ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
325 357
326typedef ev_watcher *W; 358typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
329 361
362#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 363#define ev_at(w) ((WT)(w))->at
331 364
332#if EV_USE_MONOTONIC 365#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
421 W w; 454 W w;
422 int events; 455 int events;
423} ANPENDING; 456} ANPENDING;
424 457
425#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
426typedef struct 460typedef struct
427{ 461{
428 WL head; 462 WL head;
429} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
430#endif 482#endif
431 483
432#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
433 485
434 struct ev_loop 486 struct ev_loop
519 } 571 }
520} 572}
521 573
522/*****************************************************************************/ 574/*****************************************************************************/
523 575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
524int inline_size 578int inline_size
525array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
526{ 580{
527 int ncur = cur + 1; 581 int ncur = cur + 1;
528 582
529 do 583 do
530 ncur <<= 1; 584 ncur <<= 1;
531 while (cnt > ncur); 585 while (cnt > ncur);
532 586
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 589 {
536 ncur *= elem; 590 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 593 ncur /= elem;
540 } 594 }
541 595
542 return ncur; 596 return ncur;
653 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
654 708
655#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
656 if (events) 710 if (events)
657 { 711 {
658 unsigned long argp; 712 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else 715 #else
662 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
663 #endif 717 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 719 }
666#endif 720#endif
667 721
668 { 722 {
669 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
722{ 776{
723 int fd; 777 int fd;
724 778
725 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 780 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
729} 783}
730 784
731/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 786static void noinline
756 } 810 }
757} 811}
758 812
759/*****************************************************************************/ 813/*****************************************************************************/
760 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
835void inline_speed
836downheap (ANHE *heap, int N, int k)
837{
838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
840
841 for (;;)
842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
761/* towards the root */ 914/* towards the root */
762void inline_speed 915void inline_speed
763upheap (WT *heap, int k) 916upheap (ANHE *heap, int k)
764{ 917{
765 WT w = heap [k]; 918 ANHE he = heap [k];
766 919
767 for (;;) 920 for (;;)
768 { 921 {
769 int p = k >> 1; 922 int p = HPARENT (k);
770 923
771 /* maybe we could use a dummy element at heap [0]? */ 924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 925 break;
774 926
775 heap [k] = heap [p]; 927 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 928 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 929 k = p;
778 } 930 }
779 931
780 heap [k] = w; 932 heap [k] = he;
781 ((W)heap [k])->active = k; 933 ev_active (ANHE_w (he)) = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811} 934}
812 935
813void inline_size 936void inline_size
814adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
815{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 940 upheap (heap, k);
941 else
817 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
818} 955}
819 956
820/*****************************************************************************/ 957/*****************************************************************************/
821 958
822typedef struct 959typedef struct
846 983
847void inline_speed 984void inline_speed
848fd_intern (int fd) 985fd_intern (int fd)
849{ 986{
850#ifdef _WIN32 987#ifdef _WIN32
851 int arg = 1; 988 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else 990#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 993#endif
911pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
912{ 1049{
913#if EV_USE_EVENTFD 1050#if EV_USE_EVENTFD
914 if (evfd >= 0) 1051 if (evfd >= 0)
915 { 1052 {
916 uint64_t counter = 1; 1053 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1054 read (evfd, &counter, sizeof (uint64_t));
918 } 1055 }
919 else 1056 else
920#endif 1057#endif
921 { 1058 {
1340 1477
1341 postfork = 0; 1478 postfork = 0;
1342} 1479}
1343 1480
1344#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1345struct ev_loop * 1483struct ev_loop *
1346ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1347{ 1485{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1487
1368ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1369{ 1507{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1371} 1509}
1372 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1373#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1374 1611
1375#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1376struct ev_loop * 1613struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1378#else 1615#else
1454 { 1691 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456 1693
1457 p->w->pending = 0; 1694 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1459 } 1697 }
1460 } 1698 }
1461} 1699}
1462
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542 1700
1543#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1544void inline_size 1702void inline_size
1545idle_reify (EV_P) 1703idle_reify (EV_P)
1546{ 1704{
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break; 1717 break;
1560 } 1718 }
1561 } 1719 }
1562 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1563} 1823}
1564#endif 1824#endif
1565 1825
1566void inline_speed 1826void inline_speed
1567time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1596 */ 1856 */
1597 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1598 { 1858 {
1599 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1600 1860
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 1862 return; /* all is well */
1603 1863
1604 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 1865 mn_now = get_clock ();
1606 now_floor = mn_now; 1866 now_floor = mn_now;
1621 { 1881 {
1622#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1624#endif 1884#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now; 1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1628 } 1892 }
1629 1893
1630 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1631 } 1895 }
1632} 1896}
1652 1916
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654 1918
1655 do 1919 do
1656 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1657#ifndef _WIN32 1925#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1660 { 1928 {
1661 curpid = getpid (); 1929 curpid = getpid ();
1702 1970
1703 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1704 1972
1705 if (timercnt) 1973 if (timercnt)
1706 { 1974 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1709 } 1977 }
1710 1978
1711#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 1980 if (periodiccnt)
1713 { 1981 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1716 } 1984 }
1717#endif 1985#endif
1718 1986
1719 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1856 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1857 return; 2125 return;
1858 2126
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1860 2128
2129 EV_FREQUENT_CHECK;
2130
1861 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1863 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1864 2134
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1867} 2139}
1868 2140
1869void noinline 2141void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1871{ 2143{
1872 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1874 return; 2146 return;
1875 2147
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1877 2151
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1880 2154
1881 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1882} 2158}
1883 2159
1884void noinline 2160void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1886{ 2162{
1889 2165
1890 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
1891 2167
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2176 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2177 upheap (timers, ev_active (w));
1898 2178
2179 EV_FREQUENT_CHECK;
2180
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2182}
1901 2183
1902void noinline 2184void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2186{
1905 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1907 return; 2189 return;
1908 2190
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1910 2192
1911 { 2193 {
1912 int active = ((W)w)->active; 2194 int active = ev_active (w);
1913 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1914 if (expect_true (active < timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1915 { 2201 {
1916 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1918 } 2204 }
1919
1920 --timercnt;
1921 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
1922 2208
1923 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
1924 2210
1925 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1926} 2212}
1927 2213
1928void noinline 2214void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1930{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1931 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1932 { 2220 {
1933 if (w->repeat) 2221 if (w->repeat)
1934 { 2222 {
1935 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2225 adjustheap (timers, timercnt, ev_active (w));
1937 } 2226 }
1938 else 2227 else
1939 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1940 } 2229 }
1941 else if (w->repeat) 2230 else if (w->repeat)
1942 { 2231 {
1943 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1945 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1946} 2237}
1947 2238
1948#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1949void noinline 2240void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2253 }
1963 else 2254 else
1964 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
1965 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1970 2265
2266 EV_FREQUENT_CHECK;
2267
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2269}
1973 2270
1974void noinline 2271void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2273{
1977 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1979 return; 2276 return;
1980 2277
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1982 2279
1983 { 2280 {
1984 int active = ((W)w)->active; 2281 int active = ev_active (w);
1985 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1986 if (expect_true (active < periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2288 {
1988 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1990 } 2291 }
1991
1992 --periodiccnt;
1993 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
1994 2295
1995 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1996} 2297}
1997 2298
1998void noinline 2299void noinline
2018 return; 2319 return;
2019 2320
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2021 2322
2022 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2023 2326
2024 { 2327 {
2025#ifndef _WIN32 2328#ifndef _WIN32
2026 sigset_t full, prev; 2329 sigset_t full, prev;
2027 sigfillset (&full); 2330 sigfillset (&full);
2048 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2051#endif 2354#endif
2052 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2053} 2358}
2054 2359
2055void noinline 2360void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2362{
2058 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2060 return; 2365 return;
2061 2366
2367 EV_FREQUENT_CHECK;
2368
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2064 2371
2065 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2066 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2067} 2376}
2068 2377
2069void 2378void
2070ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2071{ 2380{
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2383#endif
2075 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2076 return; 2385 return;
2077 2386
2387 EV_FREQUENT_CHECK;
2388
2078 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2080} 2393}
2081 2394
2082void 2395void
2083ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2084{ 2397{
2085 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2087 return; 2400 return;
2088 2401
2402 EV_FREQUENT_CHECK;
2403
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2091} 2408}
2092 2409
2093#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2094 2411
2095# ifdef _WIN32 2412# ifdef _WIN32
2113 if (w->wd < 0) 2430 if (w->wd < 0)
2114 { 2431 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2433
2117 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2438 {
2120 char path [4096]; 2439 char path [4096];
2121 strcpy (path, w->path); 2440 strcpy (path, w->path);
2122 2441
2248 } 2567 }
2249 2568
2250 } 2569 }
2251} 2570}
2252 2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 2578#endif
2254 2579
2255void 2580void
2256ev_stat_stat (EV_P_ ev_stat *w) 2581ev_stat_stat (EV_P_ ev_stat *w)
2257{ 2582{
2321 else 2646 else
2322#endif 2647#endif
2323 ev_timer_start (EV_A_ &w->timer); 2648 ev_timer_start (EV_A_ &w->timer);
2324 2649
2325 ev_start (EV_A_ (W)w, 1); 2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2326} 2653}
2327 2654
2328void 2655void
2329ev_stat_stop (EV_P_ ev_stat *w) 2656ev_stat_stop (EV_P_ ev_stat *w)
2330{ 2657{
2331 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2333 return; 2660 return;
2334 2661
2662 EV_FREQUENT_CHECK;
2663
2335#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 2665 infy_del (EV_A_ w);
2337#endif 2666#endif
2338 ev_timer_stop (EV_A_ &w->timer); 2667 ev_timer_stop (EV_A_ &w->timer);
2339 2668
2340 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2341} 2672}
2342#endif 2673#endif
2343 2674
2344#if EV_IDLE_ENABLE 2675#if EV_IDLE_ENABLE
2345void 2676void
2347{ 2678{
2348 if (expect_false (ev_is_active (w))) 2679 if (expect_false (ev_is_active (w)))
2349 return; 2680 return;
2350 2681
2351 pri_adjust (EV_A_ (W)w); 2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2352 2685
2353 { 2686 {
2354 int active = ++idlecnt [ABSPRI (w)]; 2687 int active = ++idlecnt [ABSPRI (w)];
2355 2688
2356 ++idleall; 2689 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 2690 ev_start (EV_A_ (W)w, active);
2358 2691
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 2693 idles [ABSPRI (w)][active - 1] = w;
2361 } 2694 }
2695
2696 EV_FREQUENT_CHECK;
2362} 2697}
2363 2698
2364void 2699void
2365ev_idle_stop (EV_P_ ev_idle *w) 2700ev_idle_stop (EV_P_ ev_idle *w)
2366{ 2701{
2367 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2369 return; 2704 return;
2370 2705
2706 EV_FREQUENT_CHECK;
2707
2371 { 2708 {
2372 int active = ((W)w)->active; 2709 int active = ev_active (w);
2373 2710
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 2713
2377 ev_stop (EV_A_ (W)w); 2714 ev_stop (EV_A_ (W)w);
2378 --idleall; 2715 --idleall;
2379 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2380} 2719}
2381#endif 2720#endif
2382 2721
2383void 2722void
2384ev_prepare_start (EV_P_ ev_prepare *w) 2723ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 2724{
2386 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2387 return; 2726 return;
2727
2728 EV_FREQUENT_CHECK;
2388 2729
2389 ev_start (EV_A_ (W)w, ++preparecnt); 2730 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2392} 2735}
2393 2736
2394void 2737void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 2738ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 2739{
2397 clear_pending (EV_A_ (W)w); 2740 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2741 if (expect_false (!ev_is_active (w)))
2399 return; 2742 return;
2400 2743
2744 EV_FREQUENT_CHECK;
2745
2401 { 2746 {
2402 int active = ((W)w)->active; 2747 int active = ev_active (w);
2748
2403 prepares [active - 1] = prepares [--preparecnt]; 2749 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 2750 ev_active (prepares [active - 1]) = active;
2405 } 2751 }
2406 2752
2407 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2408} 2756}
2409 2757
2410void 2758void
2411ev_check_start (EV_P_ ev_check *w) 2759ev_check_start (EV_P_ ev_check *w)
2412{ 2760{
2413 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2414 return; 2762 return;
2763
2764 EV_FREQUENT_CHECK;
2415 2765
2416 ev_start (EV_A_ (W)w, ++checkcnt); 2766 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2419} 2771}
2420 2772
2421void 2773void
2422ev_check_stop (EV_P_ ev_check *w) 2774ev_check_stop (EV_P_ ev_check *w)
2423{ 2775{
2424 clear_pending (EV_A_ (W)w); 2776 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 2777 if (expect_false (!ev_is_active (w)))
2426 return; 2778 return;
2427 2779
2780 EV_FREQUENT_CHECK;
2781
2428 { 2782 {
2429 int active = ((W)w)->active; 2783 int active = ev_active (w);
2784
2430 checks [active - 1] = checks [--checkcnt]; 2785 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 2786 ev_active (checks [active - 1]) = active;
2432 } 2787 }
2433 2788
2434 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2435} 2792}
2436 2793
2437#if EV_EMBED_ENABLE 2794#if EV_EMBED_ENABLE
2438void noinline 2795void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 2796ev_embed_sweep (EV_P_ ev_embed *w)
2486 struct ev_loop *loop = w->other; 2843 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 2846 }
2490 2847
2848 EV_FREQUENT_CHECK;
2849
2491 ev_set_priority (&w->io, ev_priority (w)); 2850 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 2851 ev_io_start (EV_A_ &w->io);
2493 2852
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 2854 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 2855 ev_prepare_start (EV_A_ &w->prepare);
2497 2856
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 2858
2500 ev_start (EV_A_ (W)w, 1); 2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2501} 2862}
2502 2863
2503void 2864void
2504ev_embed_stop (EV_P_ ev_embed *w) 2865ev_embed_stop (EV_P_ ev_embed *w)
2505{ 2866{
2506 clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
2508 return; 2869 return;
2509 2870
2871 EV_FREQUENT_CHECK;
2872
2510 ev_io_stop (EV_A_ &w->io); 2873 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 2874 ev_prepare_stop (EV_A_ &w->prepare);
2512 2875
2513 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2514} 2879}
2515#endif 2880#endif
2516 2881
2517#if EV_FORK_ENABLE 2882#if EV_FORK_ENABLE
2518void 2883void
2519ev_fork_start (EV_P_ ev_fork *w) 2884ev_fork_start (EV_P_ ev_fork *w)
2520{ 2885{
2521 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
2522 return; 2887 return;
2888
2889 EV_FREQUENT_CHECK;
2523 2890
2524 ev_start (EV_A_ (W)w, ++forkcnt); 2891 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2527} 2896}
2528 2897
2529void 2898void
2530ev_fork_stop (EV_P_ ev_fork *w) 2899ev_fork_stop (EV_P_ ev_fork *w)
2531{ 2900{
2532 clear_pending (EV_A_ (W)w); 2901 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 2902 if (expect_false (!ev_is_active (w)))
2534 return; 2903 return;
2535 2904
2905 EV_FREQUENT_CHECK;
2906
2536 { 2907 {
2537 int active = ((W)w)->active; 2908 int active = ev_active (w);
2909
2538 forks [active - 1] = forks [--forkcnt]; 2910 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 2911 ev_active (forks [active - 1]) = active;
2540 } 2912 }
2541 2913
2542 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2543} 2917}
2544#endif 2918#endif
2545 2919
2546#if EV_ASYNC_ENABLE 2920#if EV_ASYNC_ENABLE
2547void 2921void
2549{ 2923{
2550 if (expect_false (ev_is_active (w))) 2924 if (expect_false (ev_is_active (w)))
2551 return; 2925 return;
2552 2926
2553 evpipe_init (EV_A); 2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2554 2930
2555 ev_start (EV_A_ (W)w, ++asynccnt); 2931 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2558} 2936}
2559 2937
2560void 2938void
2561ev_async_stop (EV_P_ ev_async *w) 2939ev_async_stop (EV_P_ ev_async *w)
2562{ 2940{
2563 clear_pending (EV_A_ (W)w); 2941 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2565 return; 2943 return;
2566 2944
2945 EV_FREQUENT_CHECK;
2946
2567 { 2947 {
2568 int active = ((W)w)->active; 2948 int active = ev_active (w);
2949
2569 asyncs [active - 1] = asyncs [--asynccnt]; 2950 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 2951 ev_active (asyncs [active - 1]) = active;
2571 } 2952 }
2572 2953
2573 ev_stop (EV_A_ (W)w); 2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2574} 2957}
2575 2958
2576void 2959void
2577ev_async_send (EV_P_ ev_async *w) 2960ev_async_send (EV_P_ ev_async *w)
2578{ 2961{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines