ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC vs.
Revision 1.452 by root, Mon Feb 18 03:20:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 267# else
172# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
173# endif 269# endif
174#endif 270#endif
175 271
176#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 274#endif
179 275
180#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 279# else
184# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
185# endif 281# endif
186#endif 282#endif
187 283
188#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 286#endif
191 287
192#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
193# ifdef _WIN32 289# ifdef _WIN32
194# define EV_USE_POLL 0 290# define EV_USE_POLL 0
195# else 291# else
196# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 293# endif
198#endif 294#endif
199 295
200#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 299# else
204# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
205# endif 301# endif
206#endif 302#endif
207 303
213# define EV_USE_PORT 0 309# define EV_USE_PORT 0
214#endif 310#endif
215 311
216#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 315# else
220# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
221# endif 317# endif
222#endif 318#endif
223 319
224#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 322#endif
231 323
232#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 326#endif
239 327
240#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 331# else
244# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
245# endif 341# endif
246#endif 342#endif
247 343
248#if 0 /* debugging */ 344#if 0 /* debugging */
249# define EV_VERIFY 3 345# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
252#endif 348#endif
253 349
254#ifndef EV_VERIFY 350#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 352#endif
257 353
258#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 356#endif
261 357
262#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
264#endif 390#endif
265 391
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 393
268#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
279# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
281#endif 407#endif
282 408
283#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 412# include <sys/select.h>
286# endif 413# endif
287#endif 414#endif
288 415
289#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
290# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
291#endif 423# endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif 424#endif
296 425
297#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 428# include <stdint.h>
300# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
301extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
302# endif 431# endif
303int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 433# ifdef O_CLOEXEC
305} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
306# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
307#endif 462#endif
308 463
309/**/ 464/**/
310 465
311#if EV_VERIFY >= 3 466#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 467# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 468#else
314# define EV_FREQUENT_CHECK do { } while (0) 469# define EV_FREQUENT_CHECK do { } while (0)
315#endif 470#endif
316 471
317/* 472/*
318 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 475 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 478
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 529 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
334#else 545#else
335# define expect(expr,value) (expr) 546 #include <inttypes.h>
336# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
338# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
339# endif 552#endif
553
554/* many compilers define _GNUC_ to some versions but then only implement
555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
340#endif 566 #endif
567#endif
341 568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
747 #define ecb_expect(expr,value) (expr)
748 #define ecb_prefetch(addr,rw,locality)
749#endif
750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
344#define inline_size static inline 1224#define inline_size ecb_inline
345 1225
346#if EV_MINIMAL 1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
347# define inline_speed static noinline 1229# define inline_speed static noinline
1230#endif
1231
1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
348#else 1236#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
354 1239
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
357 1242
358typedef ev_watcher *W; 1243typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
361 1246
362#define ev_active(w) ((W)(w))->active 1247#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 1248#define ev_at(w) ((WT)(w))->at
364 1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
365#if EV_USE_MONOTONIC 1256#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1268#endif
370 1269
371#ifdef _WIN32 1270#ifdef _WIN32
372# include "ev_win32.c" 1271# include "ev_win32.c"
373#endif 1272#endif
374 1273
375/*****************************************************************************/ 1274/*****************************************************************************/
376 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
377static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
378 1375
379void 1376void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
381{ 1378{
382 syserr_cb = cb; 1379 syserr_cb = cb;
383} 1380}
384 1381
385static void noinline 1382static void noinline ecb_cold
386syserr (const char *msg) 1383ev_syserr (const char *msg)
387{ 1384{
388 if (!msg) 1385 if (!msg)
389 msg = "(libev) system error"; 1386 msg = "(libev) system error";
390 1387
391 if (syserr_cb) 1388 if (syserr_cb)
392 syserr_cb (msg); 1389 syserr_cb (msg);
393 else 1390 else
394 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
395 perror (msg); 1398 perror (msg);
1399#endif
396 abort (); 1400 abort ();
397 } 1401 }
398} 1402}
399 1403
400static void * 1404static void *
401ev_realloc_emul (void *ptr, long size) 1405ev_realloc_emul (void *ptr, long size) EV_THROW
402{ 1406{
403 /* some systems, notably openbsd and darwin, fail to properly 1407 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1408 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
406 */ 1412 */
407 1413
408 if (size) 1414 if (size)
409 return realloc (ptr, size); 1415 return realloc (ptr, size);
410 1416
411 free (ptr); 1417 free (ptr);
412 return 0; 1418 return 0;
413} 1419}
414 1420
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1422
417void 1423void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
419{ 1425{
420 alloc = cb; 1426 alloc = cb;
421} 1427}
422 1428
423inline_speed void * 1429inline_speed void *
425{ 1431{
426 ptr = alloc (ptr, size); 1432 ptr = alloc (ptr, size);
427 1433
428 if (!ptr && size) 1434 if (!ptr && size)
429 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
431 abort (); 1441 abort ();
432 } 1442 }
433 1443
434 return ptr; 1444 return ptr;
435} 1445}
437#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1449
440/*****************************************************************************/ 1450/*****************************************************************************/
441 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
442typedef struct 1456typedef struct
443{ 1457{
444 WL head; 1458 WL head;
445 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
447#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1467 SOCKET handle;
449#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
450} ANFD; 1472} ANFD;
451 1473
1474/* stores the pending event set for a given watcher */
452typedef struct 1475typedef struct
453{ 1476{
454 W w; 1477 W w;
455 int events; 1478 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1479} ANPENDING;
457 1480
458#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1482/* hash table entry per inotify-id */
460typedef struct 1483typedef struct
463} ANFS; 1486} ANFS;
464#endif 1487#endif
465 1488
466/* Heap Entry */ 1489/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
468 typedef struct { 1492 typedef struct {
469 ev_tstamp at; 1493 ev_tstamp at;
470 WT w; 1494 WT w;
471 } ANHE; 1495 } ANHE;
472 1496
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1500#else
1501 /* a heap element */
477 typedef WT ANHE; 1502 typedef WT ANHE;
478 1503
479 #define ANHE_w(he) (he) 1504 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1505 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1506 #define ANHE_at_cache(he)
492 #undef VAR 1517 #undef VAR
493 }; 1518 };
494 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
495 1520
496 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1523
499#else 1524#else
500 1525
501 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1528 #include "ev_vars.h"
504 #undef VAR 1529 #undef VAR
505 1530
506 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
507 1532
508#endif 1533#endif
509 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
510/*****************************************************************************/ 1547/*****************************************************************************/
511 1548
1549#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1550ev_tstamp
513ev_time (void) 1551ev_time (void) EV_THROW
514{ 1552{
515#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
516 struct timespec ts; 1556 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1559 }
1560#endif
1561
520 struct timeval tv; 1562 struct timeval tv;
521 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1565}
1566#endif
525 1567
526ev_tstamp inline_size 1568inline_size ev_tstamp
527get_clock (void) 1569get_clock (void)
528{ 1570{
529#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
531 { 1573 {
538 return ev_time (); 1580 return ev_time ();
539} 1581}
540 1582
541#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
542ev_tstamp 1584ev_tstamp
543ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
544{ 1586{
545 return ev_rt_now; 1587 return ev_rt_now;
546} 1588}
547#endif 1589#endif
548 1590
549void 1591void
550ev_sleep (ev_tstamp delay) 1592ev_sleep (ev_tstamp delay) EV_THROW
551{ 1593{
552 if (delay > 0.) 1594 if (delay > 0.)
553 { 1595 {
554#if EV_USE_NANOSLEEP 1596#if EV_USE_NANOSLEEP
555 struct timespec ts; 1597 struct timespec ts;
556 1598
557 ts.tv_sec = (time_t)delay; 1599 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1600 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1601#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1602 Sleep ((unsigned long)(delay * 1e3));
563#else 1603#else
564 struct timeval tv; 1604 struct timeval tv;
565 1605
566 tv.tv_sec = (time_t)delay; 1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1607 /* something not guaranteed by newer posix versions, but guaranteed */
568 1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1610 select (0, 0, 0, 0, &tv);
570#endif 1611#endif
571 } 1612 }
572} 1613}
573 1614
574/*****************************************************************************/ 1615/*****************************************************************************/
575 1616
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1618
578int inline_size 1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
579array_nextsize (int elem, int cur, int cnt) 1622array_nextsize (int elem, int cur, int cnt)
580{ 1623{
581 int ncur = cur + 1; 1624 int ncur = cur + 1;
582 1625
583 do 1626 do
584 ncur <<= 1; 1627 ncur <<= 1;
585 while (cnt > ncur); 1628 while (cnt > ncur);
586 1629
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1632 {
590 ncur *= elem; 1633 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1635 ncur = ncur - sizeof (void *) * 4;
594 } 1637 }
595 1638
596 return ncur; 1639 return ncur;
597} 1640}
598 1641
599static noinline void * 1642static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1643array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1644{
602 *cur = array_nextsize (elem, *cur, cnt); 1645 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1646 return ev_realloc (base, elem * *cur);
604} 1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1651
606#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1653 if (expect_false ((cnt) > (cur))) \
608 { \ 1654 { \
609 int ocur_ = (cur); \ 1655 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1656 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1659 }
614 1660
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1668 }
623#endif 1669#endif
624 1670
625#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1673
628/*****************************************************************************/ 1674/*****************************************************************************/
629 1675
1676/* dummy callback for pending events */
1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
1679{
1680}
1681
630void noinline 1682void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1684{
633 W w_ = (W)w; 1685 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1686 int pri = ABSPRI (w_);
635 1687
636 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1692 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1694 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1695 pendings [pri][w_->pending - 1].events = revents;
644 } 1696 }
645}
646 1697
647void inline_speed 1698 pendingpri = NUMPRI - 1;
1699}
1700
1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1718{
650 int i; 1719 int i;
651 1720
652 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
654} 1723}
655 1724
656/*****************************************************************************/ 1725/*****************************************************************************/
657 1726
658void inline_size 1727inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1729{
674 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
675 ev_io *w; 1731 ev_io *w;
676 1732
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1737 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
683 } 1739 }
684} 1740}
685 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
686void 1753void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1755{
689 if (fd >= 0 && fd < anfdmax) 1756 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
691} 1758}
692 1759
693void inline_size 1760/* make sure the external fd watch events are in-sync */
1761/* with the kernel/libev internal state */
1762inline_size void
694fd_reify (EV_P) 1763fd_reify (EV_P)
695{ 1764{
696 int i; 1765 int i;
1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768 for (i = 0; i < fdchangecnt; ++i)
1769 {
1770 int fd = fdchanges [i];
1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790#endif
697 1791
698 for (i = 0; i < fdchangecnt; ++i) 1792 for (i = 0; i < fdchangecnt; ++i)
699 { 1793 {
700 int fd = fdchanges [i]; 1794 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1795 ANFD *anfd = anfds + fd;
702 ev_io *w; 1796 ev_io *w;
703 1797
704 unsigned char events = 0; 1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
705 1800
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1801 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1802
709#if EV_SELECT_IS_WINSOCKET 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1804 {
712 unsigned long arg; 1805 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1806
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1808 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1809
717 #endif 1810 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1811 o_reify = EV__IOFDSET; /* actually |= */
719 } 1812 }
720#endif
721 1813
722 { 1814 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1815 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1816 }
733 1817
734 fdchangecnt = 0; 1818 fdchangecnt = 0;
735} 1819}
736 1820
737void inline_size 1821/* something about the given fd changed */
1822inline_size void
738fd_change (EV_P_ int fd, int flags) 1823fd_change (EV_P_ int fd, int flags)
739{ 1824{
740 unsigned char reify = anfds [fd].reify; 1825 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1826 anfds [fd].reify |= flags;
742 1827
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
748 } 1833 }
749} 1834}
750 1835
751void inline_speed 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
753{ 1839{
754 ev_io *w; 1840 ev_io *w;
755 1841
756 while ((w = (ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 1846 }
761} 1847}
762 1848
763int inline_size 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
764fd_valid (int fd) 1851fd_valid (int fd)
765{ 1852{
766#ifdef _WIN32 1853#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 1855#else
769 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
770#endif 1857#endif
771} 1858}
772 1859
773/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
774static void noinline 1861static void noinline ecb_cold
775fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
776{ 1863{
777 int fd; 1864 int fd;
778 1865
779 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
781 if (!fd_valid (fd) && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
783} 1870}
784 1871
785/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 1873static void noinline ecb_cold
787fd_enomem (EV_P) 1874fd_enomem (EV_P)
788{ 1875{
789 int fd; 1876 int fd;
790 1877
791 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 1879 if (anfds [fd].events)
793 { 1880 {
794 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
795 return; 1882 break;
796 } 1883 }
797} 1884}
798 1885
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1887static void noinline
804 1891
805 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1893 if (anfds [fd].events)
807 { 1894 {
808 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
1896 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1898 }
811} 1899}
812 1900
1901/* used to prepare libev internal fd's */
1902/* this is not fork-safe */
1903inline_speed void
1904fd_intern (int fd)
1905{
1906#ifdef _WIN32
1907 unsigned long arg = 1;
1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1909#else
1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
1911 fcntl (fd, F_SETFL, O_NONBLOCK);
1912#endif
1913}
1914
813/*****************************************************************************/ 1915/*****************************************************************************/
814 1916
815/* 1917/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 1918 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 1920 * the branching factor of the d-tree.
819 */ 1921 */
820 1922
821/* 1923/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 1934#define UPHEAP_DONE(p,k) ((p) == (k))
833 1935
834/* away from the root */ 1936/* away from the root */
835void inline_speed 1937inline_speed void
836downheap (ANHE *heap, int N, int k) 1938downheap (ANHE *heap, int N, int k)
837{ 1939{
838 ANHE he = heap [k]; 1940 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 1941 ANHE *E = heap + N + HEAP0;
840 1942
880#define HEAP0 1 1982#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 1983#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 1984#define UPHEAP_DONE(p,k) (!(p))
883 1985
884/* away from the root */ 1986/* away from the root */
885void inline_speed 1987inline_speed void
886downheap (ANHE *heap, int N, int k) 1988downheap (ANHE *heap, int N, int k)
887{ 1989{
888 ANHE he = heap [k]; 1990 ANHE he = heap [k];
889 1991
890 for (;;) 1992 for (;;)
891 { 1993 {
892 int c = k << 1; 1994 int c = k << 1;
893 1995
894 if (c > N + HEAP0 - 1) 1996 if (c >= N + HEAP0)
895 break; 1997 break;
896 1998
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 2000 ? 1 : 0;
899 2001
910 ev_active (ANHE_w (he)) = k; 2012 ev_active (ANHE_w (he)) = k;
911} 2013}
912#endif 2014#endif
913 2015
914/* towards the root */ 2016/* towards the root */
915void inline_speed 2017inline_speed void
916upheap (ANHE *heap, int k) 2018upheap (ANHE *heap, int k)
917{ 2019{
918 ANHE he = heap [k]; 2020 ANHE he = heap [k];
919 2021
920 for (;;) 2022 for (;;)
931 2033
932 heap [k] = he; 2034 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 2035 ev_active (ANHE_w (he)) = k;
934} 2036}
935 2037
936void inline_size 2038/* move an element suitably so it is in a correct place */
2039inline_size void
937adjustheap (ANHE *heap, int N, int k) 2040adjustheap (ANHE *heap, int N, int k)
938{ 2041{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 2043 upheap (heap, k);
941 else 2044 else
942 downheap (heap, N, k); 2045 downheap (heap, N, k);
943} 2046}
944 2047
945/* rebuild the heap: this function is used only once and executed rarely */ 2048/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 2049inline_size void
947reheap (ANHE *heap, int N) 2050reheap (ANHE *heap, int N)
948{ 2051{
949 int i; 2052 int i;
950 2053
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 2057 upheap (heap, i + HEAP0);
955} 2058}
956 2059
957/*****************************************************************************/ 2060/*****************************************************************************/
958 2061
2062/* associate signal watchers to a signal signal */
959typedef struct 2063typedef struct
960{ 2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
961 WL head; 2069 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 2070} ANSIG;
964 2071
965static ANSIG *signals; 2072static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 2073
982/*****************************************************************************/ 2074/*****************************************************************************/
983 2075
984void inline_speed 2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 2077
996static void noinline 2078static void noinline ecb_cold
997evpipe_init (EV_P) 2079evpipe_init (EV_P)
998{ 2080{
999 if (!ev_is_active (&pipeev)) 2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
1000 { 2120 }
2121}
2122
2123inline_speed void
2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125{
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
1001#if EV_USE_EVENTFD 2147#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0) 2148 if (evpipe [0] < 0)
1003 { 2149 {
1004 evpipe [0] = -1; 2150 uint64_t counter = 1;
1005 fd_intern (evfd); 2151 write (evpipe [1], &counter, sizeof (uint64_t));
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 } 2152 }
1008 else 2153 else
1009#endif 2154#endif
1010 { 2155 {
1011 while (pipe (evpipe)) 2156#ifdef _WIN32
1012 syserr ("(libev) error creating signal/async pipe"); 2157 WSABUF buf;
1013 2158 DWORD sent;
1014 fd_intern (evpipe [0]); 2159 buf.buf = &buf;
1015 fd_intern (evpipe [1]); 2160 buf.len = 1;
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
1017 } 2165 }
1018 2166
1019 ev_io_start (EV_A_ &pipeev); 2167 errno = old_errno;
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 { 2168 }
1029 int old_errno = errno; /* save errno because write might clobber it */ 2169}
1030 2170
1031 *flag = 1; 2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
2173static void
2174pipecb (EV_P_ ev_io *iow, int revents)
2175{
2176 int i;
1032 2177
2178 if (revents & EV_READ)
2179 {
1033#if EV_USE_EVENTFD 2180#if EV_USE_EVENTFD
1034 if (evfd >= 0) 2181 if (evpipe [0] < 0)
1035 { 2182 {
1036 uint64_t counter = 1; 2183 uint64_t counter;
1037 write (evfd, &counter, sizeof (uint64_t)); 2184 read (evpipe [1], &counter, sizeof (uint64_t));
1038 } 2185 }
1039 else 2186 else
1040#endif 2187#endif
1041 write (evpipe [1], &old_errno, 1); 2188 {
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy; 2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
1060 read (evpipe [0], &dummy, 1); 2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
1061 } 2209 {
2210 sig_pending = 0;
1062 2211
1063 if (gotsig && ev_is_default_loop (EV_A)) 2212 ECB_MEMORY_FENCE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 2213
1068 for (signum = signalmax; signum--; ) 2214 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 2215 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 2216 ev_feed_signal_event (EV_A_ i + 1);
1071 } 2217 }
2218#endif
1072 2219
1073#if EV_ASYNC_ENABLE 2220#if EV_ASYNC_ENABLE
1074 if (gotasync) 2221 if (async_pending)
1075 { 2222 {
1076 int i; 2223 async_pending = 0;
1077 gotasync = 0; 2224
2225 ECB_MEMORY_FENCE;
1078 2226
1079 for (i = asynccnt; i--; ) 2227 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 2228 if (asyncs [i]->sent)
1081 { 2229 {
1082 asyncs [i]->sent = 0; 2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 } 2233 }
1085 } 2234 }
1086#endif 2235#endif
1087} 2236}
1088 2237
1089/*****************************************************************************/ 2238/*****************************************************************************/
1090 2239
2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 ECB_MEMORY_FENCE_ACQUIRE;
2245 EV_P = signals [signum - 1].loop;
2246
2247 if (!EV_A)
2248 return;
2249#endif
2250
2251 signals [signum - 1].pending = 1;
2252 evpipe_write (EV_A_ &sig_pending);
2253}
2254
1091static void 2255static void
1092ev_sighandler (int signum) 2256ev_sighandler (int signum)
1093{ 2257{
2258#ifdef _WIN32
2259 signal (signum, ev_sighandler);
2260#endif
2261
2262 ev_feed_signal (signum);
2263}
2264
2265void noinline
2266ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267{
2268 WL w;
2269
2270 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271 return;
2272
2273 --signum;
2274
1094#if EV_MULTIPLICITY 2275#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 2276 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2277 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2278
1098#if _WIN32 2279 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2280 return;
2281#endif
1119 2282
1120 signals [signum].gotsig = 0; 2283 signals [signum].pending = 0;
2284 ECB_MEMORY_FENCE_RELEASE;
1121 2285
1122 for (w = signals [signum].head; w; w = w->next) 2286 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2287 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2288}
1125 2289
2290#if EV_USE_SIGNALFD
2291static void
2292sigfdcb (EV_P_ ev_io *iow, int revents)
2293{
2294 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295
2296 for (;;)
2297 {
2298 ssize_t res = read (sigfd, si, sizeof (si));
2299
2300 /* not ISO-C, as res might be -1, but works with SuS */
2301 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303
2304 if (res < (ssize_t)sizeof (si))
2305 break;
2306 }
2307}
2308#endif
2309
2310#endif
2311
1126/*****************************************************************************/ 2312/*****************************************************************************/
1127 2313
2314#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2315static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2316
1132static ev_signal childev; 2317static ev_signal childev;
1133 2318
1134#ifndef WIFCONTINUED 2319#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2320# define WIFCONTINUED(status) 0
1136#endif 2321#endif
1137 2322
1138void inline_speed 2323/* handle a single child status event */
2324inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2325child_reap (EV_P_ int chain, int pid, int status)
1140{ 2326{
1141 ev_child *w; 2327 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2328 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2329
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2330 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2331 {
1146 if ((w->pid == pid || !w->pid) 2332 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2333 && (!traced || (w->flags & 1)))
1148 { 2334 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2335 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2342
1157#ifndef WCONTINUED 2343#ifndef WCONTINUED
1158# define WCONTINUED 0 2344# define WCONTINUED 0
1159#endif 2345#endif
1160 2346
2347/* called on sigchld etc., calls waitpid */
1161static void 2348static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2349childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2350{
1164 int pid, status; 2351 int pid, status;
1165 2352
1173 /* make sure we are called again until all children have been reaped */ 2360 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2361 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2362 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2363
1177 child_reap (EV_A_ pid, pid, status); 2364 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2365 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2366 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2367}
1181 2368
1182#endif 2369#endif
1183 2370
1184/*****************************************************************************/ 2371/*****************************************************************************/
1185 2372
2373#if EV_USE_IOCP
2374# include "ev_iocp.c"
2375#endif
1186#if EV_USE_PORT 2376#if EV_USE_PORT
1187# include "ev_port.c" 2377# include "ev_port.c"
1188#endif 2378#endif
1189#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2380# include "ev_kqueue.c"
1197#endif 2387#endif
1198#if EV_USE_SELECT 2388#if EV_USE_SELECT
1199# include "ev_select.c" 2389# include "ev_select.c"
1200#endif 2390#endif
1201 2391
1202int 2392int ecb_cold
1203ev_version_major (void) 2393ev_version_major (void) EV_THROW
1204{ 2394{
1205 return EV_VERSION_MAJOR; 2395 return EV_VERSION_MAJOR;
1206} 2396}
1207 2397
1208int 2398int ecb_cold
1209ev_version_minor (void) 2399ev_version_minor (void) EV_THROW
1210{ 2400{
1211 return EV_VERSION_MINOR; 2401 return EV_VERSION_MINOR;
1212} 2402}
1213 2403
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2404/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2405int inline_size ecb_cold
1216enable_secure (void) 2406enable_secure (void)
1217{ 2407{
1218#ifdef _WIN32 2408#ifdef _WIN32
1219 return 0; 2409 return 0;
1220#else 2410#else
1221 return getuid () != geteuid () 2411 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2412 || getgid () != getegid ();
1223#endif 2413#endif
1224} 2414}
1225 2415
1226unsigned int 2416unsigned int ecb_cold
1227ev_supported_backends (void) 2417ev_supported_backends (void) EV_THROW
1228{ 2418{
1229 unsigned int flags = 0; 2419 unsigned int flags = 0;
1230 2420
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2421 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2422 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2425 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2426
1237 return flags; 2427 return flags;
1238} 2428}
1239 2429
1240unsigned int 2430unsigned int ecb_cold
1241ev_recommended_backends (void) 2431ev_recommended_backends (void) EV_THROW
1242{ 2432{
1243 unsigned int flags = ev_supported_backends (); 2433 unsigned int flags = ev_supported_backends ();
1244 2434
1245#ifndef __NetBSD__ 2435#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2436 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2437 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2438 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2439#endif
1250#ifdef __APPLE__ 2440#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2441 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2444#endif
2445#ifdef __FreeBSD__
2446 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2447#endif
1254 2448
1255 return flags; 2449 return flags;
1256} 2450}
1257 2451
2452unsigned int ecb_cold
2453ev_embeddable_backends (void) EV_THROW
2454{
2455 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456
2457 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459 flags &= ~EVBACKEND_EPOLL;
2460
2461 return flags;
2462}
2463
1258unsigned int 2464unsigned int
1259ev_embeddable_backends (void) 2465ev_backend (EV_P) EV_THROW
1260{ 2466{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2467 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2468}
1269 2469
2470#if EV_FEATURE_API
1270unsigned int 2471unsigned int
1271ev_backend (EV_P) 2472ev_iteration (EV_P) EV_THROW
1272{ 2473{
1273 return backend; 2474 return loop_count;
1274} 2475}
1275 2476
1276unsigned int 2477unsigned int
1277ev_loop_count (EV_P) 2478ev_depth (EV_P) EV_THROW
1278{ 2479{
1279 return loop_count; 2480 return loop_depth;
1280} 2481}
1281 2482
1282void 2483void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2484ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2485{
1285 io_blocktime = interval; 2486 io_blocktime = interval;
1286} 2487}
1287 2488
1288void 2489void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2490ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2491{
1291 timeout_blocktime = interval; 2492 timeout_blocktime = interval;
1292} 2493}
1293 2494
2495void
2496ev_set_userdata (EV_P_ void *data) EV_THROW
2497{
2498 userdata = data;
2499}
2500
2501void *
2502ev_userdata (EV_P) EV_THROW
2503{
2504 return userdata;
2505}
2506
2507void
2508ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509{
2510 invoke_cb = invoke_pending_cb;
2511}
2512
2513void
2514ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515{
2516 release_cb = release;
2517 acquire_cb = acquire;
2518}
2519#endif
2520
2521/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2522static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2523loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2524{
1297 if (!backend) 2525 if (!backend)
1298 { 2526 {
2527 origflags = flags;
2528
2529#if EV_USE_REALTIME
2530 if (!have_realtime)
2531 {
2532 struct timespec ts;
2533
2534 if (!clock_gettime (CLOCK_REALTIME, &ts))
2535 have_realtime = 1;
2536 }
2537#endif
2538
1299#if EV_USE_MONOTONIC 2539#if EV_USE_MONOTONIC
2540 if (!have_monotonic)
1300 { 2541 {
1301 struct timespec ts; 2542 struct timespec ts;
2543
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2544 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2545 have_monotonic = 1;
1304 } 2546 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2547#endif
1320 2548
1321 /* pid check not overridable via env */ 2549 /* pid check not overridable via env */
1322#ifndef _WIN32 2550#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2551 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2555 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2556 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2557 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2558 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2559
1332 if (!(flags & 0x0000ffffU)) 2560 ev_rt_now = ev_time ();
2561 mn_now = get_clock ();
2562 now_floor = mn_now;
2563 rtmn_diff = ev_rt_now - mn_now;
2564#if EV_FEATURE_API
2565 invoke_cb = ev_invoke_pending;
2566#endif
2567
2568 io_blocktime = 0.;
2569 timeout_blocktime = 0.;
2570 backend = 0;
2571 backend_fd = -1;
2572 sig_pending = 0;
2573#if EV_ASYNC_ENABLE
2574 async_pending = 0;
2575#endif
2576 pipe_write_skipped = 0;
2577 pipe_write_wanted = 0;
2578 evpipe [0] = -1;
2579 evpipe [1] = -1;
2580#if EV_USE_INOTIFY
2581 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582#endif
2583#if EV_USE_SIGNALFD
2584 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2585#endif
2586
2587 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2588 flags |= ev_recommended_backends ();
1334 2589
2590#if EV_USE_IOCP
2591 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2592#endif
1335#if EV_USE_PORT 2593#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2594 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2595#endif
1338#if EV_USE_KQUEUE 2596#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2597 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2604#endif
1347#if EV_USE_SELECT 2605#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2606 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2607#endif
1350 2608
2609 ev_prepare_init (&pending_w, pendingcb);
2610
2611#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2612 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2613 ev_set_priority (&pipe_w, EV_MAXPRI);
2614#endif
1353 } 2615 }
1354} 2616}
1355 2617
1356static void noinline 2618/* free up a loop structure */
2619void ecb_cold
1357loop_destroy (EV_P) 2620ev_loop_destroy (EV_P)
1358{ 2621{
1359 int i; 2622 int i;
1360 2623
2624#if EV_MULTIPLICITY
2625 /* mimic free (0) */
2626 if (!EV_A)
2627 return;
2628#endif
2629
2630#if EV_CLEANUP_ENABLE
2631 /* queue cleanup watchers (and execute them) */
2632 if (expect_false (cleanupcnt))
2633 {
2634 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635 EV_INVOKE_PENDING;
2636 }
2637#endif
2638
2639#if EV_CHILD_ENABLE
2640 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641 {
2642 ev_ref (EV_A); /* child watcher */
2643 ev_signal_stop (EV_A_ &childev);
2644 }
2645#endif
2646
1361 if (ev_is_active (&pipeev)) 2647 if (ev_is_active (&pipe_w))
1362 { 2648 {
1363 ev_ref (EV_A); /* signal watcher */ 2649 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2650 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2651
2652 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654 }
2655
1366#if EV_USE_EVENTFD 2656#if EV_USE_SIGNALFD
1367 if (evfd >= 0) 2657 if (ev_is_active (&sigfd_w))
1368 close (evfd); 2658 close (sigfd);
1369#endif 2659#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377 2660
1378#if EV_USE_INOTIFY 2661#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2662 if (fs_fd >= 0)
1380 close (fs_fd); 2663 close (fs_fd);
1381#endif 2664#endif
1382 2665
1383 if (backend_fd >= 0) 2666 if (backend_fd >= 0)
1384 close (backend_fd); 2667 close (backend_fd);
1385 2668
2669#if EV_USE_IOCP
2670 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2671#endif
1386#if EV_USE_PORT 2672#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2673 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2674#endif
1389#if EV_USE_KQUEUE 2675#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2676 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2691#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2692 array_free (idle, [i]);
1407#endif 2693#endif
1408 } 2694 }
1409 2695
1410 ev_free (anfds); anfdmax = 0; 2696 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2697
1412 /* have to use the microsoft-never-gets-it-right macro */ 2698 /* have to use the microsoft-never-gets-it-right macro */
2699 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2700 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2701 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2702#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2703 array_free (periodic, EMPTY);
1417#endif 2704#endif
1418#if EV_FORK_ENABLE 2705#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2706 array_free (fork, EMPTY);
1420#endif 2707#endif
2708#if EV_CLEANUP_ENABLE
2709 array_free (cleanup, EMPTY);
2710#endif
1421 array_free (prepare, EMPTY); 2711 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2712 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2713#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2714 array_free (async, EMPTY);
1425#endif 2715#endif
1426 2716
1427 backend = 0; 2717 backend = 0;
2718
2719#if EV_MULTIPLICITY
2720 if (ev_is_default_loop (EV_A))
2721#endif
2722 ev_default_loop_ptr = 0;
2723#if EV_MULTIPLICITY
2724 else
2725 ev_free (EV_A);
2726#endif
1428} 2727}
1429 2728
1430#if EV_USE_INOTIFY 2729#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2730inline_size void infy_fork (EV_P);
1432#endif 2731#endif
1433 2732
1434void inline_size 2733inline_size void
1435loop_fork (EV_P) 2734loop_fork (EV_P)
1436{ 2735{
1437#if EV_USE_PORT 2736#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2737 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2738#endif
1445#endif 2744#endif
1446#if EV_USE_INOTIFY 2745#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2746 infy_fork (EV_A);
1448#endif 2747#endif
1449 2748
2749#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1450 if (ev_is_active (&pipeev)) 2750 if (ev_is_active (&pipe_w))
1451 { 2751 {
1452 /* this "locks" the handlers against writing to the pipe */ 2752 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2753
1459 ev_ref (EV_A); 2754 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2755 ev_io_stop (EV_A_ &pipe_w);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466 2756
1467 if (evpipe [0] >= 0) 2757 if (evpipe [0] >= 0)
1468 { 2758 EV_WIN32_CLOSE_FD (evpipe [0]);
1469 close (evpipe [0]);
1470 close (evpipe [1]);
1471 }
1472 2759
1473 evpipe_init (EV_A); 2760 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2761 /* iterate over everything, in case we missed something before */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2762 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1476 } 2763 }
2764#endif
1477 2765
1478 postfork = 0; 2766 postfork = 0;
1479} 2767}
1480 2768
1481#if EV_MULTIPLICITY 2769#if EV_MULTIPLICITY
1482 2770
1483struct ev_loop * 2771struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2772ev_loop_new (unsigned int flags) EV_THROW
1485{ 2773{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2774 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2775
1488 memset (loop, 0, sizeof (struct ev_loop)); 2776 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2777 loop_init (EV_A_ flags);
1491 2778
1492 if (ev_backend (EV_A)) 2779 if (ev_backend (EV_A))
1493 return loop; 2780 return EV_A;
1494 2781
2782 ev_free (EV_A);
1495 return 0; 2783 return 0;
1496} 2784}
1497 2785
1498void 2786#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2787
1511#if EV_VERIFY 2788#if EV_VERIFY
1512void noinline 2789static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2790verify_watcher (EV_P_ W w)
1514{ 2791{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2792 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2793
1517 if (w->pending) 2794 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2795 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2796}
1520 2797
1521static void noinline 2798static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2799verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2800{
1524 int i; 2801 int i;
1525 2802
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2803 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2804 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2805 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2806 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2807 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2808
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2809 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2810 }
1534} 2811}
1535 2812
1536static void noinline 2813static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2814array_verify (EV_P_ W *ws, int cnt)
1538{ 2815{
1539 while (cnt--) 2816 while (cnt--)
1540 { 2817 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2818 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2819 verify_watcher (EV_A_ ws [cnt]);
1543 } 2820 }
1544} 2821}
1545#endif 2822#endif
1546 2823
1547void 2824#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2825void ecb_cold
2826ev_verify (EV_P) EV_THROW
1549{ 2827{
1550#if EV_VERIFY 2828#if EV_VERIFY
1551 int i; 2829 int i;
1552 WL w; 2830 WL w, w2;
1553 2831
1554 assert (activecnt >= -1); 2832 assert (activecnt >= -1);
1555 2833
1556 assert (fdchangemax >= fdchangecnt); 2834 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2835 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2836 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2837
1560 assert (anfdmax >= 0); 2838 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2839 for (i = 0; i < anfdmax; ++i)
2840 {
2841 int j = 0;
2842
1562 for (w = anfds [i].head; w; w = w->next) 2843 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2844 {
1564 verify_watcher (EV_A_ (W)w); 2845 verify_watcher (EV_A_ (W)w);
2846
2847 if (j++ & 1)
2848 {
2849 assert (("libev: io watcher list contains a loop", w != w2));
2850 w2 = w2->next;
2851 }
2852
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2853 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2854 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 2855 }
2856 }
1568 2857
1569 assert (timermax >= timercnt); 2858 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 2859 verify_heap (EV_A_ timers, timercnt);
1571 2860
1572#if EV_PERIODIC_ENABLE 2861#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 2877 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 2878 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 2879#endif
1591 2880
2881#if EV_CLEANUP_ENABLE
2882 assert (cleanupmax >= cleanupcnt);
2883 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884#endif
2885
1592#if EV_ASYNC_ENABLE 2886#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 2887 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 2888 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 2889#endif
1596 2890
2891#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 2892 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 2893 array_verify (EV_A_ (W *)prepares, preparecnt);
2894#endif
1599 2895
2896#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 2897 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 2898 array_verify (EV_A_ (W *)checks, checkcnt);
2899#endif
1602 2900
1603# if 0 2901# if 0
2902#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2903 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2904 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905#endif
1606# endif 2906# endif
1607#endif 2907#endif
1608} 2908}
1609 2909#endif
1610#endif /* multiplicity */
1611 2910
1612#if EV_MULTIPLICITY 2911#if EV_MULTIPLICITY
1613struct ev_loop * 2912struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 2913#else
1616int 2914int
2915#endif
1617ev_default_loop (unsigned int flags) 2916ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 2917{
1620 if (!ev_default_loop_ptr) 2918 if (!ev_default_loop_ptr)
1621 { 2919 {
1622#if EV_MULTIPLICITY 2920#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2921 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 2922#else
1625 ev_default_loop_ptr = 1; 2923 ev_default_loop_ptr = 1;
1626#endif 2924#endif
1627 2925
1628 loop_init (EV_A_ flags); 2926 loop_init (EV_A_ flags);
1629 2927
1630 if (ev_backend (EV_A)) 2928 if (ev_backend (EV_A))
1631 { 2929 {
1632#ifndef _WIN32 2930#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 2931 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 2932 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 2933 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2934 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 2935#endif
1642 2940
1643 return ev_default_loop_ptr; 2941 return ev_default_loop_ptr;
1644} 2942}
1645 2943
1646void 2944void
1647ev_default_destroy (void) 2945ev_loop_fork (EV_P) EV_THROW
1648{ 2946{
1649#if EV_MULTIPLICITY 2947 postfork = 1;
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */
1670} 2948}
1671 2949
1672/*****************************************************************************/ 2950/*****************************************************************************/
1673 2951
1674void 2952void
1675ev_invoke (EV_P_ void *w, int revents) 2953ev_invoke (EV_P_ void *w, int revents)
1676{ 2954{
1677 EV_CB_INVOKE ((W)w, revents); 2955 EV_CB_INVOKE ((W)w, revents);
1678} 2956}
1679 2957
1680void inline_speed 2958unsigned int
1681call_pending (EV_P) 2959ev_pending_count (EV_P) EV_THROW
1682{ 2960{
1683 int pri; 2961 int pri;
2962 unsigned int count = 0;
1684 2963
1685 for (pri = NUMPRI; pri--; ) 2964 for (pri = NUMPRI; pri--; )
2965 count += pendingcnt [pri];
2966
2967 return count;
2968}
2969
2970void noinline
2971ev_invoke_pending (EV_P)
2972{
2973 pendingpri = NUMPRI;
2974
2975 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976 {
2977 --pendingpri;
2978
1686 while (pendingcnt [pri]) 2979 while (pendingcnt [pendingpri])
1687 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689
1690 if (expect_true (p->w))
1691 { 2980 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2981 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1693 2982
1694 p->w->pending = 0; 2983 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 2984 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 2985 EV_FREQUENT_CHECK;
1697 } 2986 }
1698 } 2987 }
1699} 2988}
1700 2989
1701#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
1702void inline_size 2991/* make idle watchers pending. this handles the "call-idle */
2992/* only when higher priorities are idle" logic */
2993inline_size void
1703idle_reify (EV_P) 2994idle_reify (EV_P)
1704{ 2995{
1705 if (expect_false (idleall)) 2996 if (expect_false (idleall))
1706 { 2997 {
1707 int pri; 2998 int pri;
1719 } 3010 }
1720 } 3011 }
1721} 3012}
1722#endif 3013#endif
1723 3014
1724void inline_size 3015/* make timers pending */
3016inline_size void
1725timers_reify (EV_P) 3017timers_reify (EV_P)
1726{ 3018{
1727 EV_FREQUENT_CHECK; 3019 EV_FREQUENT_CHECK;
1728 3020
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3021 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 3022 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3023 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 3024 {
3025 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026
3027 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028
3029 /* first reschedule or stop timer */
3030 if (w->repeat)
3031 {
1738 ev_at (w) += w->repeat; 3032 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 3033 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 3034 ev_at (w) = mn_now;
1741 3035
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3036 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 3037
1744 ANHE_at_cache (timers [HEAP0]); 3038 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 3039 downheap (timers, timercnt, HEAP0);
3040 }
3041 else
3042 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043
3044 EV_FREQUENT_CHECK;
3045 feed_reverse (EV_A_ (W)w);
1746 } 3046 }
1747 else 3047 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 3048
1750 EV_FREQUENT_CHECK; 3049 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 3050 }
1753} 3051}
1754 3052
1755#if EV_PERIODIC_ENABLE 3053#if EV_PERIODIC_ENABLE
1756void inline_size 3054
3055static void noinline
3056periodic_recalc (EV_P_ ev_periodic *w)
3057{
3058 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060
3061 /* the above almost always errs on the low side */
3062 while (at <= ev_rt_now)
3063 {
3064 ev_tstamp nat = at + w->interval;
3065
3066 /* when resolution fails us, we use ev_rt_now */
3067 if (expect_false (nat == at))
3068 {
3069 at = ev_rt_now;
3070 break;
3071 }
3072
3073 at = nat;
3074 }
3075
3076 ev_at (w) = at;
3077}
3078
3079/* make periodics pending */
3080inline_size void
1757periodics_reify (EV_P) 3081periodics_reify (EV_P)
1758{ 3082{
1759 EV_FREQUENT_CHECK; 3083 EV_FREQUENT_CHECK;
1760 3084
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3085 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 3086 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3087 do
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 3088 {
3089 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3090
3091 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3092
3093 /* first reschedule or stop timer */
3094 if (w->reschedule_cb)
3095 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3096 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 3097
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3098 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 3099
1774 ANHE_at_cache (periodics [HEAP0]); 3100 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 3101 downheap (periodics, periodiccnt, HEAP0);
3102 }
3103 else if (w->interval)
3104 {
3105 periodic_recalc (EV_A_ w);
3106 ANHE_at_cache (periodics [HEAP0]);
3107 downheap (periodics, periodiccnt, HEAP0);
3108 }
3109 else
3110 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111
3112 EV_FREQUENT_CHECK;
3113 feed_reverse (EV_A_ (W)w);
1776 } 3114 }
1777 else if (w->interval) 3115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 3116
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3117 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 3118 }
1802} 3119}
1803 3120
3121/* simply recalculate all periodics */
3122/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 3123static void noinline ecb_cold
1805periodics_reschedule (EV_P) 3124periodics_reschedule (EV_P)
1806{ 3125{
1807 int i; 3126 int i;
1808 3127
1809 /* adjust periodics after time jump */ 3128 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 3132
1814 if (w->reschedule_cb) 3133 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3134 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 3135 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3136 periodic_recalc (EV_A_ w);
1818 3137
1819 ANHE_at_cache (periodics [i]); 3138 ANHE_at_cache (periodics [i]);
1820 } 3139 }
1821 3140
1822 reheap (periodics, periodiccnt); 3141 reheap (periodics, periodiccnt);
1823} 3142}
1824#endif 3143#endif
1825 3144
1826void inline_speed 3145/* adjust all timers by a given offset */
3146static void noinline ecb_cold
3147timers_reschedule (EV_P_ ev_tstamp adjust)
3148{
3149 int i;
3150
3151 for (i = 0; i < timercnt; ++i)
3152 {
3153 ANHE *he = timers + i + HEAP0;
3154 ANHE_w (*he)->at += adjust;
3155 ANHE_at_cache (*he);
3156 }
3157}
3158
3159/* fetch new monotonic and realtime times from the kernel */
3160/* also detect if there was a timejump, and act accordingly */
3161inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 3162time_update (EV_P_ ev_tstamp max_block)
1828{ 3163{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 3164#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 3165 if (expect_true (have_monotonic))
1833 { 3166 {
3167 int i;
1834 ev_tstamp odiff = rtmn_diff; 3168 ev_tstamp odiff = rtmn_diff;
1835 3169
1836 mn_now = get_clock (); 3170 mn_now = get_clock ();
1837 3171
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3172 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 3188 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 3189 * in the unlikely event of having been preempted here.
1856 */ 3190 */
1857 for (i = 4; --i; ) 3191 for (i = 4; --i; )
1858 { 3192 {
3193 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 3194 rtmn_diff = ev_rt_now - mn_now;
1860 3195
3196 diff = odiff - rtmn_diff;
3197
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3198 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 3199 return; /* all is well */
1863 3200
1864 ev_rt_now = ev_time (); 3201 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 3202 mn_now = get_clock ();
1866 now_floor = mn_now; 3203 now_floor = mn_now;
1867 } 3204 }
1868 3205
3206 /* no timer adjustment, as the monotonic clock doesn't jump */
3207 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 3208# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 3209 periodics_reschedule (EV_A);
1871# endif 3210# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 3211 }
1875 else 3212 else
1876#endif 3213#endif
1877 { 3214 {
1878 ev_rt_now = ev_time (); 3215 ev_rt_now = ev_time ();
1879 3216
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3217 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 3218 {
3219 /* adjust timers. this is easy, as the offset is the same for all of them */
3220 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 3221#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 3222 periodics_reschedule (EV_A);
1884#endif 3223#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 3224 }
1893 3225
1894 mn_now = ev_rt_now; 3226 mn_now = ev_rt_now;
1895 } 3227 }
1896} 3228}
1897 3229
1898void 3230int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 3231ev_run (EV_P_ int flags)
1914{ 3232{
3233#if EV_FEATURE_API
3234 ++loop_depth;
3235#endif
3236
3237 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238
1915 loop_done = EVUNLOOP_CANCEL; 3239 loop_done = EVBREAK_CANCEL;
1916 3240
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3241 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 3242
1919 do 3243 do
1920 { 3244 {
1921#if EV_VERIFY >= 2 3245#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 3246 ev_verify (EV_A);
1923#endif 3247#endif
1924 3248
1925#ifndef _WIN32 3249#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 3250 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 3251 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 3259 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 3260 if (expect_false (postfork))
1937 if (forkcnt) 3261 if (forkcnt)
1938 { 3262 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3263 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 3264 EV_INVOKE_PENDING;
1941 } 3265 }
1942#endif 3266#endif
1943 3267
3268#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3269 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3270 if (expect_false (preparecnt))
1946 { 3271 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3272 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3273 EV_INVOKE_PENDING;
1949 } 3274 }
3275#endif
1950 3276
1951 if (expect_false (!activecnt)) 3277 if (expect_false (loop_done))
1952 break; 3278 break;
1953 3279
1954 /* we might have forked, so reify kernel state if necessary */ 3280 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1956 loop_fork (EV_A); 3282 loop_fork (EV_A);
1961 /* calculate blocking time */ 3287 /* calculate blocking time */
1962 { 3288 {
1963 ev_tstamp waittime = 0.; 3289 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3290 ev_tstamp sleeptime = 0.;
1965 3291
3292 /* remember old timestamp for io_blocktime calculation */
3293 ev_tstamp prev_mn_now = mn_now;
3294
3295 /* update time to cancel out callback processing overhead */
3296 time_update (EV_A_ 1e100);
3297
3298 /* from now on, we want a pipe-wake-up */
3299 pipe_write_wanted = 1;
3300
3301 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3303 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3304 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3305 waittime = MAX_BLOCKTIME;
1972 3306
1973 if (timercnt) 3307 if (timercnt)
1974 { 3308 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3309 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3310 if (waittime > to) waittime = to;
1977 } 3311 }
1978 3312
1979#if EV_PERIODIC_ENABLE 3313#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3314 if (periodiccnt)
1981 { 3315 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3316 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3317 if (waittime > to) waittime = to;
1984 } 3318 }
1985#endif 3319#endif
1986 3320
3321 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3322 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3323 waittime = timeout_blocktime;
1989 3324
1990 sleeptime = waittime - backend_fudge; 3325 /* at this point, we NEED to wait, so we have to ensure */
3326 /* to pass a minimum nonzero value to the backend */
3327 if (expect_false (waittime < backend_mintime))
3328 waittime = backend_mintime;
1991 3329
3330 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3331 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3332 {
3333 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334
3335 if (sleeptime > waittime - backend_mintime)
3336 sleeptime = waittime - backend_mintime;
3337
3338 if (expect_true (sleeptime > 0.))
3339 {
1997 ev_sleep (sleeptime); 3340 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3341 waittime -= sleeptime;
3342 }
1999 } 3343 }
2000 } 3344 }
2001 3345
3346#if EV_FEATURE_API
2002 ++loop_count; 3347 ++loop_count;
3348#endif
3349 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3350 backend_poll (EV_A_ waittime);
3351 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3352
3353 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354
3355 ECB_MEMORY_FENCE_ACQUIRE;
3356 if (pipe_write_skipped)
3357 {
3358 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360 }
3361
2004 3362
2005 /* update ev_rt_now, do magic */ 3363 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3364 time_update (EV_A_ waittime + sleeptime);
2007 } 3365 }
2008 3366
2015#if EV_IDLE_ENABLE 3373#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3374 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3375 idle_reify (EV_A);
2018#endif 3376#endif
2019 3377
3378#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3379 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3380 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3381 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382#endif
2023 3383
2024 call_pending (EV_A); 3384 EV_INVOKE_PENDING;
2025 } 3385 }
2026 while (expect_true ( 3386 while (expect_true (
2027 activecnt 3387 activecnt
2028 && !loop_done 3388 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3389 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3390 ));
2031 3391
2032 if (loop_done == EVUNLOOP_ONE) 3392 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3393 loop_done = EVBREAK_CANCEL;
3394
3395#if EV_FEATURE_API
3396 --loop_depth;
3397#endif
3398
3399 return activecnt;
2034} 3400}
2035 3401
2036void 3402void
2037ev_unloop (EV_P_ int how) 3403ev_break (EV_P_ int how) EV_THROW
2038{ 3404{
2039 loop_done = how; 3405 loop_done = how;
2040} 3406}
2041 3407
3408void
3409ev_ref (EV_P) EV_THROW
3410{
3411 ++activecnt;
3412}
3413
3414void
3415ev_unref (EV_P) EV_THROW
3416{
3417 --activecnt;
3418}
3419
3420void
3421ev_now_update (EV_P) EV_THROW
3422{
3423 time_update (EV_A_ 1e100);
3424}
3425
3426void
3427ev_suspend (EV_P) EV_THROW
3428{
3429 ev_now_update (EV_A);
3430}
3431
3432void
3433ev_resume (EV_P) EV_THROW
3434{
3435 ev_tstamp mn_prev = mn_now;
3436
3437 ev_now_update (EV_A);
3438 timers_reschedule (EV_A_ mn_now - mn_prev);
3439#if EV_PERIODIC_ENABLE
3440 /* TODO: really do this? */
3441 periodics_reschedule (EV_A);
3442#endif
3443}
3444
2042/*****************************************************************************/ 3445/*****************************************************************************/
3446/* singly-linked list management, used when the expected list length is short */
2043 3447
2044void inline_size 3448inline_size void
2045wlist_add (WL *head, WL elem) 3449wlist_add (WL *head, WL elem)
2046{ 3450{
2047 elem->next = *head; 3451 elem->next = *head;
2048 *head = elem; 3452 *head = elem;
2049} 3453}
2050 3454
2051void inline_size 3455inline_size void
2052wlist_del (WL *head, WL elem) 3456wlist_del (WL *head, WL elem)
2053{ 3457{
2054 while (*head) 3458 while (*head)
2055 { 3459 {
2056 if (*head == elem) 3460 if (expect_true (*head == elem))
2057 { 3461 {
2058 *head = elem->next; 3462 *head = elem->next;
2059 return; 3463 break;
2060 } 3464 }
2061 3465
2062 head = &(*head)->next; 3466 head = &(*head)->next;
2063 } 3467 }
2064} 3468}
2065 3469
2066void inline_speed 3470/* internal, faster, version of ev_clear_pending */
3471inline_speed void
2067clear_pending (EV_P_ W w) 3472clear_pending (EV_P_ W w)
2068{ 3473{
2069 if (w->pending) 3474 if (w->pending)
2070 { 3475 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3476 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3477 w->pending = 0;
2073 } 3478 }
2074} 3479}
2075 3480
2076int 3481int
2077ev_clear_pending (EV_P_ void *w) 3482ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3483{
2079 W w_ = (W)w; 3484 W w_ = (W)w;
2080 int pending = w_->pending; 3485 int pending = w_->pending;
2081 3486
2082 if (expect_true (pending)) 3487 if (expect_true (pending))
2083 { 3488 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3489 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490 p->w = (W)&pending_w;
2085 w_->pending = 0; 3491 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3492 return p->events;
2088 } 3493 }
2089 else 3494 else
2090 return 0; 3495 return 0;
2091} 3496}
2092 3497
2093void inline_size 3498inline_size void
2094pri_adjust (EV_P_ W w) 3499pri_adjust (EV_P_ W w)
2095{ 3500{
2096 int pri = w->priority; 3501 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3502 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3503 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3504 ev_set_priority (w, pri);
2100} 3505}
2101 3506
2102void inline_speed 3507inline_speed void
2103ev_start (EV_P_ W w, int active) 3508ev_start (EV_P_ W w, int active)
2104{ 3509{
2105 pri_adjust (EV_A_ w); 3510 pri_adjust (EV_A_ w);
2106 w->active = active; 3511 w->active = active;
2107 ev_ref (EV_A); 3512 ev_ref (EV_A);
2108} 3513}
2109 3514
2110void inline_size 3515inline_size void
2111ev_stop (EV_P_ W w) 3516ev_stop (EV_P_ W w)
2112{ 3517{
2113 ev_unref (EV_A); 3518 ev_unref (EV_A);
2114 w->active = 0; 3519 w->active = 0;
2115} 3520}
2116 3521
2117/*****************************************************************************/ 3522/*****************************************************************************/
2118 3523
2119void noinline 3524void noinline
2120ev_io_start (EV_P_ ev_io *w) 3525ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3526{
2122 int fd = w->fd; 3527 int fd = w->fd;
2123 3528
2124 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
2125 return; 3530 return;
2126 3531
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3532 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3534
2129 EV_FREQUENT_CHECK; 3535 EV_FREQUENT_CHECK;
2130 3536
2131 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3538 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3539 wlist_add (&anfds[fd].head, (WL)w);
2134 3540
3541 /* common bug, apparently */
3542 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3543
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3544 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3545 w->events &= ~EV__IOFDSET;
2137 3546
2138 EV_FREQUENT_CHECK; 3547 EV_FREQUENT_CHECK;
2139} 3548}
2140 3549
2141void noinline 3550void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3551ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3552{
2144 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2146 return; 3555 return;
2147 3556
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3557 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3558
2150 EV_FREQUENT_CHECK; 3559 EV_FREQUENT_CHECK;
2151 3560
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3561 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
2154 3563
2155 fd_change (EV_A_ w->fd, 1); 3564 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3565
2157 EV_FREQUENT_CHECK; 3566 EV_FREQUENT_CHECK;
2158} 3567}
2159 3568
2160void noinline 3569void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3570ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3571{
2163 if (expect_false (ev_is_active (w))) 3572 if (expect_false (ev_is_active (w)))
2164 return; 3573 return;
2165 3574
2166 ev_at (w) += mn_now; 3575 ev_at (w) += mn_now;
2167 3576
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3577 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3578
2170 EV_FREQUENT_CHECK; 3579 EV_FREQUENT_CHECK;
2171 3580
2172 ++timercnt; 3581 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3582 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3585 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3586 upheap (timers, ev_active (w));
2178 3587
2179 EV_FREQUENT_CHECK; 3588 EV_FREQUENT_CHECK;
2180 3589
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3590 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3591}
2183 3592
2184void noinline 3593void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3594ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3595{
2187 clear_pending (EV_A_ (W)w); 3596 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3597 if (expect_false (!ev_is_active (w)))
2189 return; 3598 return;
2190 3599
2191 EV_FREQUENT_CHECK; 3600 EV_FREQUENT_CHECK;
2192 3601
2193 { 3602 {
2194 int active = ev_active (w); 3603 int active = ev_active (w);
2195 3604
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3605 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3606
2198 --timercnt; 3607 --timercnt;
2199 3608
2200 if (expect_true (active < timercnt + HEAP0)) 3609 if (expect_true (active < timercnt + HEAP0))
2201 { 3610 {
2202 timers [active] = timers [timercnt + HEAP0]; 3611 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3612 adjustheap (timers, timercnt, active);
2204 } 3613 }
2205 } 3614 }
2206 3615
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3616 ev_at (w) -= mn_now;
2210 3617
2211 ev_stop (EV_A_ (W)w); 3618 ev_stop (EV_A_ (W)w);
3619
3620 EV_FREQUENT_CHECK;
2212} 3621}
2213 3622
2214void noinline 3623void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3624ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3625{
2217 EV_FREQUENT_CHECK; 3626 EV_FREQUENT_CHECK;
3627
3628 clear_pending (EV_A_ (W)w);
2218 3629
2219 if (ev_is_active (w)) 3630 if (ev_is_active (w))
2220 { 3631 {
2221 if (w->repeat) 3632 if (w->repeat)
2222 { 3633 {
2234 } 3645 }
2235 3646
2236 EV_FREQUENT_CHECK; 3647 EV_FREQUENT_CHECK;
2237} 3648}
2238 3649
3650ev_tstamp
3651ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652{
3653 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3654}
3655
2239#if EV_PERIODIC_ENABLE 3656#if EV_PERIODIC_ENABLE
2240void noinline 3657void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3658ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3659{
2243 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
2244 return; 3661 return;
2245 3662
2246 if (w->reschedule_cb) 3663 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3664 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3665 else if (w->interval)
2249 { 3666 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3667 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3668 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3669 }
2254 else 3670 else
2255 ev_at (w) = w->offset; 3671 ev_at (w) = w->offset;
2256 3672
2257 EV_FREQUENT_CHECK; 3673 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3679 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3680 upheap (periodics, ev_active (w));
2265 3681
2266 EV_FREQUENT_CHECK; 3682 EV_FREQUENT_CHECK;
2267 3683
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3684 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3685}
2270 3686
2271void noinline 3687void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3688ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3689{
2274 clear_pending (EV_A_ (W)w); 3690 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3691 if (expect_false (!ev_is_active (w)))
2276 return; 3692 return;
2277 3693
2278 EV_FREQUENT_CHECK; 3694 EV_FREQUENT_CHECK;
2279 3695
2280 { 3696 {
2281 int active = ev_active (w); 3697 int active = ev_active (w);
2282 3698
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3699 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3700
2285 --periodiccnt; 3701 --periodiccnt;
2286 3702
2287 if (expect_true (active < periodiccnt + HEAP0)) 3703 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3704 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3705 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3706 adjustheap (periodics, periodiccnt, active);
2291 } 3707 }
2292 } 3708 }
2293 3709
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3710 ev_stop (EV_A_ (W)w);
3711
3712 EV_FREQUENT_CHECK;
2297} 3713}
2298 3714
2299void noinline 3715void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3716ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3717{
2302 /* TODO: use adjustheap and recalculation */ 3718 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3719 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3720 ev_periodic_start (EV_A_ w);
2305} 3721}
2307 3723
2308#ifndef SA_RESTART 3724#ifndef SA_RESTART
2309# define SA_RESTART 0 3725# define SA_RESTART 0
2310#endif 3726#endif
2311 3727
3728#if EV_SIGNAL_ENABLE
3729
2312void noinline 3730void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3731ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3732{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3733 if (expect_false (ev_is_active (w)))
2319 return; 3734 return;
2320 3735
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3737
2323 evpipe_init (EV_A); 3738#if EV_MULTIPLICITY
3739 assert (("libev: a signal must not be attached to two different loops",
3740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3741
2325 EV_FREQUENT_CHECK; 3742 signals [w->signum - 1].loop = EV_A;
3743 ECB_MEMORY_FENCE_RELEASE;
3744#endif
2326 3745
3746 EV_FREQUENT_CHECK;
3747
3748#if EV_USE_SIGNALFD
3749 if (sigfd == -2)
2327 { 3750 {
2328#ifndef _WIN32 3751 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3752 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3753 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3754
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3755 if (sigfd >= 0)
3756 {
3757 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3758
2336#ifndef _WIN32 3759 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3760
2338#endif 3761 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762 ev_set_priority (&sigfd_w, EV_MAXPRI);
3763 ev_io_start (EV_A_ &sigfd_w);
3764 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765 }
2339 } 3766 }
3767
3768 if (sigfd >= 0)
3769 {
3770 /* TODO: check .head */
3771 sigaddset (&sigfd_set, w->signum);
3772 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773
3774 signalfd (sigfd, &sigfd_set, 0);
3775 }
3776#endif
2340 3777
2341 ev_start (EV_A_ (W)w, 1); 3778 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3779 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3780
2344 if (!((WL)w)->next) 3781 if (!((WL)w)->next)
3782# if EV_USE_SIGNALFD
3783 if (sigfd < 0) /*TODO*/
3784# endif
2345 { 3785 {
2346#if _WIN32 3786# ifdef _WIN32
3787 evpipe_init (EV_A);
3788
2347 signal (w->signum, ev_sighandler); 3789 signal (w->signum, ev_sighandler);
2348#else 3790# else
2349 struct sigaction sa; 3791 struct sigaction sa;
3792
3793 evpipe_init (EV_A);
3794
2350 sa.sa_handler = ev_sighandler; 3795 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3796 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3797 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3798 sigaction (w->signum, &sa, 0);
3799
3800 if (origflags & EVFLAG_NOSIGMASK)
3801 {
3802 sigemptyset (&sa.sa_mask);
3803 sigaddset (&sa.sa_mask, w->signum);
3804 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805 }
2354#endif 3806#endif
2355 } 3807 }
2356 3808
2357 EV_FREQUENT_CHECK; 3809 EV_FREQUENT_CHECK;
2358} 3810}
2359 3811
2360void noinline 3812void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3813ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3814{
2363 clear_pending (EV_A_ (W)w); 3815 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3816 if (expect_false (!ev_is_active (w)))
2365 return; 3817 return;
2366 3818
2368 3820
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3821 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
2371 3823
2372 if (!signals [w->signum - 1].head) 3824 if (!signals [w->signum - 1].head)
3825 {
3826#if EV_MULTIPLICITY
3827 signals [w->signum - 1].loop = 0; /* unattach from signal */
3828#endif
3829#if EV_USE_SIGNALFD
3830 if (sigfd >= 0)
3831 {
3832 sigset_t ss;
3833
3834 sigemptyset (&ss);
3835 sigaddset (&ss, w->signum);
3836 sigdelset (&sigfd_set, w->signum);
3837
3838 signalfd (sigfd, &sigfd_set, 0);
3839 sigprocmask (SIG_UNBLOCK, &ss, 0);
3840 }
3841 else
3842#endif
2373 signal (w->signum, SIG_DFL); 3843 signal (w->signum, SIG_DFL);
3844 }
2374 3845
2375 EV_FREQUENT_CHECK; 3846 EV_FREQUENT_CHECK;
2376} 3847}
3848
3849#endif
3850
3851#if EV_CHILD_ENABLE
2377 3852
2378void 3853void
2379ev_child_start (EV_P_ ev_child *w) 3854ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 3855{
2381#if EV_MULTIPLICITY 3856#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3857 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3858#endif
2384 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2385 return; 3860 return;
2386 3861
2387 EV_FREQUENT_CHECK; 3862 EV_FREQUENT_CHECK;
2388 3863
2389 ev_start (EV_A_ (W)w, 1); 3864 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3865 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3866
2392 EV_FREQUENT_CHECK; 3867 EV_FREQUENT_CHECK;
2393} 3868}
2394 3869
2395void 3870void
2396ev_child_stop (EV_P_ ev_child *w) 3871ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 3872{
2398 clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
2400 return; 3875 return;
2401 3876
2402 EV_FREQUENT_CHECK; 3877 EV_FREQUENT_CHECK;
2403 3878
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3879 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3880 ev_stop (EV_A_ (W)w);
2406 3881
2407 EV_FREQUENT_CHECK; 3882 EV_FREQUENT_CHECK;
2408} 3883}
3884
3885#endif
2409 3886
2410#if EV_STAT_ENABLE 3887#if EV_STAT_ENABLE
2411 3888
2412# ifdef _WIN32 3889# ifdef _WIN32
2413# undef lstat 3890# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3891# define lstat(a,b) _stati64 (a,b)
2415# endif 3892# endif
2416 3893
2417#define DEF_STAT_INTERVAL 5.0074891 3894#define DEF_STAT_INTERVAL 5.0074891
3895#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3896#define MIN_STAT_INTERVAL 0.1074891
2419 3897
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3898static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3899
2422#if EV_USE_INOTIFY 3900#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3901
3902/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3904
2425static void noinline 3905static void noinline
2426infy_add (EV_P_ ev_stat *w) 3906infy_add (EV_P_ ev_stat *w)
2427{ 3907{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3908 w->wd = inotify_add_watch (fs_fd, w->path,
3909 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911 | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 3912
2430 if (w->wd < 0) 3913 if (w->wd >= 0)
3914 {
3915 struct statfs sfs;
3916
3917 /* now local changes will be tracked by inotify, but remote changes won't */
3918 /* unless the filesystem is known to be local, we therefore still poll */
3919 /* also do poll on <2.6.25, but with normal frequency */
3920
3921 if (!fs_2625)
3922 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923 else if (!statfs (w->path, &sfs)
3924 && (sfs.f_type == 0x1373 /* devfs */
3925 || sfs.f_type == 0x4006 /* fat */
3926 || sfs.f_type == 0x4d44 /* msdos */
3927 || sfs.f_type == 0xEF53 /* ext2/3 */
3928 || sfs.f_type == 0x72b6 /* jffs2 */
3929 || sfs.f_type == 0x858458f6 /* ramfs */
3930 || sfs.f_type == 0x5346544e /* ntfs */
3931 || sfs.f_type == 0x3153464a /* jfs */
3932 || sfs.f_type == 0x9123683e /* btrfs */
3933 || sfs.f_type == 0x52654973 /* reiser3 */
3934 || sfs.f_type == 0x01021994 /* tmpfs */
3935 || sfs.f_type == 0x58465342 /* xfs */))
3936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937 else
3938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 3939 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3940 else
3941 {
3942 /* can't use inotify, continue to stat */
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 3944
2434 /* monitor some parent directory for speedup hints */ 3945 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 3947 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 3949 {
2439 char path [4096]; 3950 char path [4096];
2440 strcpy (path, w->path); 3951 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 3957
2447 char *pend = strrchr (path, '/'); 3958 char *pend = strrchr (path, '/');
2448 3959
2449 if (!pend) 3960 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 3961 break;
2451 3962
2452 *pend = 0; 3963 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 3964 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 3965 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 3967 }
2457 } 3968 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 3969
2461 if (w->wd >= 0) 3970 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972
3973 /* now re-arm timer, if required */
3974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975 ev_timer_again (EV_A_ &w->timer);
3976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 3977}
2464 3978
2465static void noinline 3979static void noinline
2466infy_del (EV_P_ ev_stat *w) 3980infy_del (EV_P_ ev_stat *w)
2467{ 3981{
2470 3984
2471 if (wd < 0) 3985 if (wd < 0)
2472 return; 3986 return;
2473 3987
2474 w->wd = -2; 3988 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 3990 wlist_del (&fs_hash [slot].head, (WL)w);
2477 3991
2478 /* remove this watcher, if others are watching it, they will rearm */ 3992 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 3993 inotify_rm_watch (fs_fd, wd);
2480} 3994}
2481 3995
2482static void noinline 3996static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 3998{
2485 if (slot < 0) 3999 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 4000 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 4002 infy_wd (EV_A_ slot, wd, ev);
2489 else 4003 else
2490 { 4004 {
2491 WL w_; 4005 WL w_;
2492 4006
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 4008 {
2495 ev_stat *w = (ev_stat *)w_; 4009 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 4010 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 4011
2498 if (w->wd == wd || wd == -1) 4012 if (w->wd == wd || wd == -1)
2499 { 4013 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 4015 {
4016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 4017 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 4018 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 4019 }
2505 4020
2506 stat_timer_cb (EV_A_ &w->timer, 0); 4021 stat_timer_cb (EV_A_ &w->timer, 0);
2511 4026
2512static void 4027static void
2513infy_cb (EV_P_ ev_io *w, int revents) 4028infy_cb (EV_P_ ev_io *w, int revents)
2514{ 4029{
2515 char buf [EV_INOTIFY_BUFSIZE]; 4030 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 4031 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 4032 int len = read (fs_fd, buf, sizeof (buf));
2519 4033
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4034 for (ofs = 0; ofs < len; )
4035 {
4036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038 ofs += sizeof (struct inotify_event) + ev->len;
4039 }
2522} 4040}
2523 4041
2524void inline_size 4042inline_size void ecb_cold
4043ev_check_2625 (EV_P)
4044{
4045 /* kernels < 2.6.25 are borked
4046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047 */
4048 if (ev_linux_version () < 0x020619)
4049 return;
4050
4051 fs_2625 = 1;
4052}
4053
4054inline_size int
4055infy_newfd (void)
4056{
4057#if defined IN_CLOEXEC && defined IN_NONBLOCK
4058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059 if (fd >= 0)
4060 return fd;
4061#endif
4062 return inotify_init ();
4063}
4064
4065inline_size void
2525infy_init (EV_P) 4066infy_init (EV_P)
2526{ 4067{
2527 if (fs_fd != -2) 4068 if (fs_fd != -2)
2528 return; 4069 return;
2529 4070
4071 fs_fd = -1;
4072
4073 ev_check_2625 (EV_A);
4074
2530 fs_fd = inotify_init (); 4075 fs_fd = infy_newfd ();
2531 4076
2532 if (fs_fd >= 0) 4077 if (fs_fd >= 0)
2533 { 4078 {
4079 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 4081 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 4082 ev_io_start (EV_A_ &fs_w);
4083 ev_unref (EV_A);
2537 } 4084 }
2538} 4085}
2539 4086
2540void inline_size 4087inline_size void
2541infy_fork (EV_P) 4088infy_fork (EV_P)
2542{ 4089{
2543 int slot; 4090 int slot;
2544 4091
2545 if (fs_fd < 0) 4092 if (fs_fd < 0)
2546 return; 4093 return;
2547 4094
4095 ev_ref (EV_A);
4096 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 4097 close (fs_fd);
2549 fs_fd = inotify_init (); 4098 fs_fd = infy_newfd ();
2550 4099
4100 if (fs_fd >= 0)
4101 {
4102 fd_intern (fs_fd);
4103 ev_io_set (&fs_w, fs_fd, EV_READ);
4104 ev_io_start (EV_A_ &fs_w);
4105 ev_unref (EV_A);
4106 }
4107
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4108 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 4109 {
2553 WL w_ = fs_hash [slot].head; 4110 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 4111 fs_hash [slot].head = 0;
2555 4112
2556 while (w_) 4113 while (w_)
2561 w->wd = -1; 4118 w->wd = -1;
2562 4119
2563 if (fs_fd >= 0) 4120 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 4121 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 4122 else
4123 {
4124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 4126 ev_timer_again (EV_A_ &w->timer);
4127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128 }
2567 } 4129 }
2568
2569 } 4130 }
2570} 4131}
2571 4132
2572#endif 4133#endif
2573 4134
2576#else 4137#else
2577# define EV_LSTAT(p,b) lstat (p, b) 4138# define EV_LSTAT(p,b) lstat (p, b)
2578#endif 4139#endif
2579 4140
2580void 4141void
2581ev_stat_stat (EV_P_ ev_stat *w) 4142ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2582{ 4143{
2583 if (lstat (w->path, &w->attr) < 0) 4144 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0; 4145 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink) 4146 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1; 4147 w->attr.st_nlink = 1;
2589static void noinline 4150static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{ 4152{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593 4154
2594 /* we copy this here each the time so that */ 4155 ev_statdata prev = w->attr;
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w); 4156 ev_stat_stat (EV_A_ w);
2598 4157
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if ( 4159 if (
2601 w->prev.st_dev != w->attr.st_dev 4160 prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino 4161 || prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode 4162 || prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink 4163 || prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid 4164 || prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid 4165 || prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev 4166 || prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size 4167 || prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime 4168 || prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime 4169 || prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime 4170 || prev.st_ctime != w->attr.st_ctime
2612 ) { 4171 ) {
4172 /* we only update w->prev on actual differences */
4173 /* in case we test more often than invoke the callback, */
4174 /* to ensure that prev is always different to attr */
4175 w->prev = prev;
4176
2613 #if EV_USE_INOTIFY 4177 #if EV_USE_INOTIFY
4178 if (fs_fd >= 0)
4179 {
2614 infy_del (EV_A_ w); 4180 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w); 4181 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */ 4182 ev_stat_stat (EV_A_ w); /* avoid race... */
4183 }
2617 #endif 4184 #endif
2618 4185
2619 ev_feed_event (EV_A_ w, EV_STAT); 4186 ev_feed_event (EV_A_ w, EV_STAT);
2620 } 4187 }
2621} 4188}
2622 4189
2623void 4190void
2624ev_stat_start (EV_P_ ev_stat *w) 4191ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2625{ 4192{
2626 if (expect_false (ev_is_active (w))) 4193 if (expect_false (ev_is_active (w)))
2627 return; 4194 return;
2628 4195
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w); 4196 ev_stat_stat (EV_A_ w);
2634 4197
4198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2635 if (w->interval < MIN_STAT_INTERVAL) 4199 w->interval = MIN_STAT_INTERVAL;
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637 4200
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2639 ev_set_priority (&w->timer, ev_priority (w)); 4202 ev_set_priority (&w->timer, ev_priority (w));
2640 4203
2641#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2642 infy_init (EV_A); 4205 infy_init (EV_A);
2643 4206
2644 if (fs_fd >= 0) 4207 if (fs_fd >= 0)
2645 infy_add (EV_A_ w); 4208 infy_add (EV_A_ w);
2646 else 4209 else
2647#endif 4210#endif
4211 {
2648 ev_timer_start (EV_A_ &w->timer); 4212 ev_timer_again (EV_A_ &w->timer);
4213 ev_unref (EV_A);
4214 }
2649 4215
2650 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
2651 4217
2652 EV_FREQUENT_CHECK; 4218 EV_FREQUENT_CHECK;
2653} 4219}
2654 4220
2655void 4221void
2656ev_stat_stop (EV_P_ ev_stat *w) 4222ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2657{ 4223{
2658 clear_pending (EV_A_ (W)w); 4224 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4225 if (expect_false (!ev_is_active (w)))
2660 return; 4226 return;
2661 4227
2662 EV_FREQUENT_CHECK; 4228 EV_FREQUENT_CHECK;
2663 4229
2664#if EV_USE_INOTIFY 4230#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w); 4231 infy_del (EV_A_ w);
2666#endif 4232#endif
4233
4234 if (ev_is_active (&w->timer))
4235 {
4236 ev_ref (EV_A);
2667 ev_timer_stop (EV_A_ &w->timer); 4237 ev_timer_stop (EV_A_ &w->timer);
4238 }
2668 4239
2669 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
2670 4241
2671 EV_FREQUENT_CHECK; 4242 EV_FREQUENT_CHECK;
2672} 4243}
2673#endif 4244#endif
2674 4245
2675#if EV_IDLE_ENABLE 4246#if EV_IDLE_ENABLE
2676void 4247void
2677ev_idle_start (EV_P_ ev_idle *w) 4248ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2678{ 4249{
2679 if (expect_false (ev_is_active (w))) 4250 if (expect_false (ev_is_active (w)))
2680 return; 4251 return;
2681 4252
2682 pri_adjust (EV_A_ (W)w); 4253 pri_adjust (EV_A_ (W)w);
2695 4266
2696 EV_FREQUENT_CHECK; 4267 EV_FREQUENT_CHECK;
2697} 4268}
2698 4269
2699void 4270void
2700ev_idle_stop (EV_P_ ev_idle *w) 4271ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2701{ 4272{
2702 clear_pending (EV_A_ (W)w); 4273 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 4274 if (expect_false (!ev_is_active (w)))
2704 return; 4275 return;
2705 4276
2717 4288
2718 EV_FREQUENT_CHECK; 4289 EV_FREQUENT_CHECK;
2719} 4290}
2720#endif 4291#endif
2721 4292
4293#if EV_PREPARE_ENABLE
2722void 4294void
2723ev_prepare_start (EV_P_ ev_prepare *w) 4295ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2724{ 4296{
2725 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
2726 return; 4298 return;
2727 4299
2728 EV_FREQUENT_CHECK; 4300 EV_FREQUENT_CHECK;
2733 4305
2734 EV_FREQUENT_CHECK; 4306 EV_FREQUENT_CHECK;
2735} 4307}
2736 4308
2737void 4309void
2738ev_prepare_stop (EV_P_ ev_prepare *w) 4310ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2739{ 4311{
2740 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
2742 return; 4314 return;
2743 4315
2752 4324
2753 ev_stop (EV_A_ (W)w); 4325 ev_stop (EV_A_ (W)w);
2754 4326
2755 EV_FREQUENT_CHECK; 4327 EV_FREQUENT_CHECK;
2756} 4328}
4329#endif
2757 4330
4331#if EV_CHECK_ENABLE
2758void 4332void
2759ev_check_start (EV_P_ ev_check *w) 4333ev_check_start (EV_P_ ev_check *w) EV_THROW
2760{ 4334{
2761 if (expect_false (ev_is_active (w))) 4335 if (expect_false (ev_is_active (w)))
2762 return; 4336 return;
2763 4337
2764 EV_FREQUENT_CHECK; 4338 EV_FREQUENT_CHECK;
2769 4343
2770 EV_FREQUENT_CHECK; 4344 EV_FREQUENT_CHECK;
2771} 4345}
2772 4346
2773void 4347void
2774ev_check_stop (EV_P_ ev_check *w) 4348ev_check_stop (EV_P_ ev_check *w) EV_THROW
2775{ 4349{
2776 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2778 return; 4352 return;
2779 4353
2788 4362
2789 ev_stop (EV_A_ (W)w); 4363 ev_stop (EV_A_ (W)w);
2790 4364
2791 EV_FREQUENT_CHECK; 4365 EV_FREQUENT_CHECK;
2792} 4366}
4367#endif
2793 4368
2794#if EV_EMBED_ENABLE 4369#if EV_EMBED_ENABLE
2795void noinline 4370void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w) 4371ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2797{ 4372{
2798 ev_loop (w->other, EVLOOP_NONBLOCK); 4373 ev_run (w->other, EVRUN_NOWAIT);
2799} 4374}
2800 4375
2801static void 4376static void
2802embed_io_cb (EV_P_ ev_io *io, int revents) 4377embed_io_cb (EV_P_ ev_io *io, int revents)
2803{ 4378{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4379 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805 4380
2806 if (ev_cb (w)) 4381 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4382 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else 4383 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK); 4384 ev_run (w->other, EVRUN_NOWAIT);
2810} 4385}
2811 4386
2812static void 4387static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4388embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{ 4389{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4390 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816 4391
2817 { 4392 {
2818 struct ev_loop *loop = w->other; 4393 EV_P = w->other;
2819 4394
2820 while (fdchangecnt) 4395 while (fdchangecnt)
2821 { 4396 {
2822 fd_reify (EV_A); 4397 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4398 ev_run (EV_A_ EVRUN_NOWAIT);
2824 } 4399 }
2825 } 4400 }
4401}
4402
4403static void
4404embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405{
4406 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407
4408 ev_embed_stop (EV_A_ w);
4409
4410 {
4411 EV_P = w->other;
4412
4413 ev_loop_fork (EV_A);
4414 ev_run (EV_A_ EVRUN_NOWAIT);
4415 }
4416
4417 ev_embed_start (EV_A_ w);
2826} 4418}
2827 4419
2828#if 0 4420#if 0
2829static void 4421static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4422embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832 ev_idle_stop (EV_A_ idle); 4424 ev_idle_stop (EV_A_ idle);
2833} 4425}
2834#endif 4426#endif
2835 4427
2836void 4428void
2837ev_embed_start (EV_P_ ev_embed *w) 4429ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2838{ 4430{
2839 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
2840 return; 4432 return;
2841 4433
2842 { 4434 {
2843 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4436 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4437 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 } 4438 }
2847 4439
2848 EV_FREQUENT_CHECK; 4440 EV_FREQUENT_CHECK;
2849 4441
2852 4444
2853 ev_prepare_init (&w->prepare, embed_prepare_cb); 4445 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI); 4446 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare); 4447 ev_prepare_start (EV_A_ &w->prepare);
2856 4448
4449 ev_fork_init (&w->fork, embed_fork_cb);
4450 ev_fork_start (EV_A_ &w->fork);
4451
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4452 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858 4453
2859 ev_start (EV_A_ (W)w, 1); 4454 ev_start (EV_A_ (W)w, 1);
2860 4455
2861 EV_FREQUENT_CHECK; 4456 EV_FREQUENT_CHECK;
2862} 4457}
2863 4458
2864void 4459void
2865ev_embed_stop (EV_P_ ev_embed *w) 4460ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2866{ 4461{
2867 clear_pending (EV_A_ (W)w); 4462 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w))) 4463 if (expect_false (!ev_is_active (w)))
2869 return; 4464 return;
2870 4465
2871 EV_FREQUENT_CHECK; 4466 EV_FREQUENT_CHECK;
2872 4467
2873 ev_io_stop (EV_A_ &w->io); 4468 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare); 4469 ev_prepare_stop (EV_A_ &w->prepare);
4470 ev_fork_stop (EV_A_ &w->fork);
2875 4471
2876 ev_stop (EV_A_ (W)w); 4472 ev_stop (EV_A_ (W)w);
2877 4473
2878 EV_FREQUENT_CHECK; 4474 EV_FREQUENT_CHECK;
2879} 4475}
2880#endif 4476#endif
2881 4477
2882#if EV_FORK_ENABLE 4478#if EV_FORK_ENABLE
2883void 4479void
2884ev_fork_start (EV_P_ ev_fork *w) 4480ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2885{ 4481{
2886 if (expect_false (ev_is_active (w))) 4482 if (expect_false (ev_is_active (w)))
2887 return; 4483 return;
2888 4484
2889 EV_FREQUENT_CHECK; 4485 EV_FREQUENT_CHECK;
2894 4490
2895 EV_FREQUENT_CHECK; 4491 EV_FREQUENT_CHECK;
2896} 4492}
2897 4493
2898void 4494void
2899ev_fork_stop (EV_P_ ev_fork *w) 4495ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2900{ 4496{
2901 clear_pending (EV_A_ (W)w); 4497 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w))) 4498 if (expect_false (!ev_is_active (w)))
2903 return; 4499 return;
2904 4500
2915 4511
2916 EV_FREQUENT_CHECK; 4512 EV_FREQUENT_CHECK;
2917} 4513}
2918#endif 4514#endif
2919 4515
4516#if EV_CLEANUP_ENABLE
4517void
4518ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519{
4520 if (expect_false (ev_is_active (w)))
4521 return;
4522
4523 EV_FREQUENT_CHECK;
4524
4525 ev_start (EV_A_ (W)w, ++cleanupcnt);
4526 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527 cleanups [cleanupcnt - 1] = w;
4528
4529 /* cleanup watchers should never keep a refcount on the loop */
4530 ev_unref (EV_A);
4531 EV_FREQUENT_CHECK;
4532}
4533
4534void
4535ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536{
4537 clear_pending (EV_A_ (W)w);
4538 if (expect_false (!ev_is_active (w)))
4539 return;
4540
4541 EV_FREQUENT_CHECK;
4542 ev_ref (EV_A);
4543
4544 {
4545 int active = ev_active (w);
4546
4547 cleanups [active - 1] = cleanups [--cleanupcnt];
4548 ev_active (cleanups [active - 1]) = active;
4549 }
4550
4551 ev_stop (EV_A_ (W)w);
4552
4553 EV_FREQUENT_CHECK;
4554}
4555#endif
4556
2920#if EV_ASYNC_ENABLE 4557#if EV_ASYNC_ENABLE
2921void 4558void
2922ev_async_start (EV_P_ ev_async *w) 4559ev_async_start (EV_P_ ev_async *w) EV_THROW
2923{ 4560{
2924 if (expect_false (ev_is_active (w))) 4561 if (expect_false (ev_is_active (w)))
2925 return; 4562 return;
4563
4564 w->sent = 0;
2926 4565
2927 evpipe_init (EV_A); 4566 evpipe_init (EV_A);
2928 4567
2929 EV_FREQUENT_CHECK; 4568 EV_FREQUENT_CHECK;
2930 4569
2934 4573
2935 EV_FREQUENT_CHECK; 4574 EV_FREQUENT_CHECK;
2936} 4575}
2937 4576
2938void 4577void
2939ev_async_stop (EV_P_ ev_async *w) 4578ev_async_stop (EV_P_ ev_async *w) EV_THROW
2940{ 4579{
2941 clear_pending (EV_A_ (W)w); 4580 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w))) 4581 if (expect_false (!ev_is_active (w)))
2943 return; 4582 return;
2944 4583
2955 4594
2956 EV_FREQUENT_CHECK; 4595 EV_FREQUENT_CHECK;
2957} 4596}
2958 4597
2959void 4598void
2960ev_async_send (EV_P_ ev_async *w) 4599ev_async_send (EV_P_ ev_async *w) EV_THROW
2961{ 4600{
2962 w->sent = 1; 4601 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync); 4602 evpipe_write (EV_A_ &async_pending);
2964} 4603}
2965#endif 4604#endif
2966 4605
2967/*****************************************************************************/ 4606/*****************************************************************************/
2968 4607
2978once_cb (EV_P_ struct ev_once *once, int revents) 4617once_cb (EV_P_ struct ev_once *once, int revents)
2979{ 4618{
2980 void (*cb)(int revents, void *arg) = once->cb; 4619 void (*cb)(int revents, void *arg) = once->cb;
2981 void *arg = once->arg; 4620 void *arg = once->arg;
2982 4621
2983 ev_io_stop (EV_A_ &once->io); 4622 ev_io_stop (EV_A_ &once->io);
2984 ev_timer_stop (EV_A_ &once->to); 4623 ev_timer_stop (EV_A_ &once->to);
2985 ev_free (once); 4624 ev_free (once);
2986 4625
2987 cb (revents, arg); 4626 cb (revents, arg);
2988} 4627}
2989 4628
2990static void 4629static void
2991once_cb_io (EV_P_ ev_io *w, int revents) 4630once_cb_io (EV_P_ ev_io *w, int revents)
2992{ 4631{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633
4634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2994} 4635}
2995 4636
2996static void 4637static void
2997once_cb_to (EV_P_ ev_timer *w, int revents) 4638once_cb_to (EV_P_ ev_timer *w, int revents)
2998{ 4639{
2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4640 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641
4642 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3000} 4643}
3001 4644
3002void 4645void
3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4646ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3004{ 4647{
3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4648 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3006 4649
3007 if (expect_false (!once)) 4650 if (expect_false (!once))
3008 { 4651 {
3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4652 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3010 return; 4653 return;
3011 } 4654 }
3012 4655
3013 once->cb = cb; 4656 once->cb = cb;
3014 once->arg = arg; 4657 once->arg = arg;
3026 ev_timer_set (&once->to, timeout, 0.); 4669 ev_timer_set (&once->to, timeout, 0.);
3027 ev_timer_start (EV_A_ &once->to); 4670 ev_timer_start (EV_A_ &once->to);
3028 } 4671 }
3029} 4672}
3030 4673
4674/*****************************************************************************/
4675
4676#if EV_WALK_ENABLE
4677void ecb_cold
4678ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679{
4680 int i, j;
4681 ev_watcher_list *wl, *wn;
4682
4683 if (types & (EV_IO | EV_EMBED))
4684 for (i = 0; i < anfdmax; ++i)
4685 for (wl = anfds [i].head; wl; )
4686 {
4687 wn = wl->next;
4688
4689#if EV_EMBED_ENABLE
4690 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691 {
4692 if (types & EV_EMBED)
4693 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694 }
4695 else
4696#endif
4697#if EV_USE_INOTIFY
4698 if (ev_cb ((ev_io *)wl) == infy_cb)
4699 ;
4700 else
4701#endif
4702 if ((ev_io *)wl != &pipe_w)
4703 if (types & EV_IO)
4704 cb (EV_A_ EV_IO, wl);
4705
4706 wl = wn;
4707 }
4708
4709 if (types & (EV_TIMER | EV_STAT))
4710 for (i = timercnt + HEAP0; i-- > HEAP0; )
4711#if EV_STAT_ENABLE
4712 /*TODO: timer is not always active*/
4713 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714 {
4715 if (types & EV_STAT)
4716 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717 }
4718 else
4719#endif
4720 if (types & EV_TIMER)
4721 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722
4723#if EV_PERIODIC_ENABLE
4724 if (types & EV_PERIODIC)
4725 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727#endif
4728
4729#if EV_IDLE_ENABLE
4730 if (types & EV_IDLE)
4731 for (j = NUMPRI; j--; )
4732 for (i = idlecnt [j]; i--; )
4733 cb (EV_A_ EV_IDLE, idles [j][i]);
4734#endif
4735
4736#if EV_FORK_ENABLE
4737 if (types & EV_FORK)
4738 for (i = forkcnt; i--; )
4739 if (ev_cb (forks [i]) != embed_fork_cb)
4740 cb (EV_A_ EV_FORK, forks [i]);
4741#endif
4742
4743#if EV_ASYNC_ENABLE
4744 if (types & EV_ASYNC)
4745 for (i = asynccnt; i--; )
4746 cb (EV_A_ EV_ASYNC, asyncs [i]);
4747#endif
4748
4749#if EV_PREPARE_ENABLE
4750 if (types & EV_PREPARE)
4751 for (i = preparecnt; i--; )
4752# if EV_EMBED_ENABLE
4753 if (ev_cb (prepares [i]) != embed_prepare_cb)
4754# endif
4755 cb (EV_A_ EV_PREPARE, prepares [i]);
4756#endif
4757
4758#if EV_CHECK_ENABLE
4759 if (types & EV_CHECK)
4760 for (i = checkcnt; i--; )
4761 cb (EV_A_ EV_CHECK, checks [i]);
4762#endif
4763
4764#if EV_SIGNAL_ENABLE
4765 if (types & EV_SIGNAL)
4766 for (i = 0; i < EV_NSIG - 1; ++i)
4767 for (wl = signals [i].head; wl; )
4768 {
4769 wn = wl->next;
4770 cb (EV_A_ EV_SIGNAL, wl);
4771 wl = wn;
4772 }
4773#endif
4774
4775#if EV_CHILD_ENABLE
4776 if (types & EV_CHILD)
4777 for (i = (EV_PID_HASHSIZE); i--; )
4778 for (wl = childs [i]; wl; )
4779 {
4780 wn = wl->next;
4781 cb (EV_A_ EV_CHILD, wl);
4782 wl = wn;
4783 }
4784#endif
4785/* EV_STAT 0x00001000 /* stat data changed */
4786/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4787}
4788#endif
4789
3031#if EV_MULTIPLICITY 4790#if EV_MULTIPLICITY
3032 #include "ev_wrap.h" 4791 #include "ev_wrap.h"
3033#endif 4792#endif
3034 4793
3035#ifdef __cplusplus
3036}
3037#endif
3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines