemptyset (&sa.sa_mask);
3815 sigaddset (&sa.sa_mask, w->signum);
3816 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3817 }
2354#endif 3818#endif
2355 } 3819 }
2356 3820
2357 EV_FREQUENT_CHECK; 3821 EV_FREQUENT_CHECK;
2358} 3822}
2359 3823
2360void noinline 3824void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3825ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3826{
2363 clear_pending (EV_A_ (W)w); 3827 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3828 if (expect_false (!ev_is_active (w)))
2365 return; 3829 return;
2366 3830
2368 3832
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3833 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3834 ev_stop (EV_A_ (W)w);
2371 3835
2372 if (!signals [w->signum - 1].head) 3836 if (!signals [w->signum - 1].head)
3837 {
3838#if EV_MULTIPLICITY
3839 signals [w->signum - 1].loop = 0; /* unattach from signal */
3840#endif
3841#if EV_USE_SIGNALFD
3842 if (sigfd >= 0)
3843 {
3844 sigset_t ss;
3845
3846 sigemptyset (&ss);
3847 sigaddset (&ss, w->signum);
3848 sigdelset (&sigfd_set, w->signum);
3849
3850 signalfd (sigfd, &sigfd_set, 0);
3851 sigprocmask (SIG_UNBLOCK, &ss, 0);
3852 }
3853 else
3854#endif
2373 signal (w->signum, SIG_DFL); 3855 signal (w->signum, SIG_DFL);
3856 }
2374 3857
2375 EV_FREQUENT_CHECK; 3858 EV_FREQUENT_CHECK;
2376} 3859}
3860
3861#endif
3862
3863#if EV_CHILD_ENABLE
2377 3864
2378void 3865void
2379ev_child_start (EV_P_ ev_child *w) 3866ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 3867{
2381#if EV_MULTIPLICITY 3868#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3870#endif
2384 if (expect_false (ev_is_active (w))) 3871 if (expect_false (ev_is_active (w)))
2385 return; 3872 return;
2386 3873
2387 EV_FREQUENT_CHECK; 3874 EV_FREQUENT_CHECK;
2388 3875
2389 ev_start (EV_A_ (W)w, 1); 3876 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3878
2392 EV_FREQUENT_CHECK; 3879 EV_FREQUENT_CHECK;
2393} 3880}
2394 3881
2395void 3882void
2396ev_child_stop (EV_P_ ev_child *w) 3883ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 3884{
2398 clear_pending (EV_A_ (W)w); 3885 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3886 if (expect_false (!ev_is_active (w)))
2400 return; 3887 return;
2401 3888
2402 EV_FREQUENT_CHECK; 3889 EV_FREQUENT_CHECK;
2403 3890
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3892 ev_stop (EV_A_ (W)w);
2406 3893
2407 EV_FREQUENT_CHECK; 3894 EV_FREQUENT_CHECK;
2408} 3895}
3896
3897#endif
2409 3898
2410#if EV_STAT_ENABLE 3899#if EV_STAT_ENABLE
2411 3900
2412# ifdef _WIN32 3901# ifdef _WIN32
2413# undef lstat 3902# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3903# define lstat(a,b) _stati64 (a,b)
2415# endif 3904# endif
2416 3905
2417#define DEF_STAT_INTERVAL 5.0074891 3906#define DEF_STAT_INTERVAL 5.0074891
3907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3908#define MIN_STAT_INTERVAL 0.1074891
2419 3909
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3911
2422#if EV_USE_INOTIFY 3912#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3913
3914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3916
2425static void noinline 3917static void noinline
2426infy_add (EV_P_ ev_stat *w) 3918infy_add (EV_P_ ev_stat *w)
2427{ 3919{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3920 w->wd = inotify_add_watch (fs_fd, w->path,
3921 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3922 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3923 | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 3924
2430 if (w->wd < 0) 3925 if (w->wd >= 0)
3926 {
3927 struct statfs sfs;
3928
3929 /* now local changes will be tracked by inotify, but remote changes won't */
3930 /* unless the filesystem is known to be local, we therefore still poll */
3931 /* also do poll on <2.6.25, but with normal frequency */
3932
3933 if (!fs_2625)
3934 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3935 else if (!statfs (w->path, &sfs)
3936 && (sfs.f_type == 0x1373 /* devfs */
3937 || sfs.f_type == 0x4006 /* fat */
3938 || sfs.f_type == 0x4d44 /* msdos */
3939 || sfs.f_type == 0xEF53 /* ext2/3 */
3940 || sfs.f_type == 0x72b6 /* jffs2 */
3941 || sfs.f_type == 0x858458f6 /* ramfs */
3942 || sfs.f_type == 0x5346544e /* ntfs */
3943 || sfs.f_type == 0x3153464a /* jfs */
3944 || sfs.f_type == 0x9123683e /* btrfs */
3945 || sfs.f_type == 0x52654973 /* reiser3 */
3946 || sfs.f_type == 0x01021994 /* tmpfs */
3947 || sfs.f_type == 0x58465342 /* xfs */))
3948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3949 else
3950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 3951 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3952 else
3953 {
3954 /* can't use inotify, continue to stat */
3955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 3956
2434 /* monitor some parent directory for speedup hints */ 3957 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 3959 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 3961 {
2439 char path [4096]; 3962 char path [4096];
2440 strcpy (path, w->path); 3963 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 3969
2447 char *pend = strrchr (path, '/'); 3970 char *pend = strrchr (path, '/');
2448 3971
2449 if (!pend) 3972 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 3973 break;
2451 3974
2452 *pend = 0; 3975 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 3976 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 3977 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 3979 }
2457 } 3980 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 3981
2461 if (w->wd >= 0) 3982 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3984
3985 /* now re-arm timer, if required */
3986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3987 ev_timer_again (EV_A_ &w->timer);
3988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 3989}
2464 3990
2465static void noinline 3991static void noinline
2466infy_del (EV_P_ ev_stat *w) 3992infy_del (EV_P_ ev_stat *w)
2467{ 3993{
2470 3996
2471 if (wd < 0) 3997 if (wd < 0)
2472 return; 3998 return;
2473 3999
2474 w->wd = -2; 4000 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 4002 wlist_del (&fs_hash [slot].head, (WL)w);
2477 4003
2478 /* remove this watcher, if others are watching it, they will rearm */ 4004 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 4005 inotify_rm_watch (fs_fd, wd);
2480} 4006}
2481 4007
2482static void noinline 4008static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 4010{
2485 if (slot < 0) 4011 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 4012 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 4014 infy_wd (EV_A_ slot, wd, ev);
2489 else 4015 else
2490 { 4016 {
2491 WL w_; 4017 WL w_;
2492 4018
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 4020 {
2495 ev_stat *w = (ev_stat *)w_; 4021 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 4022 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 4023
2498 if (w->wd == wd || wd == -1) 4024 if (w->wd == wd || wd == -1)
2499 { 4025 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 4027 {
4028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 4029 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 4030 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 4031 }
2505 4032
2506 stat_timer_cb (EV_A_ &w->timer, 0); 4033 stat_timer_cb (EV_A_ &w->timer, 0);
2511 4038
2512static void 4039static void
2513infy_cb (EV_P_ ev_io *w, int revents) 4040infy_cb (EV_P_ ev_io *w, int revents)
2514{ 4041{
2515 char buf [EV_INOTIFY_BUFSIZE]; 4042 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 4043 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 4044 int len = read (fs_fd, buf, sizeof (buf));
2519 4045
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4046 for (ofs = 0; ofs < len; )
4047 {
4048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4050 ofs += sizeof (struct inotify_event) + ev->len;
4051 }
2522} 4052}
2523 4053
2524void inline_size 4054inline_size void ecb_cold
4055ev_check_2625 (EV_P)
4056{
4057 /* kernels < 2.6.25 are borked
4058 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4059 */
4060 if (ev_linux_version () < 0x020619)
4061 return;
4062
4063 fs_2625 = 1;
4064}
4065
4066inline_size int
4067infy_newfd (void)
4068{
4069#if defined IN_CLOEXEC && defined IN_NONBLOCK
4070 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4071 if (fd >= 0)
4072 return fd;
4073#endif
4074 return inotify_init ();
4075}
4076
4077inline_size void
2525infy_init (EV_P) 4078infy_init (EV_P)
2526{ 4079{
2527 if (fs_fd != -2) 4080 if (fs_fd != -2)
2528 return; 4081 return;
2529 4082
4083 fs_fd = -1;
4084
4085 ev_check_2625 (EV_A);
4086
2530 fs_fd = inotify_init (); 4087 fs_fd = infy_newfd ();
2531 4088
2532 if (fs_fd >= 0) 4089 if (fs_fd >= 0)
2533 { 4090 {
4091 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4092 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 4093 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 4094 ev_io_start (EV_A_ &fs_w);
4095 ev_unref (EV_A);
2537 } 4096 }
2538} 4097}
2539 4098
2540void inline_size 4099inline_size void
2541infy_fork (EV_P) 4100infy_fork (EV_P)
2542{ 4101{
2543 int slot; 4102 int slot;
2544 4103
2545 if (fs_fd < 0) 4104 if (fs_fd < 0)
2546 return; 4105 return;
2547 4106
4107 ev_ref (EV_A);
4108 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 4109 close (fs_fd);
2549 fs_fd = inotify_init (); 4110 fs_fd = infy_newfd ();
2550 4111
4112 if (fs_fd >= 0)
4113 {
4114 fd_intern (fs_fd);
4115 ev_io_set (&fs_w, fs_fd, EV_READ);
4116 ev_io_start (EV_A_ &fs_w);
4117 ev_unref (EV_A);
4118 }
4119
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4120 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 4121 {
2553 WL w_ = fs_hash [slot].head; 4122 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 4123 fs_hash [slot].head = 0;
2555 4124
2556 while (w_) 4125 while (w_)
2561 w->wd = -1; 4130 w->wd = -1;
2562 4131
2563 if (fs_fd >= 0) 4132 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 4133 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 4134 else
4135 {
4136 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4137 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 4138 ev_timer_again (EV_A_ &w->timer);
4139 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4140 }
2567 } 4141 }
2568
2569 } 4142 }
2570} 4143}
2571 4144
4145#endif
4146
4147#ifdef _WIN32
4148# define EV_LSTAT(p,b) _stati64 (p, b)
4149#else
4150# define EV_LSTAT(p,b) lstat (p, b)
2572#endif 4151#endif
2573 4152
2574void 4153void
2575ev_stat_stat (EV_P_ ev_stat *w) 4154ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2576{ 4155{
2577 if (lstat (w->path, &w->attr) < 0) 4156 if (lstat (w->path, &w->attr) < 0)
2578 w->attr.st_nlink = 0; 4157 w->attr.st_nlink = 0;
2579 else if (!w->attr.st_nlink) 4158 else if (!w->attr.st_nlink)
2580 w->attr.st_nlink = 1; 4159 w->attr.st_nlink = 1;
2583static void noinline 4162static void noinline
2584stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4163stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2585{ 4164{
2586 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4165 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2587 4166
2588 /* we copy this here each the time so that */ 4167 ev_statdata prev = w->attr;
2589 /* prev has the old value when the callback gets invoked */
2590 w->prev = w->attr;
2591 ev_stat_stat (EV_A_ w); 4168 ev_stat_stat (EV_A_ w);
2592 4169
2593 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4170 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2594 if ( 4171 if (
2595 w->prev.st_dev != w->attr.st_dev 4172 prev.st_dev != w->attr.st_dev
2596 || w->prev.st_ino != w->attr.st_ino 4173 || prev.st_ino != w->attr.st_ino
2597 || w->prev.st_mode != w->attr.st_mode 4174 || prev.st_mode != w->attr.st_mode
2598 || w->prev.st_nlink != w->attr.st_nlink 4175 || prev.st_nlink != w->attr.st_nlink
2599 || w->prev.st_uid != w->attr.st_uid 4176 || prev.st_uid != w->attr.st_uid
2600 || w->prev.st_gid != w->attr.st_gid 4177 || prev.st_gid != w->attr.st_gid
2601 || w->prev.st_rdev != w->attr.st_rdev 4178 || prev.st_rdev != w->attr.st_rdev
2602 || w->prev.st_size != w->attr.st_size 4179 || prev.st_size != w->attr.st_size
2603 || w->prev.st_atime != w->attr.st_atime 4180 || prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime 4181 || prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime 4182 || prev.st_ctime != w->attr.st_ctime
2606 ) { 4183 ) {
4184 /* we only update w->prev on actual differences */
4185 /* in case we test more often than invoke the callback, */
4186 /* to ensure that prev is always different to attr */
4187 w->prev = prev;
4188
2607 #if EV_USE_INOTIFY 4189 #if EV_USE_INOTIFY
4190 if (fs_fd >= 0)
4191 {
2608 infy_del (EV_A_ w); 4192 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w); 4193 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */ 4194 ev_stat_stat (EV_A_ w); /* avoid race... */
4195 }
2611 #endif 4196 #endif
2612 4197
2613 ev_feed_event (EV_A_ w, EV_STAT); 4198 ev_feed_event (EV_A_ w, EV_STAT);
2614 } 4199 }
2615} 4200}
2616 4201
2617void 4202void
2618ev_stat_start (EV_P_ ev_stat *w) 4203ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2619{ 4204{
2620 if (expect_false (ev_is_active (w))) 4205 if (expect_false (ev_is_active (w)))
2621 return; 4206 return;
2622 4207
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w); 4208 ev_stat_stat (EV_A_ w);
2628 4209
4210 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2629 if (w->interval < MIN_STAT_INTERVAL) 4211 w->interval = MIN_STAT_INTERVAL;
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631 4212
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4213 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2633 ev_set_priority (&w->timer, ev_priority (w)); 4214 ev_set_priority (&w->timer, ev_priority (w));
2634 4215
2635#if EV_USE_INOTIFY 4216#if EV_USE_INOTIFY
2636 infy_init (EV_A); 4217 infy_init (EV_A);
2637 4218
2638 if (fs_fd >= 0) 4219 if (fs_fd >= 0)
2639 infy_add (EV_A_ w); 4220 infy_add (EV_A_ w);
2640 else 4221 else
2641#endif 4222#endif
4223 {
2642 ev_timer_start (EV_A_ &w->timer); 4224 ev_timer_again (EV_A_ &w->timer);
4225 ev_unref (EV_A);
4226 }
2643 4227
2644 ev_start (EV_A_ (W)w, 1); 4228 ev_start (EV_A_ (W)w, 1);
2645 4229
2646 EV_FREQUENT_CHECK; 4230 EV_FREQUENT_CHECK;
2647} 4231}
2648 4232
2649void 4233void
2650ev_stat_stop (EV_P_ ev_stat *w) 4234ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2651{ 4235{
2652 clear_pending (EV_A_ (W)w); 4236 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w))) 4237 if (expect_false (!ev_is_active (w)))
2654 return; 4238 return;
2655 4239
2656 EV_FREQUENT_CHECK; 4240 EV_FREQUENT_CHECK;
2657 4241
2658#if EV_USE_INOTIFY 4242#if EV_USE_INOTIFY
2659 infy_del (EV_A_ w); 4243 infy_del (EV_A_ w);
2660#endif 4244#endif
4245
4246 if (ev_is_active (&w->timer))
4247 {
4248 ev_ref (EV_A);
2661 ev_timer_stop (EV_A_ &w->timer); 4249 ev_timer_stop (EV_A_ &w->timer);
4250 }
2662 4251
2663 ev_stop (EV_A_ (W)w); 4252 ev_stop (EV_A_ (W)w);
2664 4253
2665 EV_FREQUENT_CHECK; 4254 EV_FREQUENT_CHECK;
2666} 4255}
2667#endif 4256#endif
2668 4257
2669#if EV_IDLE_ENABLE 4258#if EV_IDLE_ENABLE
2670void 4259void
2671ev_idle_start (EV_P_ ev_idle *w) 4260ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2672{ 4261{
2673 if (expect_false (ev_is_active (w))) 4262 if (expect_false (ev_is_active (w)))
2674 return; 4263 return;
2675 4264
2676 pri_adjust (EV_A_ (W)w); 4265 pri_adjust (EV_A_ (W)w);
2689 4278
2690 EV_FREQUENT_CHECK; 4279 EV_FREQUENT_CHECK;
2691} 4280}
2692 4281
2693void 4282void
2694ev_idle_stop (EV_P_ ev_idle *w) 4283ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2695{ 4284{
2696 clear_pending (EV_A_ (W)w); 4285 clear_pending (EV_A_ (W)w);
2697 if (expect_false (!ev_is_active (w))) 4286 if (expect_false (!ev_is_active (w)))
2698 return; 4287 return;
2699 4288
2711 4300
2712 EV_FREQUENT_CHECK; 4301 EV_FREQUENT_CHECK;
2713} 4302}
2714#endif 4303#endif
2715 4304
4305#if EV_PREPARE_ENABLE
2716void 4306void
2717ev_prepare_start (EV_P_ ev_prepare *w) 4307ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2718{ 4308{
2719 if (expect_false (ev_is_active (w))) 4309 if (expect_false (ev_is_active (w)))
2720 return; 4310 return;
2721 4311
2722 EV_FREQUENT_CHECK; 4312 EV_FREQUENT_CHECK;
2727 4317
2728 EV_FREQUENT_CHECK; 4318 EV_FREQUENT_CHECK;
2729} 4319}
2730 4320
2731void 4321void
2732ev_prepare_stop (EV_P_ ev_prepare *w) 4322ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2733{ 4323{
2734 clear_pending (EV_A_ (W)w); 4324 clear_pending (EV_A_ (W)w);
2735 if (expect_false (!ev_is_active (w))) 4325 if (expect_false (!ev_is_active (w)))
2736 return; 4326 return;
2737 4327
2746 4336
2747 ev_stop (EV_A_ (W)w); 4337 ev_stop (EV_A_ (W)w);
2748 4338
2749 EV_FREQUENT_CHECK; 4339 EV_FREQUENT_CHECK;
2750} 4340}
4341#endif
2751 4342
4343#if EV_CHECK_ENABLE
2752void 4344void
2753ev_check_start (EV_P_ ev_check *w) 4345ev_check_start (EV_P_ ev_check *w) EV_THROW
2754{ 4346{
2755 if (expect_false (ev_is_active (w))) 4347 if (expect_false (ev_is_active (w)))
2756 return; 4348 return;
2757 4349
2758 EV_FREQUENT_CHECK; 4350 EV_FREQUENT_CHECK;
2763 4355
2764 EV_FREQUENT_CHECK; 4356 EV_FREQUENT_CHECK;
2765} 4357}
2766 4358
2767void 4359void
2768ev_check_stop (EV_P_ ev_check *w) 4360ev_check_stop (EV_P_ ev_check *w) EV_THROW
2769{ 4361{
2770 clear_pending (EV_A_ (W)w); 4362 clear_pending (EV_A_ (W)w);
2771 if (expect_false (!ev_is_active (w))) 4363 if (expect_false (!ev_is_active (w)))
2772 return; 4364 return;
2773 4365
2782 4374
2783 ev_stop (EV_A_ (W)w); 4375 ev_stop (EV_A_ (W)w);
2784 4376
2785 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2786} 4378}
4379#endif
2787 4380
2788#if EV_EMBED_ENABLE 4381#if EV_EMBED_ENABLE
2789void noinline 4382void noinline
2790ev_embed_sweep (EV_P_ ev_embed *w) 4383ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2791{ 4384{
2792 ev_loop (w->other, EVLOOP_NONBLOCK); 4385 ev_run (w->other, EVRUN_NOWAIT);
2793} 4386}
2794 4387
2795static void 4388static void
2796embed_io_cb (EV_P_ ev_io *io, int revents) 4389embed_io_cb (EV_P_ ev_io *io, int revents)
2797{ 4390{
2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4391 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2799 4392
2800 if (ev_cb (w)) 4393 if (ev_cb (w))
2801 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4394 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2802 else 4395 else
2803 ev_loop (w->other, EVLOOP_NONBLOCK); 4396 ev_run (w->other, EVRUN_NOWAIT);
2804} 4397}
2805 4398
2806static void 4399static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4400embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{ 4401{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4402 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810 4403
2811 { 4404 {
2812 struct ev_loop *loop = w->other; 4405 EV_P = w->other;
2813 4406
2814 while (fdchangecnt) 4407 while (fdchangecnt)
2815 { 4408 {
2816 fd_reify (EV_A); 4409 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4410 ev_run (EV_A_ EVRUN_NOWAIT);
2818 } 4411 }
2819 } 4412 }
4413}
4414
4415static void
4416embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4417{
4418 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4419
4420 ev_embed_stop (EV_A_ w);
4421
4422 {
4423 EV_P = w->other;
4424
4425 ev_loop_fork (EV_A);
4426 ev_run (EV_A_ EVRUN_NOWAIT);
4427 }
4428
4429 ev_embed_start (EV_A_ w);
2820} 4430}
2821 4431
2822#if 0 4432#if 0
2823static void 4433static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4434embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2826 ev_idle_stop (EV_A_ idle); 4436 ev_idle_stop (EV_A_ idle);
2827} 4437}
2828#endif 4438#endif
2829 4439
2830void 4440void
2831ev_embed_start (EV_P_ ev_embed *w) 4441ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2832{ 4442{
2833 if (expect_false (ev_is_active (w))) 4443 if (expect_false (ev_is_active (w)))
2834 return; 4444 return;
2835 4445
2836 { 4446 {
2837 struct ev_loop *loop = w->other; 4447 EV_P = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4448 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4449 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 } 4450 }
2841 4451
2842 EV_FREQUENT_CHECK; 4452 EV_FREQUENT_CHECK;
2843 4453
2846 4456
2847 ev_prepare_init (&w->prepare, embed_prepare_cb); 4457 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI); 4458 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare); 4459 ev_prepare_start (EV_A_ &w->prepare);
2850 4460
4461 ev_fork_init (&w->fork, embed_fork_cb);
4462 ev_fork_start (EV_A_ &w->fork);
4463
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4464 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852 4465
2853 ev_start (EV_A_ (W)w, 1); 4466 ev_start (EV_A_ (W)w, 1);
2854 4467
2855 EV_FREQUENT_CHECK; 4468 EV_FREQUENT_CHECK;
2856} 4469}
2857 4470
2858void 4471void
2859ev_embed_stop (EV_P_ ev_embed *w) 4472ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2860{ 4473{
2861 clear_pending (EV_A_ (W)w); 4474 clear_pending (EV_A_ (W)w);
2862 if (expect_false (!ev_is_active (w))) 4475 if (expect_false (!ev_is_active (w)))
2863 return; 4476 return;
2864 4477
2865 EV_FREQUENT_CHECK; 4478 EV_FREQUENT_CHECK;
2866 4479
2867 ev_io_stop (EV_A_ &w->io); 4480 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare); 4481 ev_prepare_stop (EV_A_ &w->prepare);
4482 ev_fork_stop (EV_A_ &w->fork);
2869 4483
2870 ev_stop (EV_A_ (W)w); 4484 ev_stop (EV_A_ (W)w);
2871 4485
2872 EV_FREQUENT_CHECK; 4486 EV_FREQUENT_CHECK;
2873} 4487}
2874#endif 4488#endif
2875 4489
2876#if EV_FORK_ENABLE 4490#if EV_FORK_ENABLE
2877void 4491void
2878ev_fork_start (EV_P_ ev_fork *w) 4492ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2879{ 4493{
2880 if (expect_false (ev_is_active (w))) 4494 if (expect_false (ev_is_active (w)))
2881 return; 4495 return;
2882 4496
2883 EV_FREQUENT_CHECK; 4497 EV_FREQUENT_CHECK;
2888 4502
2889 EV_FREQUENT_CHECK; 4503 EV_FREQUENT_CHECK;
2890} 4504}
2891 4505
2892void 4506void
2893ev_fork_stop (EV_P_ ev_fork *w) 4507ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2894{ 4508{
2895 clear_pending (EV_A_ (W)w); 4509 clear_pending (EV_A_ (W)w);
2896 if (expect_false (!ev_is_active (w))) 4510 if (expect_false (!ev_is_active (w)))
2897 return; 4511 return;
2898 4512
2909 4523
2910 EV_FREQUENT_CHECK; 4524 EV_FREQUENT_CHECK;
2911} 4525}
2912#endif 4526#endif
2913 4527
4528#if EV_CLEANUP_ENABLE
4529void
4530ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4531{
4532 if (expect_false (ev_is_active (w)))
4533 return;
4534
4535 EV_FREQUENT_CHECK;
4536
4537 ev_start (EV_A_ (W)w, ++cleanupcnt);
4538 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4539 cleanups [cleanupcnt - 1] = w;
4540
4541 /* cleanup watchers should never keep a refcount on the loop */
4542 ev_unref (EV_A);
4543 EV_FREQUENT_CHECK;
4544}
4545
4546void
4547ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4548{
4549 clear_pending (EV_A_ (W)w);
4550 if (expect_false (!ev_is_active (w)))
4551 return;
4552
4553 EV_FREQUENT_CHECK;
4554 ev_ref (EV_A);
4555
4556 {
4557 int active = ev_active (w);
4558
4559 cleanups [active - 1] = cleanups [--cleanupcnt];
4560 ev_active (cleanups [active - 1]) = active;
4561 }
4562
4563 ev_stop (EV_A_ (W)w);
4564
4565 EV_FREQUENT_CHECK;
4566}
4567#endif
4568
2914#if EV_ASYNC_ENABLE 4569#if EV_ASYNC_ENABLE
2915void 4570void
2916ev_async_start (EV_P_ ev_async *w) 4571ev_async_start (EV_P_ ev_async *w) EV_THROW
2917{ 4572{
2918 if (expect_false (ev_is_active (w))) 4573 if (expect_false (ev_is_active (w)))
2919 return; 4574 return;
4575
4576 w->sent = 0;
2920 4577
2921 evpipe_init (EV_A); 4578 evpipe_init (EV_A);
2922 4579
2923 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
2924 4581
2928 4585
2929 EV_FREQUENT_CHECK; 4586 EV_FREQUENT_CHECK;
2930} 4587}
2931 4588
2932void 4589void
2933ev_async_stop (EV_P_ ev_async *w) 4590ev_async_stop (EV_P_ ev_async *w) EV_THROW
2934{ 4591{
2935 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
2937 return; 4594 return;
2938 4595
2949 4606
2950 EV_FREQUENT_CHECK; 4607 EV_FREQUENT_CHECK;
2951} 4608}
2952 4609
2953void 4610void
2954ev_async_send (EV_P_ ev_async *w) 4611ev_async_send (EV_P_ ev_async *w) EV_THROW
2955{ 4612{
2956 w->sent = 1; 4613 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync); 4614 evpipe_write (EV_A_ &async_pending);
2958} 4615}
2959#endif 4616#endif
2960 4617
2961/*****************************************************************************/ 4618/*****************************************************************************/
2962 4619
2972once_cb (EV_P_ struct ev_once *once, int revents) 4629once_cb (EV_P_ struct ev_once *once, int revents)
2973{ 4630{
2974 void (*cb)(int revents, void *arg) = once->cb; 4631 void (*cb)(int revents, void *arg) = once->cb;
2975 void *arg = once->arg; 4632 void *arg = once->arg;
2976 4633
2977 ev_io_stop (EV_A_ &once->io); 4634 ev_io_stop (EV_A_ &once->io);
2978 ev_timer_stop (EV_A_ &once->to); 4635 ev_timer_stop (EV_A_ &once->to);
2979 ev_free (once); 4636 ev_free (once);
2980 4637
2981 cb (revents, arg); 4638 cb (revents, arg);
2982} 4639}
2983 4640
2984static void 4641static void
2985once_cb_io (EV_P_ ev_io *w, int revents) 4642once_cb_io (EV_P_ ev_io *w, int revents)
2986{ 4643{
2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4644 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4645
4646 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2988} 4647}
2989 4648
2990static void 4649static void
2991once_cb_to (EV_P_ ev_timer *w, int revents) 4650once_cb_to (EV_P_ ev_timer *w, int revents)
2992{ 4651{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4652 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4653
4654 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2994} 4655}
2995 4656
2996void 4657void
2997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4658ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2998{ 4659{
2999 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4660 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3000 4661
3001 if (expect_false (!once)) 4662 if (expect_false (!once))
3002 { 4663 {
3003 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4664 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3004 return; 4665 return;
3005 } 4666 }
3006 4667
3007 once->cb = cb; 4668 once->cb = cb;
3008 once->arg = arg; 4669 once->arg = arg;
3020 ev_timer_set (&once->to, timeout, 0.); 4681 ev_timer_set (&once->to, timeout, 0.);
3021 ev_timer_start (EV_A_ &once->to); 4682 ev_timer_start (EV_A_ &once->to);
3022 } 4683 }
3023} 4684}
3024 4685
4686/*****************************************************************************/
4687
4688#if EV_WALK_ENABLE
4689void ecb_cold
4690ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4691{
4692 int i, j;
4693 ev_watcher_list *wl, *wn;
4694
4695 if (types & (EV_IO | EV_EMBED))
4696 for (i = 0; i < anfdmax; ++i)
4697 for (wl = anfds [i].head; wl; )
4698 {
4699 wn = wl->next;
4700
4701#if EV_EMBED_ENABLE
4702 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4703 {
4704 if (types & EV_EMBED)
4705 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4706 }
4707 else
4708#endif
4709#if EV_USE_INOTIFY
4710 if (ev_cb ((ev_io *)wl) == infy_cb)
4711 ;
4712 else
4713#endif
4714 if ((ev_io *)wl != &pipe_w)
4715 if (types & EV_IO)
4716 cb (EV_A_ EV_IO, wl);
4717
4718 wl = wn;
4719 }
4720
4721 if (types & (EV_TIMER | EV_STAT))
4722 for (i = timercnt + HEAP0; i-- > HEAP0; )
4723#if EV_STAT_ENABLE
4724 /*TODO: timer is not always active*/
4725 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4726 {
4727 if (types & EV_STAT)
4728 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4729 }
4730 else
4731#endif
4732 if (types & EV_TIMER)
4733 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4734
4735#if EV_PERIODIC_ENABLE
4736 if (types & EV_PERIODIC)
4737 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4738 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4739#endif
4740
4741#if EV_IDLE_ENABLE
4742 if (types & EV_IDLE)
4743 for (j = NUMPRI; j--; )
4744 for (i = idlecnt [j]; i--; )
4745 cb (EV_A_ EV_IDLE, idles [j][i]);
4746#endif
4747
4748#if EV_FORK_ENABLE
4749 if (types & EV_FORK)
4750 for (i = forkcnt; i--; )
4751 if (ev_cb (forks [i]) != embed_fork_cb)
4752 cb (EV_A_ EV_FORK, forks [i]);
4753#endif
4754
4755#if EV_ASYNC_ENABLE
4756 if (types & EV_ASYNC)
4757 for (i = asynccnt; i--; )
4758 cb (EV_A_ EV_ASYNC, asyncs [i]);
4759#endif
4760
4761#if EV_PREPARE_ENABLE
4762 if (types & EV_PREPARE)
4763 for (i = preparecnt; i--; )
4764# if EV_EMBED_ENABLE
4765 if (ev_cb (prepares [i]) != embed_prepare_cb)
4766# endif
4767 cb (EV_A_ EV_PREPARE, prepares [i]);
4768#endif
4769
4770#if EV_CHECK_ENABLE
4771 if (types & EV_CHECK)
4772 for (i = checkcnt; i--; )
4773 cb (EV_A_ EV_CHECK, checks [i]);
4774#endif
4775
4776#if EV_SIGNAL_ENABLE
4777 if (types & EV_SIGNAL)
4778 for (i = 0; i < EV_NSIG - 1; ++i)
4779 for (wl = signals [i].head; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_SIGNAL, wl);
4783 wl = wn;
4784 }
4785#endif
4786
4787#if EV_CHILD_ENABLE
4788 if (types & EV_CHILD)
4789 for (i = (EV_PID_HASHSIZE); i--; )
4790 for (wl = childs [i]; wl; )
4791 {
4792 wn = wl->next;
4793 cb (EV_A_ EV_CHILD, wl);
4794 wl = wn;
4795 }
4796#endif
4797/* EV_STAT 0x00001000 /* stat data changed */
4798/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4799}
4800#endif
4801
3025#if EV_MULTIPLICITY 4802#if EV_MULTIPLICITY
3026 #include "ev_wrap.h" 4803 #include "ev_wrap.h"
3027#endif 4804#endif
3028 4805
3029#ifdef __cplusplus
3030}
3031#endif
3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines