ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 170# define EV_USE_MONOTONIC 1
171# else
172# define EV_USE_MONOTONIC 0
173# endif
174#endif
175
176#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
96#endif 186#endif
97 187
98#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 190#endif
102 191
103#ifndef EV_USE_POLL 192#ifndef EV_USE_POLL
104# ifdef _WIN32 193# ifdef _WIN32
105# define EV_USE_POLL 0 194# define EV_USE_POLL 0
107# define EV_USE_POLL 1 196# define EV_USE_POLL 1
108# endif 197# endif
109#endif 198#endif
110 199
111#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
112# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
113#endif 206#endif
114 207
115#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
117#endif 210#endif
118 211
119#ifndef EV_USE_REALTIME 212#ifndef EV_USE_PORT
213# define EV_USE_PORT 0
214#endif
215
216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 218# define EV_USE_INOTIFY 1
219# else
220# define EV_USE_INOTIFY 0
121#endif 221# endif
222#endif
122 223
123/**/ 224#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif
239
240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 267
125#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
128#endif 271#endif
130#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
133#endif 276#endif
134 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
135#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 294# include <winsock.h>
137#endif 295#endif
138 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
139/**/ 309/**/
140 310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
326
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 330
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 331#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 333# define noinline __attribute__ ((noinline))
155#else 334#else
156# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
157# define inline static 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
158#endif 340#endif
159 341
160#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
162 351
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 354
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 355#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */
167 357
168typedef struct ev_watcher *W; 358typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
171 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
173 370
174#ifdef _WIN32 371#ifdef _WIN32
175# include "ev_win32.c" 372# include "ev_win32.c"
176#endif 373#endif
177 374
178/*****************************************************************************/ 375/*****************************************************************************/
179 376
180static void (*syserr_cb)(const char *msg); 377static void (*syserr_cb)(const char *msg);
181 378
379void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 380ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 381{
184 syserr_cb = cb; 382 syserr_cb = cb;
185} 383}
186 384
187static void 385static void noinline
188syserr (const char *msg) 386syserr (const char *msg)
189{ 387{
190 if (!msg) 388 if (!msg)
191 msg = "(libev) system error"; 389 msg = "(libev) system error";
192 390
197 perror (msg); 395 perror (msg);
198 abort (); 396 abort ();
199 } 397 }
200} 398}
201 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
202static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 416
417void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 419{
206 alloc = cb; 420 alloc = cb;
207} 421}
208 422
209static void * 423inline_speed void *
210ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
211{ 425{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
213 427
214 if (!ptr && size) 428 if (!ptr && size)
215 { 429 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 431 abort ();
238typedef struct 452typedef struct
239{ 453{
240 W w; 454 W w;
241 int events; 455 int events;
242} ANPENDING; 456} ANPENDING;
457
458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
460typedef struct
461{
462 WL head;
463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
482#endif
243 483
244#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
245 485
246 struct ev_loop 486 struct ev_loop
247 { 487 {
251 #include "ev_vars.h" 491 #include "ev_vars.h"
252 #undef VAR 492 #undef VAR
253 }; 493 };
254 #include "ev_wrap.h" 494 #include "ev_wrap.h"
255 495
256 struct ev_loop default_loop_struct; 496 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 497 struct ev_loop *ev_default_loop_ptr;
258 498
259#else 499#else
260 500
261 ev_tstamp ev_rt_now; 501 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 502 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 503 #include "ev_vars.h"
264 #undef VAR 504 #undef VAR
265 505
266 static int default_loop; 506 static int ev_default_loop_ptr;
267 507
268#endif 508#endif
269 509
270/*****************************************************************************/ 510/*****************************************************************************/
271 511
281 gettimeofday (&tv, 0); 521 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 522 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 523#endif
284} 524}
285 525
286inline ev_tstamp 526ev_tstamp inline_size
287get_clock (void) 527get_clock (void)
288{ 528{
289#if EV_USE_MONOTONIC 529#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 530 if (expect_true (have_monotonic))
291 { 531 {
304{ 544{
305 return ev_rt_now; 545 return ev_rt_now;
306} 546}
307#endif 547#endif
308 548
309#define array_roundsize(type,n) ((n) | 4 & ~3) 549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
578int inline_size
579array_nextsize (int elem, int cur, int cnt)
580{
581 int ncur = cur + 1;
582
583 do
584 ncur <<= 1;
585 while (cnt > ncur);
586
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 {
590 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4;
593 ncur /= elem;
594 }
595
596 return ncur;
597}
598
599static noinline void *
600array_realloc (int elem, void *base, int *cur, int cnt)
601{
602 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur);
604}
310 605
311#define array_needsize(type,base,cur,cnt,init) \ 606#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 607 if (expect_false ((cnt) > (cur))) \
313 { \ 608 { \
314 int newcnt = cur; \ 609 int ocur_ = (cur); \
315 do \ 610 (base) = (type *)array_realloc \
316 { \ 611 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 612 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 613 }
325 614
615#if 0
326#define array_slim(type,stem) \ 616#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 617 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 618 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 619 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 620 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 622 }
623#endif
333 624
334#define array_free(stem, idx) \ 625#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 627
337/*****************************************************************************/ 628/*****************************************************************************/
338 629
339static void 630void noinline
631ev_feed_event (EV_P_ void *w, int revents)
632{
633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
635
636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents;
644 }
645}
646
647void inline_speed
648queue_events (EV_P_ W *events, int eventcnt, int type)
649{
650 int i;
651
652 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type);
654}
655
656/*****************************************************************************/
657
658void inline_size
340anfds_init (ANFD *base, int count) 659anfds_init (ANFD *base, int count)
341{ 660{
342 while (count--) 661 while (count--)
343 { 662 {
344 base->head = 0; 663 base->head = 0;
347 666
348 ++base; 667 ++base;
349 } 668 }
350} 669}
351 670
352void 671void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 672fd_event (EV_P_ int fd, int revents)
380{ 673{
381 ANFD *anfd = anfds + fd; 674 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 675 ev_io *w;
383 676
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 678 {
386 int ev = w->events & revents; 679 int ev = w->events & revents;
387 680
388 if (ev) 681 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 682 ev_feed_event (EV_A_ (W)w, ev);
391} 684}
392 685
393void 686void
394ev_feed_fd_event (EV_P_ int fd, int revents) 687ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 688{
689 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 690 fd_event (EV_A_ fd, revents);
397} 691}
398 692
399/*****************************************************************************/ 693void inline_size
400
401static void
402fd_reify (EV_P) 694fd_reify (EV_P)
403{ 695{
404 int i; 696 int i;
405 697
406 for (i = 0; i < fdchangecnt; ++i) 698 for (i = 0; i < fdchangecnt; ++i)
407 { 699 {
408 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 702 ev_io *w;
411 703
412 int events = 0; 704 unsigned char events = 0;
413 705
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 707 events |= (unsigned char)w->events;
416 708
417#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
418 if (events) 710 if (events)
419 { 711 {
420 unsigned long argp; 712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
421 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 719 }
424#endif 720#endif
425 721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
426 anfd->reify = 0; 726 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
430 } 732 }
431 733
432 fdchangecnt = 0; 734 fdchangecnt = 0;
433} 735}
434 736
435static void 737void inline_size
436fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
437{ 739{
438 if (anfds [fd].reify) 740 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
442 742
743 if (expect_true (!reify))
744 {
443 ++fdchangecnt; 745 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
446} 749}
447 750
448static void 751void inline_speed
449fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
450{ 753{
451 struct ev_io *w; 754 ev_io *w;
452 755
453 while ((w = (struct ev_io *)anfds [fd].head)) 756 while ((w = (ev_io *)anfds [fd].head))
454 { 757 {
455 ev_io_stop (EV_A_ w); 758 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 760 }
458} 761}
459 762
460static int 763int inline_size
461fd_valid (int fd) 764fd_valid (int fd)
462{ 765{
463#ifdef _WIN32 766#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 767 return _get_osfhandle (fd) != -1;
465#else 768#else
466 return fcntl (fd, F_GETFD) != -1; 769 return fcntl (fd, F_GETFD) != -1;
467#endif 770#endif
468} 771}
469 772
470/* called on EBADF to verify fds */ 773/* called on EBADF to verify fds */
471static void 774static void noinline
472fd_ebadf (EV_P) 775fd_ebadf (EV_P)
473{ 776{
474 int fd; 777 int fd;
475 778
476 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 780 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
480} 783}
481 784
482/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 786static void noinline
484fd_enomem (EV_P) 787fd_enomem (EV_P)
485{ 788{
486 int fd; 789 int fd;
487 790
488 for (fd = anfdmax; fd--; ) 791 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 794 fd_kill (EV_A_ fd);
492 return; 795 return;
493 } 796 }
494} 797}
495 798
496/* usually called after fork if method needs to re-arm all fds from scratch */ 799/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 800static void noinline
498fd_rearm_all (EV_P) 801fd_rearm_all (EV_P)
499{ 802{
500 int fd; 803 int fd;
501 804
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 806 if (anfds [fd].events)
505 { 807 {
506 anfds [fd].events = 0; 808 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
508 } 810 }
509} 811}
510 812
511/*****************************************************************************/ 813/*****************************************************************************/
512 814
513static void 815/*
514upheap (WT *heap, int k) 816 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 818 * the branching factor of the d-tree.
819 */
517 820
518 while (k && heap [k >> 1]->at > w->at) 821/*
519 { 822 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 824 * which is more cache-efficient.
522 k >>= 1; 825 * the difference is about 5% with 50000+ watchers.
523 } 826 */
827#if EV_USE_4HEAP
524 828
525 heap [k] = w; 829#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
527 833
528} 834/* away from the root */
529 835void inline_speed
530static void
531downheap (WT *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
532{ 837{
533 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
534 840
535 while (k < (N >> 1)) 841 for (;;)
536 { 842 {
537 int j = k << 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 846
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 849 {
541 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
543 break; 863 break;
544 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
545 heap [k] = heap [j]; 903 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
547 k = j; 906 k = c;
548 } 907 }
549 908
550 heap [k] = w; 909 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
552} 911}
912#endif
553 913
554inline void 914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936void inline_size
555adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
556{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
557 upheap (heap, k); 940 upheap (heap, k);
941 else
558 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
559} 955}
560 956
561/*****************************************************************************/ 957/*****************************************************************************/
562 958
563typedef struct 959typedef struct
564{ 960{
565 WL head; 961 WL head;
566 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
567} ANSIG; 963} ANSIG;
568 964
569static ANSIG *signals; 965static ANSIG *signals;
570static int signalmax; 966static int signalmax;
571 967
572static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 969
576static void 970void inline_size
577signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
578{ 972{
579 while (count--) 973 while (count--)
580 { 974 {
581 base->head = 0; 975 base->head = 0;
583 977
584 ++base; 978 ++base;
585 } 979 }
586} 980}
587 981
588static void 982/*****************************************************************************/
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594 983
595 signals [signum - 1].gotsig = 1; 984void inline_speed
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void
640fd_intern (int fd) 985fd_intern (int fd)
641{ 986{
642#ifdef _WIN32 987#ifdef _WIN32
643 int arg = 1; 988 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else 990#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 993#endif
649} 994}
650 995
996static void noinline
997evpipe_init (EV_P)
998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
1014 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
1019 ev_io_start (EV_A_ &pipeev);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
651static void 1047static void
652siginit (EV_P) 1048pipecb (EV_P_ ev_io *iow, int revents)
653{ 1049{
654 fd_intern (sigpipe [0]); 1050#if EV_USE_EVENTFD
655 fd_intern (sigpipe [1]); 1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
656 1062
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1063 if (gotsig && ev_is_default_loop (EV_A))
658 ev_io_start (EV_A_ &sigev); 1064 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
660} 1087}
661 1088
662/*****************************************************************************/ 1089/*****************************************************************************/
663 1090
664static struct ev_child *childs [PID_HASHSIZE]; 1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
1128static WL childs [EV_PID_HASHSIZE];
665 1129
666#ifndef _WIN32 1130#ifndef _WIN32
667 1131
668static struct ev_signal childev; 1132static ev_signal childev;
1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
1138void inline_speed
1139child_reap (EV_P_ int chain, int pid, int status)
1140{
1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
1148 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 w->rpid = pid;
1151 w->rstatus = status;
1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1153 }
1154 }
1155}
669 1156
670#ifndef WCONTINUED 1157#ifndef WCONTINUED
671# define WCONTINUED 0 1158# define WCONTINUED 0
672#endif 1159#endif
673 1160
674static void 1161static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1162childcb (EV_P_ ev_signal *sw, int revents)
691{ 1163{
692 int pid, status; 1164 int pid, status;
693 1165
1166 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1167 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1168 if (!WCONTINUED
1169 || errno != EINVAL
1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1171 return;
1172
696 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1176
699 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1180}
703 1181
704#endif 1182#endif
705 1183
706/*****************************************************************************/ 1184/*****************************************************************************/
707 1185
1186#if EV_USE_PORT
1187# include "ev_port.c"
1188#endif
708#if EV_USE_KQUEUE 1189#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1190# include "ev_kqueue.c"
710#endif 1191#endif
711#if EV_USE_EPOLL 1192#if EV_USE_EPOLL
712# include "ev_epoll.c" 1193# include "ev_epoll.c"
729{ 1210{
730 return EV_VERSION_MINOR; 1211 return EV_VERSION_MINOR;
731} 1212}
732 1213
733/* return true if we are running with elevated privileges and should ignore env variables */ 1214/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1215int inline_size
735enable_secure (void) 1216enable_secure (void)
736{ 1217{
737#ifdef _WIN32 1218#ifdef _WIN32
738 return 0; 1219 return 0;
739#else 1220#else
740 return getuid () != geteuid () 1221 return getuid () != geteuid ()
741 || getgid () != getegid (); 1222 || getgid () != getegid ();
742#endif 1223#endif
743} 1224}
744 1225
745int 1226unsigned int
746ev_method (EV_P) 1227ev_supported_backends (void)
747{ 1228{
748 return method; 1229 unsigned int flags = 0;
749}
750 1230
751static void 1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1233 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1234 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236
1237 return flags;
1238}
1239
1240unsigned int
1241ev_recommended_backends (void)
753{ 1242{
754 if (!method) 1243 unsigned int flags = ev_supported_backends ();
1244
1245#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE;
1249#endif
1250#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation
1252 flags &= ~EVBACKEND_POLL;
1253#endif
1254
1255 return flags;
1256}
1257
1258unsigned int
1259ev_embeddable_backends (void)
1260{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268}
1269
1270unsigned int
1271ev_backend (EV_P)
1272{
1273 return backend;
1274}
1275
1276unsigned int
1277ev_loop_count (EV_P)
1278{
1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
1292}
1293
1294static void noinline
1295loop_init (EV_P_ unsigned int flags)
1296{
1297 if (!backend)
755 { 1298 {
756#if EV_USE_MONOTONIC 1299#if EV_USE_MONOTONIC
757 { 1300 {
758 struct timespec ts; 1301 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1303 have_monotonic = 1;
761 } 1304 }
762#endif 1305#endif
763 1306
764 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1308 mn_now = get_clock ();
766 now_floor = mn_now; 1309 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
768 1311
769 if (methods == EVMETHOD_AUTO) 1312 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1320
1321 /* pid check not overridable via env */
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif
1326
1327 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1331
775 method = 0; 1332 if (!(flags & 0x0000ffffU))
1333 flags |= ev_recommended_backends ();
1334
1335#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif
776#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1340#endif
779#if EV_USE_EPOLL 1341#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1342 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1343#endif
782#if EV_USE_POLL 1344#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1345 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1346#endif
785#if EV_USE_SELECT 1347#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1349#endif
788 1350
789 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
791 } 1353 }
792} 1354}
793 1355
794void 1356static void noinline
795loop_destroy (EV_P) 1357loop_destroy (EV_P)
796{ 1358{
797 int i; 1359 int i;
798 1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377
1378#if EV_USE_INOTIFY
1379 if (fs_fd >= 0)
1380 close (fs_fd);
1381#endif
1382
1383 if (backend_fd >= 0)
1384 close (backend_fd);
1385
1386#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif
799#if EV_USE_KQUEUE 1389#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1391#endif
802#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1394#endif
805#if EV_USE_POLL 1395#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1396 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1397#endif
808#if EV_USE_SELECT 1398#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1399 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1400#endif
811 1401
812 for (i = NUMPRI; i--; ) 1402 for (i = NUMPRI; i--; )
1403 {
813 array_free (pending, [i]); 1404 array_free (pending, [i]);
1405#if EV_IDLE_ENABLE
1406 array_free (idle, [i]);
1407#endif
1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
814 1411
815 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1413 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1414 array_free (timer, EMPTY);
818#if EV_PERIODICS 1415#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1416 array_free (periodic, EMPTY);
820#endif 1417#endif
1418#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1419 array_free (fork, EMPTY);
1420#endif
822 array_free (prepare, EMPTY); 1421 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
824 1426
825 method = 0; 1427 backend = 0;
826} 1428}
827 1429
828static void 1430#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P);
1432#endif
1433
1434void inline_size
829loop_fork (EV_P) 1435loop_fork (EV_P)
830{ 1436{
1437#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif
1440#if EV_USE_KQUEUE
1441 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1442#endif
831#if EV_USE_EPOLL 1443#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1444 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1445#endif
834#if EV_USE_KQUEUE 1446#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1447 infy_fork (EV_A);
836#endif 1448#endif
837 1449
838 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
839 { 1451 {
840 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
841 1458
842 ev_ref (EV_A); 1459 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
844 close (sigpipe [0]); 1469 close (evpipe [0]);
845 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
846 1472
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
851 } 1476 }
852 1477
853 postfork = 0; 1478 postfork = 0;
854} 1479}
1480
1481#if EV_MULTIPLICITY
1482
1483struct ev_loop *
1484ev_loop_new (unsigned int flags)
1485{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487
1488 memset (loop, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags);
1491
1492 if (ev_backend (EV_A))
1493 return loop;
1494
1495 return 0;
1496}
1497
1498void
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
855 1611
856#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
857struct ev_loop * 1613struct ev_loop *
858ev_loop_new (int methods) 1614ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1615#else
890int 1616int
1617ev_default_loop (unsigned int flags)
891#endif 1618#endif
892ev_default_loop (int methods)
893{ 1619{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1620 if (!ev_default_loop_ptr)
899 { 1621 {
900#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1624#else
903 default_loop = 1; 1625 ev_default_loop_ptr = 1;
904#endif 1626#endif
905 1627
906 loop_init (EV_A_ methods); 1628 loop_init (EV_A_ flags);
907 1629
908 if (ev_method (EV_A)) 1630 if (ev_backend (EV_A))
909 { 1631 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1632#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1637#endif
918 } 1638 }
919 else 1639 else
920 default_loop = 0; 1640 ev_default_loop_ptr = 0;
921 } 1641 }
922 1642
923 return default_loop; 1643 return ev_default_loop_ptr;
924} 1644}
925 1645
926void 1646void
927ev_default_destroy (void) 1647ev_default_destroy (void)
928{ 1648{
929#if EV_MULTIPLICITY 1649#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1650 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1651#endif
932 1652
933#ifndef _WIN32 1653#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
936#endif 1656#endif
937 1657
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
945} 1659}
946 1660
947void 1661void
948ev_default_fork (void) 1662ev_default_fork (void)
949{ 1663{
950#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1665 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1666#endif
953 1667
954 if (method) 1668 if (backend)
955 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
956} 1670}
957 1671
958/*****************************************************************************/ 1672/*****************************************************************************/
959 1673
960static int 1674void
961any_pending (EV_P) 1675ev_invoke (EV_P_ void *w, int revents)
962{ 1676{
963 int pri; 1677 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1678}
971 1679
972static void 1680void inline_speed
973call_pending (EV_P) 1681call_pending (EV_P)
974{ 1682{
975 int pri; 1683 int pri;
976 1684
977 for (pri = NUMPRI; pri--; ) 1685 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1686 while (pendingcnt [pri])
979 { 1687 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1689
982 if (p->w) 1690 if (expect_true (p->w))
983 { 1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
984 p->w->pending = 0; 1694 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
986 } 1697 }
987 } 1698 }
988} 1699}
989 1700
990static void 1701#if EV_IDLE_ENABLE
1702void inline_size
1703idle_reify (EV_P)
1704{
1705 if (expect_false (idleall))
1706 {
1707 int pri;
1708
1709 for (pri = NUMPRI; pri--; )
1710 {
1711 if (pendingcnt [pri])
1712 break;
1713
1714 if (idlecnt [pri])
1715 {
1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1717 break;
1718 }
1719 }
1720 }
1721}
1722#endif
1723
1724void inline_size
991timers_reify (EV_P) 1725timers_reify (EV_P)
992{ 1726{
1727 EV_FREQUENT_CHECK;
1728
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 1730 {
995 struct ev_timer *w = timers [0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
996 1732
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1734
999 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1000 if (w->repeat) 1736 if (w->repeat)
1001 { 1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1743
1004 ((WT)w)->at += w->repeat; 1744 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 1745 downheap (timers, timercnt, HEAP0);
1009 } 1746 }
1010 else 1747 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1749
1750 EV_FREQUENT_CHECK;
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1752 }
1015} 1753}
1016 1754
1017#if EV_PERIODICS 1755#if EV_PERIODIC_ENABLE
1018static void 1756void inline_size
1019periodics_reify (EV_P) 1757periodics_reify (EV_P)
1020{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 1762 {
1023 struct ev_periodic *w = periodics [0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1024 1764
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1766
1027 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1029 { 1769 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1031 1771
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1033 downheap ((WT *)periodics, periodiccnt, 0); 1775 downheap (periodics, periodiccnt, HEAP0);
1034 } 1776 }
1035 else if (w->interval) 1777 else if (w->interval)
1036 { 1778 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1039 downheap ((WT *)periodics, periodiccnt, 0); 1794 downheap (periodics, periodiccnt, HEAP0);
1040 } 1795 }
1041 else 1796 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1798
1799 EV_FREQUENT_CHECK;
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1801 }
1046} 1802}
1047 1803
1048static void 1804static void noinline
1049periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1050{ 1806{
1051 int i; 1807 int i;
1052 1808
1053 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1055 { 1811 {
1056 struct ev_periodic *w = periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1057 1813
1058 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1816 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1828{
1829 int i;
1830
1831#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic))
1062 } 1833 {
1834 ev_tstamp odiff = rtmn_diff;
1063 1835
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock (); 1836 mn_now = get_clock ();
1074 1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1841 {
1077 ev_rt_now = rtmn_diff + mn_now; 1842 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1843 return;
1079 } 1844 }
1080 else 1845
1081 {
1082 now_floor = mn_now; 1846 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1847 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1848
1088static void 1849 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1850 * on the choice of "4": one iteration isn't enough,
1090{ 1851 * in case we get preempted during the calls to
1091 int i; 1852 * ev_time and get_clock. a second call is almost guaranteed
1092 1853 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1854 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1855 * in the unlikely event of having been preempted here.
1095 { 1856 */
1096 if (time_update_monotonic (EV_A)) 1857 for (i = 4; --i; )
1097 { 1858 {
1098 ev_tstamp odiff = rtmn_diff; 1859 rtmn_diff = ev_rt_now - mn_now;
1099 1860
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1862 return; /* all is well */
1863
1864 ev_rt_now = ev_time ();
1865 mn_now = get_clock ();
1866 now_floor = mn_now;
1867 }
1868
1869# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A);
1871# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 }
1875 else
1876#endif
1877 {
1878 ev_rt_now = ev_time ();
1879
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 {
1882#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A);
1884#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1101 { 1887 {
1102 rtmn_diff = ev_rt_now - mn_now; 1888 ANHE *he = timers + i + HEAP0;
1103 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1890 ANHE_at_cache (*he);
1105 return; /* all is well */
1106
1107 ev_rt_now = ev_time ();
1108 mn_now = get_clock ();
1109 now_floor = mn_now;
1110 } 1891 }
1111
1112# if EV_PERIODICS
1113 periodics_reschedule (EV_A);
1114# endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 1892 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 1893
1135 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1136 } 1895 }
1137} 1896}
1138 1897
1151static int loop_done; 1910static int loop_done;
1152 1911
1153void 1912void
1154ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1155{ 1914{
1156 double block; 1915 loop_done = EVUNLOOP_CANCEL;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1916
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1918
1159 do 1919 do
1160 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1925#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid))
1928 {
1929 curpid = getpid ();
1930 postfork = 1;
1931 }
1932#endif
1933
1934#if EV_FORK_ENABLE
1935 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork))
1937 if (forkcnt)
1938 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A);
1941 }
1942#endif
1943
1161 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
1163 { 1946 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1948 call_pending (EV_A);
1166 } 1949 }
1167 1950
1951 if (expect_false (!activecnt))
1952 break;
1953
1168 /* we might have forked, so reify kernel state if necessary */ 1954 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1955 if (expect_false (postfork))
1170 loop_fork (EV_A); 1956 loop_fork (EV_A);
1171 1957
1172 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1959 fd_reify (EV_A);
1174 1960
1175 /* calculate blocking time */ 1961 /* calculate blocking time */
1962 {
1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1176 1965
1177 /* we only need this for !monotonic clock or timers, but as we basically 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 1967 {
1185 ev_rt_now = ev_time (); 1968 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1969 time_update (EV_A_ 1e100);
1187 }
1188 1970
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1194 1972
1195 if (timercnt) 1973 if (timercnt)
1196 { 1974 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1199 } 1977 }
1200 1978
1201#if EV_PERIODICS 1979#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1980 if (periodiccnt)
1203 { 1981 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1206 } 1984 }
1207#endif 1985#endif
1208 1986
1209 if (block < 0.) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1210 } 2000 }
1211 2001
1212 method_poll (EV_A_ block); 2002 ++loop_count;
2003 backend_poll (EV_A_ waittime);
1213 2004
1214 /* update ev_rt_now, do magic */ 2005 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2006 time_update (EV_A_ waittime + sleeptime);
2007 }
1216 2008
1217 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2011#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2013#endif
1222 2014
2015#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2016 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2017 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2018#endif
1226 2019
1227 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2021 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2023
1231 call_pending (EV_A); 2024 call_pending (EV_A);
1232 } 2025 }
1233 while (activecnt && !loop_done); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1234 2031
1235 if (loop_done != 2) 2032 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2033 loop_done = EVUNLOOP_CANCEL;
1237} 2034}
1238 2035
1239void 2036void
1240ev_unloop (EV_P_ int how) 2037ev_unloop (EV_P_ int how)
1241{ 2038{
1242 loop_done = how; 2039 loop_done = how;
1243} 2040}
1244 2041
1245/*****************************************************************************/ 2042/*****************************************************************************/
1246 2043
1247inline void 2044void inline_size
1248wlist_add (WL *head, WL elem) 2045wlist_add (WL *head, WL elem)
1249{ 2046{
1250 elem->next = *head; 2047 elem->next = *head;
1251 *head = elem; 2048 *head = elem;
1252} 2049}
1253 2050
1254inline void 2051void inline_size
1255wlist_del (WL *head, WL elem) 2052wlist_del (WL *head, WL elem)
1256{ 2053{
1257 while (*head) 2054 while (*head)
1258 { 2055 {
1259 if (*head == elem) 2056 if (*head == elem)
1264 2061
1265 head = &(*head)->next; 2062 head = &(*head)->next;
1266 } 2063 }
1267} 2064}
1268 2065
1269inline void 2066void inline_speed
1270ev_clear_pending (EV_P_ W w) 2067clear_pending (EV_P_ W w)
1271{ 2068{
1272 if (w->pending) 2069 if (w->pending)
1273 { 2070 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2071 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 2072 w->pending = 0;
1276 } 2073 }
1277} 2074}
1278 2075
1279inline void 2076int
2077ev_clear_pending (EV_P_ void *w)
2078{
2079 W w_ = (W)w;
2080 int pending = w_->pending;
2081
2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
2090 return 0;
2091}
2092
2093void inline_size
2094pri_adjust (EV_P_ W w)
2095{
2096 int pri = w->priority;
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri;
2100}
2101
2102void inline_speed
1280ev_start (EV_P_ W w, int active) 2103ev_start (EV_P_ W w, int active)
1281{ 2104{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2105 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2106 w->active = active;
1286 ev_ref (EV_A); 2107 ev_ref (EV_A);
1287} 2108}
1288 2109
1289inline void 2110void inline_size
1290ev_stop (EV_P_ W w) 2111ev_stop (EV_P_ W w)
1291{ 2112{
1292 ev_unref (EV_A); 2113 ev_unref (EV_A);
1293 w->active = 0; 2114 w->active = 0;
1294} 2115}
1295 2116
1296/*****************************************************************************/ 2117/*****************************************************************************/
1297 2118
1298void 2119void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1300{ 2121{
1301 int fd = w->fd; 2122 int fd = w->fd;
1302 2123
1303 if (ev_is_active (w)) 2124 if (expect_false (ev_is_active (w)))
1304 return; 2125 return;
1305 2126
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
2128
2129 EV_FREQUENT_CHECK;
1307 2130
1308 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1311 2134
1312 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1313} 2136 w->events &= ~EV_IOFDSET;
1314 2137
1315void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1317{ 2143{
1318 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1320 return; 2146 return;
1321 2147
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2149
2150 EV_FREQUENT_CHECK;
2151
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1326 2154
1327 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1328}
1329 2156
1330void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1332{ 2162{
1333 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1334 return; 2164 return;
1335 2165
1336 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1337 2167
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1344 2178
2179 EV_FREQUENT_CHECK;
2180
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2182}
1347 2183
1348void 2184void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2186{
1351 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1353 return; 2189 return;
1354 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2197
1357 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1358 { 2201 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1361 } 2204 }
2205 }
1362 2206
1363 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1364 2210
1365 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1366} 2212}
1367 2213
1368void 2214void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1370{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1371 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1372 { 2220 {
1373 if (w->repeat) 2221 if (w->repeat)
1374 { 2222 {
1375 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1377 } 2226 }
1378 else 2227 else
1379 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1380 } 2229 }
1381 else if (w->repeat) 2230 else if (w->repeat)
2231 {
2232 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1383} 2234 }
1384 2235
2236 EV_FREQUENT_CHECK;
2237}
2238
1385#if EV_PERIODICS 2239#if EV_PERIODIC_ENABLE
1386void 2240void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2242{
1389 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1390 return; 2244 return;
1391 2245
1392 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2248 else if (w->interval)
1395 { 2249 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1400 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1405 2265
2266 EV_FREQUENT_CHECK;
2267
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2269}
1408 2270
1409void 2271void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2273{
1412 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1414 return; 2276 return;
1415 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2284
1418 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2288 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1422 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1423 2295
1424 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1425} 2297}
1426 2298
1427void 2299void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2301{
1430 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1433} 2305}
1434#endif 2306#endif
1435 2307
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2308#ifndef SA_RESTART
1503# define SA_RESTART 0 2309# define SA_RESTART 0
1504#endif 2310#endif
1505 2311
1506void 2312void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1508{ 2314{
1509#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 2317#endif
1512 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1513 return; 2319 return;
1514 2320
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1517 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 2343
1521 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1522 { 2345 {
1523#if _WIN32 2346#if _WIN32
1524 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1525#else 2348#else
1526 struct sigaction sa; 2349 struct sigaction sa;
1527 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1528 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1531#endif 2354#endif
1532 } 2355 }
1533}
1534 2356
1535void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1537{ 2362{
1538 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1540 return; 2365 return;
1541 2366
2367 EV_FREQUENT_CHECK;
2368
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1544 2371
1545 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1547}
1548 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1549void 2378void
1550ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1551{ 2380{
1552#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 2383#endif
1555 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1556 return; 2385 return;
1557 2386
2387 EV_FREQUENT_CHECK;
2388
1558 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560}
1561 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1562void 2395void
1563ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1564{ 2397{
1565 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1567 return; 2400 return;
1568 2401
2402 EV_FREQUENT_CHECK;
2403
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1571} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 fs_fd = inotify_init ();
2531
2532 if (fs_fd >= 0)
2533 {
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w);
2537 }
2538}
2539
2540void inline_size
2541infy_fork (EV_P)
2542{
2543 int slot;
2544
2545 if (fs_fd < 0)
2546 return;
2547
2548 close (fs_fd);
2549 fs_fd = inotify_init ();
2550
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2552 {
2553 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0;
2555
2556 while (w_)
2557 {
2558 ev_stat *w = (ev_stat *)w_;
2559 w_ = w_->next; /* lets us add this watcher */
2560
2561 w->wd = -1;
2562
2563 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else
2566 ev_timer_start (EV_A_ &w->timer);
2567 }
2568
2569 }
2570}
2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2578#endif
2579
2580void
2581ev_stat_stat (EV_P_ ev_stat *w)
2582{
2583 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1;
2587}
2588
2589static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593
2594 /* we copy this here each the time so that */
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w);
2598
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if (
2601 w->prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime
2612 ) {
2613 #if EV_USE_INOTIFY
2614 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */
2617 #endif
2618
2619 ev_feed_event (EV_A_ w, EV_STAT);
2620 }
2621}
2622
2623void
2624ev_stat_start (EV_P_ ev_stat *w)
2625{
2626 if (expect_false (ev_is_active (w)))
2627 return;
2628
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w);
2634
2635 if (w->interval < MIN_STAT_INTERVAL)
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2639 ev_set_priority (&w->timer, ev_priority (w));
2640
2641#if EV_USE_INOTIFY
2642 infy_init (EV_A);
2643
2644 if (fs_fd >= 0)
2645 infy_add (EV_A_ w);
2646 else
2647#endif
2648 ev_timer_start (EV_A_ &w->timer);
2649
2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2653}
2654
2655void
2656ev_stat_stop (EV_P_ ev_stat *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 EV_FREQUENT_CHECK;
2663
2664#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w);
2666#endif
2667 ev_timer_stop (EV_A_ &w->timer);
2668
2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2672}
2673#endif
2674
2675#if EV_IDLE_ENABLE
2676void
2677ev_idle_start (EV_P_ ev_idle *w)
2678{
2679 if (expect_false (ev_is_active (w)))
2680 return;
2681
2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2685
2686 {
2687 int active = ++idlecnt [ABSPRI (w)];
2688
2689 ++idleall;
2690 ev_start (EV_A_ (W)w, active);
2691
2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2693 idles [ABSPRI (w)][active - 1] = w;
2694 }
2695
2696 EV_FREQUENT_CHECK;
2697}
2698
2699void
2700ev_idle_stop (EV_P_ ev_idle *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 EV_FREQUENT_CHECK;
2707
2708 {
2709 int active = ev_active (w);
2710
2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2713
2714 ev_stop (EV_A_ (W)w);
2715 --idleall;
2716 }
2717
2718 EV_FREQUENT_CHECK;
2719}
2720#endif
2721
2722void
2723ev_prepare_start (EV_P_ ev_prepare *w)
2724{
2725 if (expect_false (ev_is_active (w)))
2726 return;
2727
2728 EV_FREQUENT_CHECK;
2729
2730 ev_start (EV_A_ (W)w, ++preparecnt);
2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2735}
2736
2737void
2738ev_prepare_stop (EV_P_ ev_prepare *w)
2739{
2740 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w)))
2742 return;
2743
2744 EV_FREQUENT_CHECK;
2745
2746 {
2747 int active = ev_active (w);
2748
2749 prepares [active - 1] = prepares [--preparecnt];
2750 ev_active (prepares [active - 1]) = active;
2751 }
2752
2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2756}
2757
2758void
2759ev_check_start (EV_P_ ev_check *w)
2760{
2761 if (expect_false (ev_is_active (w)))
2762 return;
2763
2764 EV_FREQUENT_CHECK;
2765
2766 ev_start (EV_A_ (W)w, ++checkcnt);
2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2771}
2772
2773void
2774ev_check_stop (EV_P_ ev_check *w)
2775{
2776 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w)))
2778 return;
2779
2780 EV_FREQUENT_CHECK;
2781
2782 {
2783 int active = ev_active (w);
2784
2785 checks [active - 1] = checks [--checkcnt];
2786 ev_active (checks [active - 1]) = active;
2787 }
2788
2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2792}
2793
2794#if EV_EMBED_ENABLE
2795void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w)
2797{
2798 ev_loop (w->other, EVLOOP_NONBLOCK);
2799}
2800
2801static void
2802embed_io_cb (EV_P_ ev_io *io, int revents)
2803{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805
2806 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK);
2810}
2811
2812static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816
2817 {
2818 struct ev_loop *loop = w->other;
2819
2820 while (fdchangecnt)
2821 {
2822 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2824 }
2825 }
2826}
2827
2828#if 0
2829static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2831{
2832 ev_idle_stop (EV_A_ idle);
2833}
2834#endif
2835
2836void
2837ev_embed_start (EV_P_ ev_embed *w)
2838{
2839 if (expect_false (ev_is_active (w)))
2840 return;
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 }
2847
2848 EV_FREQUENT_CHECK;
2849
2850 ev_set_priority (&w->io, ev_priority (w));
2851 ev_io_start (EV_A_ &w->io);
2852
2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare);
2856
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858
2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2862}
2863
2864void
2865ev_embed_stop (EV_P_ ev_embed *w)
2866{
2867 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w)))
2869 return;
2870
2871 EV_FREQUENT_CHECK;
2872
2873 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare);
2875
2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2879}
2880#endif
2881
2882#if EV_FORK_ENABLE
2883void
2884ev_fork_start (EV_P_ ev_fork *w)
2885{
2886 if (expect_false (ev_is_active (w)))
2887 return;
2888
2889 EV_FREQUENT_CHECK;
2890
2891 ev_start (EV_A_ (W)w, ++forkcnt);
2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2896}
2897
2898void
2899ev_fork_stop (EV_P_ ev_fork *w)
2900{
2901 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w)))
2903 return;
2904
2905 EV_FREQUENT_CHECK;
2906
2907 {
2908 int active = ev_active (w);
2909
2910 forks [active - 1] = forks [--forkcnt];
2911 ev_active (forks [active - 1]) = active;
2912 }
2913
2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2917}
2918#endif
2919
2920#if EV_ASYNC_ENABLE
2921void
2922ev_async_start (EV_P_ ev_async *w)
2923{
2924 if (expect_false (ev_is_active (w)))
2925 return;
2926
2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2930
2931 ev_start (EV_A_ (W)w, ++asynccnt);
2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2936}
2937
2938void
2939ev_async_stop (EV_P_ ev_async *w)
2940{
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 {
2948 int active = ev_active (w);
2949
2950 asyncs [active - 1] = asyncs [--asynccnt];
2951 ev_active (asyncs [active - 1]) = active;
2952 }
2953
2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_async_send (EV_P_ ev_async *w)
2961{
2962 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync);
2964}
2965#endif
1572 2966
1573/*****************************************************************************/ 2967/*****************************************************************************/
1574 2968
1575struct ev_once 2969struct ev_once
1576{ 2970{
1577 struct ev_io io; 2971 ev_io io;
1578 struct ev_timer to; 2972 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2973 void (*cb)(int revents, void *arg);
1580 void *arg; 2974 void *arg;
1581}; 2975};
1582 2976
1583static void 2977static void
1592 2986
1593 cb (revents, arg); 2987 cb (revents, arg);
1594} 2988}
1595 2989
1596static void 2990static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2991once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2992{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2994}
1601 2995
1602static void 2996static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2997once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2998{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 3000}
1607 3001
1608void 3002void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3004{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3006
1613 if (!once) 3007 if (expect_false (!once))
3008 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3010 return;
1616 { 3011 }
3012
1617 once->cb = cb; 3013 once->cb = cb;
1618 once->arg = arg; 3014 once->arg = arg;
1619 3015
1620 ev_init (&once->io, once_cb_io); 3016 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3017 if (fd >= 0)
1622 { 3018 {
1623 ev_io_set (&once->io, fd, events); 3019 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 3020 ev_io_start (EV_A_ &once->io);
1625 } 3021 }
1626 3022
1627 ev_init (&once->to, once_cb_to); 3023 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 3024 if (timeout >= 0.)
1629 { 3025 {
1630 ev_timer_set (&once->to, timeout, 0.); 3026 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 3027 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 3028 }
1634} 3029}
3030
3031#if EV_MULTIPLICITY
3032 #include "ev_wrap.h"
3033#endif
1635 3034
1636#ifdef __cplusplus 3035#ifdef __cplusplus
1637} 3036}
1638#endif 3037#endif
1639 3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines