ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC vs.
Revision 1.469 by root, Fri Sep 5 16:21:19 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
168#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 264# else
172# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
173# endif 266# endif
174#endif 267#endif
175 268
176#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 271#endif
179 272
180#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 276# else
184# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
185# endif 278# endif
186#endif 279#endif
187 280
188#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 283#endif
191 284
192#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
193# ifdef _WIN32 286# ifdef _WIN32
194# define EV_USE_POLL 0 287# define EV_USE_POLL 0
195# else 288# else
196# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 290# endif
198#endif 291#endif
199 292
200#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 296# else
204# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
205# endif 298# endif
206#endif 299#endif
207 300
213# define EV_USE_PORT 0 306# define EV_USE_PORT 0
214#endif 307#endif
215 308
216#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 312# else
220# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
221# endif 314# endif
222#endif 315#endif
223 316
224#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 319#endif
231 320
232#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 323#endif
239 324
240#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 328# else
244# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
245# endif 338# endif
246#endif 339#endif
247 340
248#if 0 /* debugging */ 341#if 0 /* debugging */
249# define EV_VERIFY 3 342# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
252#endif 345#endif
253 346
254#ifndef EV_VERIFY 347#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 349#endif
257 350
258#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 353#endif
261 354
262#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
264#endif 387#endif
265 388
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 390
268#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
279# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
281#endif 404#endif
282 405
283#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 409# include <sys/select.h>
286# endif 410# endif
287#endif 411#endif
288 412
289#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
290# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
291#endif 420# endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif 421#endif
296 422
297#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 425# include <stdint.h>
300# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
301extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
302# endif 428# endif
303int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 430# ifdef O_CLOEXEC
305} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
306# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
307#endif 459#endif
308 460
309/**/ 461/**/
310 462
311#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 465#else
314# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
315#endif 467#endif
316 468
317/* 469/*
318 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 472 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 475
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 537 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
334#else 553#else
335# define expect(expr,value) (expr) 554 #include <inttypes.h>
336# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
338# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
339# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
340#endif 568 #endif
569#endif
341 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
344#define inline_size static inline 1318#define inline_size ecb_inline
345 1319
346#if EV_MINIMAL 1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
347# define inline_speed static noinline 1323# define inline_speed static noinline
1324#endif
1325
1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
348#else 1330#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
354 1333
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 1335#define EMPTY2(a,b) /* used to suppress some warnings */
357 1336
358typedef ev_watcher *W; 1337typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 1339typedef ev_watcher_time *WT;
361 1340
362#define ev_active(w) ((W)(w))->active 1341#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 1342#define ev_at(w) ((WT)(w))->at
364 1343
1344#if EV_USE_REALTIME
1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346/* giving it a reasonably high chance of working on typical architectures */
1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348#endif
1349
365#if EV_USE_MONOTONIC 1350#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352#endif
1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1362#endif
370 1363
371#ifdef _WIN32 1364#ifdef _WIN32
372# include "ev_win32.c" 1365# include "ev_win32.c"
373#endif 1366#endif
374 1367
375/*****************************************************************************/ 1368/*****************************************************************************/
376 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
377static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
378 1469
379void 1470void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
381{ 1472{
382 syserr_cb = cb; 1473 syserr_cb = cb;
383} 1474}
384 1475
385static void noinline 1476static void noinline ecb_cold
386syserr (const char *msg) 1477ev_syserr (const char *msg)
387{ 1478{
388 if (!msg) 1479 if (!msg)
389 msg = "(libev) system error"; 1480 msg = "(libev) system error";
390 1481
391 if (syserr_cb) 1482 if (syserr_cb)
392 syserr_cb (msg); 1483 syserr_cb (msg);
393 else 1484 else
394 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
395 perror (msg); 1492 perror (msg);
1493#endif
396 abort (); 1494 abort ();
397 } 1495 }
398} 1496}
399 1497
400static void * 1498static void *
401ev_realloc_emul (void *ptr, long size) 1499ev_realloc_emul (void *ptr, long size) EV_THROW
402{ 1500{
403 /* some systems, notably openbsd and darwin, fail to properly 1501 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1502 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
406 */ 1506 */
407 1507
408 if (size) 1508 if (size)
409 return realloc (ptr, size); 1509 return realloc (ptr, size);
410 1510
411 free (ptr); 1511 free (ptr);
412 return 0; 1512 return 0;
413} 1513}
414 1514
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1516
417void 1517void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
419{ 1519{
420 alloc = cb; 1520 alloc = cb;
421} 1521}
422 1522
423inline_speed void * 1523inline_speed void *
425{ 1525{
426 ptr = alloc (ptr, size); 1526 ptr = alloc (ptr, size);
427 1527
428 if (!ptr && size) 1528 if (!ptr && size)
429 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
431 abort (); 1535 abort ();
432 } 1536 }
433 1537
434 return ptr; 1538 return ptr;
435} 1539}
437#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1543
440/*****************************************************************************/ 1544/*****************************************************************************/
441 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
442typedef struct 1550typedef struct
443{ 1551{
444 WL head; 1552 WL head;
445 unsigned char events; 1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1556 unsigned char unused;
1557#if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559#endif
447#if EV_SELECT_IS_WINSOCKET 1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1561 SOCKET handle;
449#endif 1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
450} ANFD; 1566} ANFD;
451 1567
1568/* stores the pending event set for a given watcher */
452typedef struct 1569typedef struct
453{ 1570{
454 W w; 1571 W w;
455 int events; 1572 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1573} ANPENDING;
457 1574
458#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1576/* hash table entry per inotify-id */
460typedef struct 1577typedef struct
463} ANFS; 1580} ANFS;
464#endif 1581#endif
465 1582
466/* Heap Entry */ 1583/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
468 typedef struct { 1586 typedef struct {
469 ev_tstamp at; 1587 ev_tstamp at;
470 WT w; 1588 WT w;
471 } ANHE; 1589 } ANHE;
472 1590
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1594#else
1595 /* a heap element */
477 typedef WT ANHE; 1596 typedef WT ANHE;
478 1597
479 #define ANHE_w(he) (he) 1598 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1599 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1600 #define ANHE_at_cache(he)
492 #undef VAR 1611 #undef VAR
493 }; 1612 };
494 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
495 1614
496 static struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1617
499#else 1618#else
500 1619
501 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1622 #include "ev_vars.h"
504 #undef VAR 1623 #undef VAR
505 1624
506 static int ev_default_loop_ptr; 1625 static int ev_default_loop_ptr;
507 1626
508#endif 1627#endif
509 1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
1640
510/*****************************************************************************/ 1641/*****************************************************************************/
511 1642
1643#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1644ev_tstamp
513ev_time (void) 1645ev_time (void) EV_THROW
514{ 1646{
515#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
516 struct timespec ts; 1650 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1651 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1653 }
1654#endif
1655
520 struct timeval tv; 1656 struct timeval tv;
521 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1659}
1660#endif
525 1661
526ev_tstamp inline_size 1662inline_size ev_tstamp
527get_clock (void) 1663get_clock (void)
528{ 1664{
529#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
531 { 1667 {
538 return ev_time (); 1674 return ev_time ();
539} 1675}
540 1676
541#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
542ev_tstamp 1678ev_tstamp
543ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
544{ 1680{
545 return ev_rt_now; 1681 return ev_rt_now;
546} 1682}
547#endif 1683#endif
548 1684
549void 1685void
550ev_sleep (ev_tstamp delay) 1686ev_sleep (ev_tstamp delay) EV_THROW
551{ 1687{
552 if (delay > 0.) 1688 if (delay > 0.)
553 { 1689 {
554#if EV_USE_NANOSLEEP 1690#if EV_USE_NANOSLEEP
555 struct timespec ts; 1691 struct timespec ts;
556 1692
557 ts.tv_sec = (time_t)delay; 1693 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1694 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1695#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1696 Sleep ((unsigned long)(delay * 1e3));
563#else 1697#else
564 struct timeval tv; 1698 struct timeval tv;
565 1699
566 tv.tv_sec = (time_t)delay; 1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1701 /* something not guaranteed by newer posix versions, but guaranteed */
568 1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1704 select (0, 0, 0, 0, &tv);
570#endif 1705#endif
571 } 1706 }
572} 1707}
573 1708
574/*****************************************************************************/ 1709/*****************************************************************************/
575 1710
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1712
578int inline_size 1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
579array_nextsize (int elem, int cur, int cnt) 1716array_nextsize (int elem, int cur, int cnt)
580{ 1717{
581 int ncur = cur + 1; 1718 int ncur = cur + 1;
582 1719
583 do 1720 do
584 ncur <<= 1; 1721 ncur <<= 1;
585 while (cnt > ncur); 1722 while (cnt > ncur);
586 1723
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1726 {
590 ncur *= elem; 1727 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1729 ncur = ncur - sizeof (void *) * 4;
594 } 1731 }
595 1732
596 return ncur; 1733 return ncur;
597} 1734}
598 1735
599static noinline void * 1736static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1737array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1738{
602 *cur = array_nextsize (elem, *cur, cnt); 1739 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1740 return ev_realloc (base, elem * *cur);
604} 1741}
1742
1743#define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1745
606#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1747 if (expect_false ((cnt) > (cur))) \
608 { \ 1748 { \
609 int ocur_ = (cur); \ 1749 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1750 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1753 }
614 1754
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1762 }
623#endif 1763#endif
624 1764
625#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1767
628/*****************************************************************************/ 1768/*****************************************************************************/
629 1769
1770/* dummy callback for pending events */
1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
1773{
1774}
1775
630void noinline 1776void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1778{
633 W w_ = (W)w; 1779 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1780 int pri = ABSPRI (w_);
635 1781
636 if (expect_false (w_->pending)) 1782 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1786 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1788 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1789 pendings [pri][w_->pending - 1].events = revents;
644 } 1790 }
645}
646 1791
647void inline_speed 1792 pendingpri = NUMPRI - 1;
1793}
1794
1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1812{
650 int i; 1813 int i;
651 1814
652 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
654} 1817}
655 1818
656/*****************************************************************************/ 1819/*****************************************************************************/
657 1820
658void inline_size 1821inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1823{
674 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
675 ev_io *w; 1825 ev_io *w;
676 1826
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1831 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
683 } 1833 }
684} 1834}
685 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
686void 1847void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1849{
689 if (fd >= 0 && fd < anfdmax) 1850 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
691} 1852}
692 1853
693void inline_size 1854/* make sure the external fd watch events are in-sync */
1855/* with the kernel/libev internal state */
1856inline_size void
694fd_reify (EV_P) 1857fd_reify (EV_P)
695{ 1858{
696 int i; 1859 int i;
1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
697 1885
698 for (i = 0; i < fdchangecnt; ++i) 1886 for (i = 0; i < fdchangecnt; ++i)
699 { 1887 {
700 int fd = fdchanges [i]; 1888 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1889 ANFD *anfd = anfds + fd;
702 ev_io *w; 1890 ev_io *w;
703 1891
704 unsigned char events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
705 1894
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1895 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1896
709#if EV_SELECT_IS_WINSOCKET 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1898 {
712 unsigned long arg; 1899 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1900
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1902 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1903
717 #endif 1904 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1905 o_reify = EV__IOFDSET; /* actually |= */
719 } 1906 }
720#endif
721 1907
722 { 1908 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1909 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1910 }
733 1911
734 fdchangecnt = 0; 1912 fdchangecnt = 0;
735} 1913}
736 1914
737void inline_size 1915/* something about the given fd changed */
1916inline_size void
738fd_change (EV_P_ int fd, int flags) 1917fd_change (EV_P_ int fd, int flags)
739{ 1918{
740 unsigned char reify = anfds [fd].reify; 1919 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1920 anfds [fd].reify |= flags;
742 1921
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
748 } 1927 }
749} 1928}
750 1929
751void inline_speed 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
753{ 1933{
754 ev_io *w; 1934 ev_io *w;
755 1935
756 while ((w = (ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 1940 }
761} 1941}
762 1942
763int inline_size 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
764fd_valid (int fd) 1945fd_valid (int fd)
765{ 1946{
766#ifdef _WIN32 1947#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 1949#else
769 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
770#endif 1951#endif
771} 1952}
772 1953
773/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
774static void noinline 1955static void noinline ecb_cold
775fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
776{ 1957{
777 int fd; 1958 int fd;
778 1959
779 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
781 if (!fd_valid (fd) && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
783} 1964}
784 1965
785/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 1967static void noinline ecb_cold
787fd_enomem (EV_P) 1968fd_enomem (EV_P)
788{ 1969{
789 int fd; 1970 int fd;
790 1971
791 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 1973 if (anfds [fd].events)
793 { 1974 {
794 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
795 return; 1976 break;
796 } 1977 }
797} 1978}
798 1979
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1981static void noinline
804 1985
805 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1987 if (anfds [fd].events)
807 { 1988 {
808 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
1990 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1992 }
811} 1993}
812 1994
1995/* used to prepare libev internal fd's */
1996/* this is not fork-safe */
1997inline_speed void
1998fd_intern (int fd)
1999{
2000#ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003#else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006#endif
2007}
2008
813/*****************************************************************************/ 2009/*****************************************************************************/
814 2010
815/* 2011/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 2012 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 2014 * the branching factor of the d-tree.
819 */ 2015 */
820 2016
821/* 2017/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 2028#define UPHEAP_DONE(p,k) ((p) == (k))
833 2029
834/* away from the root */ 2030/* away from the root */
835void inline_speed 2031inline_speed void
836downheap (ANHE *heap, int N, int k) 2032downheap (ANHE *heap, int N, int k)
837{ 2033{
838 ANHE he = heap [k]; 2034 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 2035 ANHE *E = heap + N + HEAP0;
840 2036
880#define HEAP0 1 2076#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 2077#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 2078#define UPHEAP_DONE(p,k) (!(p))
883 2079
884/* away from the root */ 2080/* away from the root */
885void inline_speed 2081inline_speed void
886downheap (ANHE *heap, int N, int k) 2082downheap (ANHE *heap, int N, int k)
887{ 2083{
888 ANHE he = heap [k]; 2084 ANHE he = heap [k];
889 2085
890 for (;;) 2086 for (;;)
891 { 2087 {
892 int c = k << 1; 2088 int c = k << 1;
893 2089
894 if (c > N + HEAP0 - 1) 2090 if (c >= N + HEAP0)
895 break; 2091 break;
896 2092
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 2094 ? 1 : 0;
899 2095
910 ev_active (ANHE_w (he)) = k; 2106 ev_active (ANHE_w (he)) = k;
911} 2107}
912#endif 2108#endif
913 2109
914/* towards the root */ 2110/* towards the root */
915void inline_speed 2111inline_speed void
916upheap (ANHE *heap, int k) 2112upheap (ANHE *heap, int k)
917{ 2113{
918 ANHE he = heap [k]; 2114 ANHE he = heap [k];
919 2115
920 for (;;) 2116 for (;;)
931 2127
932 heap [k] = he; 2128 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 2129 ev_active (ANHE_w (he)) = k;
934} 2130}
935 2131
936void inline_size 2132/* move an element suitably so it is in a correct place */
2133inline_size void
937adjustheap (ANHE *heap, int N, int k) 2134adjustheap (ANHE *heap, int N, int k)
938{ 2135{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 2137 upheap (heap, k);
941 else 2138 else
942 downheap (heap, N, k); 2139 downheap (heap, N, k);
943} 2140}
944 2141
945/* rebuild the heap: this function is used only once and executed rarely */ 2142/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 2143inline_size void
947reheap (ANHE *heap, int N) 2144reheap (ANHE *heap, int N)
948{ 2145{
949 int i; 2146 int i;
950 2147
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 2151 upheap (heap, i + HEAP0);
955} 2152}
956 2153
957/*****************************************************************************/ 2154/*****************************************************************************/
958 2155
2156/* associate signal watchers to a signal signal */
959typedef struct 2157typedef struct
960{ 2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
961 WL head; 2163 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 2164} ANSIG;
964 2165
965static ANSIG *signals; 2166static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 2167
982/*****************************************************************************/ 2168/*****************************************************************************/
983 2169
984void inline_speed 2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 2171
996static void noinline 2172static void noinline ecb_cold
997evpipe_init (EV_P) 2173evpipe_init (EV_P)
998{ 2174{
999 if (!ev_is_active (&pipeev)) 2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
1000 { 2214 }
2215}
2216
2217inline_speed void
2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219{
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
1001#if EV_USE_EVENTFD 2241#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0) 2242 if (evpipe [0] < 0)
1003 { 2243 {
1004 evpipe [0] = -1; 2244 uint64_t counter = 1;
1005 fd_intern (evfd); 2245 write (evpipe [1], &counter, sizeof (uint64_t));
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 } 2246 }
1008 else 2247 else
1009#endif 2248#endif
1010 { 2249 {
1011 while (pipe (evpipe)) 2250#ifdef _WIN32
1012 syserr ("(libev) error creating signal/async pipe"); 2251 WSABUF buf;
1013 2252 DWORD sent;
1014 fd_intern (evpipe [0]); 2253 buf.buf = &buf;
1015 fd_intern (evpipe [1]); 2254 buf.len = 1;
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
1017 } 2259 }
1018 2260
1019 ev_io_start (EV_A_ &pipeev); 2261 errno = old_errno;
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 { 2262 }
1029 int old_errno = errno; /* save errno because write might clobber it */ 2263}
1030 2264
1031 *flag = 1; 2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
2267static void
2268pipecb (EV_P_ ev_io *iow, int revents)
2269{
2270 int i;
1032 2271
2272 if (revents & EV_READ)
2273 {
1033#if EV_USE_EVENTFD 2274#if EV_USE_EVENTFD
1034 if (evfd >= 0) 2275 if (evpipe [0] < 0)
1035 { 2276 {
1036 uint64_t counter = 1; 2277 uint64_t counter;
1037 write (evfd, &counter, sizeof (uint64_t)); 2278 read (evpipe [1], &counter, sizeof (uint64_t));
1038 } 2279 }
1039 else 2280 else
1040#endif 2281#endif
1041 write (evpipe [1], &old_errno, 1); 2282 {
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy; 2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
1060 read (evpipe [0], &dummy, 1); 2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
2295 }
2296
2297 pipe_write_skipped = 0;
2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
1061 } 2303 {
2304 sig_pending = 0;
1062 2305
1063 if (gotsig && ev_is_default_loop (EV_A)) 2306 ECB_MEMORY_FENCE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 2307
1068 for (signum = signalmax; signum--; ) 2308 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 2309 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 2310 ev_feed_signal_event (EV_A_ i + 1);
1071 } 2311 }
2312#endif
1072 2313
1073#if EV_ASYNC_ENABLE 2314#if EV_ASYNC_ENABLE
1074 if (gotasync) 2315 if (async_pending)
1075 { 2316 {
1076 int i; 2317 async_pending = 0;
1077 gotasync = 0; 2318
2319 ECB_MEMORY_FENCE;
1078 2320
1079 for (i = asynccnt; i--; ) 2321 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 2322 if (asyncs [i]->sent)
1081 { 2323 {
1082 asyncs [i]->sent = 0; 2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 } 2327 }
1085 } 2328 }
1086#endif 2329#endif
1087} 2330}
1088 2331
1089/*****************************************************************************/ 2332/*****************************************************************************/
1090 2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348}
2349
1091static void 2350static void
1092ev_sighandler (int signum) 2351ev_sighandler (int signum)
1093{ 2352{
2353#ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355#endif
2356
2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362{
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
1094#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 2371 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2373
1098#if _WIN32 2374 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2375 return;
2376#endif
1119 2377
1120 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
1121 2380
1122 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2383}
1125 2384
2385#if EV_USE_SIGNALFD
2386static void
2387sigfdcb (EV_P_ ev_io *iow, int revents)
2388{
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402}
2403#endif
2404
2405#endif
2406
1126/*****************************************************************************/ 2407/*****************************************************************************/
1127 2408
2409#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2410static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2411
1132static ev_signal childev; 2412static ev_signal childev;
1133 2413
1134#ifndef WIFCONTINUED 2414#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2415# define WIFCONTINUED(status) 0
1136#endif 2416#endif
1137 2417
1138void inline_speed 2418/* handle a single child status event */
2419inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2420child_reap (EV_P_ int chain, int pid, int status)
1140{ 2421{
1141 ev_child *w; 2422 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2424
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2426 {
1146 if ((w->pid == pid || !w->pid) 2427 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2428 && (!traced || (w->flags & 1)))
1148 { 2429 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2437
1157#ifndef WCONTINUED 2438#ifndef WCONTINUED
1158# define WCONTINUED 0 2439# define WCONTINUED 0
1159#endif 2440#endif
1160 2441
2442/* called on sigchld etc., calls waitpid */
1161static void 2443static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2445{
1164 int pid, status; 2446 int pid, status;
1165 2447
1173 /* make sure we are called again until all children have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2456 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2458
1177 child_reap (EV_A_ pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2460 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2462}
1181 2463
1182#endif 2464#endif
1183 2465
1184/*****************************************************************************/ 2466/*****************************************************************************/
1185 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
1186#if EV_USE_PORT 2471#if EV_USE_PORT
1187# include "ev_port.c" 2472# include "ev_port.c"
1188#endif 2473#endif
1189#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
1197#endif 2482#endif
1198#if EV_USE_SELECT 2483#if EV_USE_SELECT
1199# include "ev_select.c" 2484# include "ev_select.c"
1200#endif 2485#endif
1201 2486
1202int 2487int ecb_cold
1203ev_version_major (void) 2488ev_version_major (void) EV_THROW
1204{ 2489{
1205 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
1206} 2491}
1207 2492
1208int 2493int ecb_cold
1209ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
1210{ 2495{
1211 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
1212} 2497}
1213 2498
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2500int inline_size ecb_cold
1216enable_secure (void) 2501enable_secure (void)
1217{ 2502{
1218#ifdef _WIN32 2503#ifdef _WIN32
1219 return 0; 2504 return 0;
1220#else 2505#else
1221 return getuid () != geteuid () 2506 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2507 || getgid () != getegid ();
1223#endif 2508#endif
1224} 2509}
1225 2510
1226unsigned int 2511unsigned int ecb_cold
1227ev_supported_backends (void) 2512ev_supported_backends (void) EV_THROW
1228{ 2513{
1229 unsigned int flags = 0; 2514 unsigned int flags = 0;
1230 2515
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2521
1237 return flags; 2522 return flags;
1238} 2523}
1239 2524
1240unsigned int 2525unsigned int ecb_cold
1241ev_recommended_backends (void) 2526ev_recommended_backends (void) EV_THROW
1242{ 2527{
1243 unsigned int flags = ev_supported_backends (); 2528 unsigned int flags = ev_supported_backends ();
1244 2529
1245#ifndef __NetBSD__ 2530#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2531 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2532 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2533 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2534#endif
1250#ifdef __APPLE__ 2535#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2536 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2542#endif
1254 2543
1255 return flags; 2544 return flags;
1256} 2545}
1257 2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
1258unsigned int 2559unsigned int
1259ev_embeddable_backends (void) 2560ev_backend (EV_P) EV_THROW
1260{ 2561{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2562 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2563}
1269 2564
2565#if EV_FEATURE_API
1270unsigned int 2566unsigned int
1271ev_backend (EV_P) 2567ev_iteration (EV_P) EV_THROW
1272{ 2568{
1273 return backend; 2569 return loop_count;
1274} 2570}
1275 2571
1276unsigned int 2572unsigned int
1277ev_loop_count (EV_P) 2573ev_depth (EV_P) EV_THROW
1278{ 2574{
1279 return loop_count; 2575 return loop_depth;
1280} 2576}
1281 2577
1282void 2578void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2580{
1285 io_blocktime = interval; 2581 io_blocktime = interval;
1286} 2582}
1287 2583
1288void 2584void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2586{
1291 timeout_blocktime = interval; 2587 timeout_blocktime = interval;
1292} 2588}
1293 2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2617static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2618loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2619{
1297 if (!backend) 2620 if (!backend)
1298 { 2621 {
2622 origflags = flags;
2623
2624#if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632#endif
2633
1299#if EV_USE_MONOTONIC 2634#if EV_USE_MONOTONIC
2635 if (!have_monotonic)
1300 { 2636 {
1301 struct timespec ts; 2637 struct timespec ts;
2638
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2640 have_monotonic = 1;
1304 } 2641 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2642#endif
1320 2643
1321 /* pid check not overridable via env */ 2644 /* pid check not overridable via env */
1322#ifndef _WIN32 2645#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2646 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2650 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2651 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2652 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2653 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2654
1332 if (!(flags & 0x0000ffffU)) 2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
2681
2682 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2683 flags |= ev_recommended_backends ();
1334 2684
2685#if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
1335#if EV_USE_PORT 2688#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2690#endif
1338#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2699#endif
1347#if EV_USE_SELECT 2700#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2702#endif
1350 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2707 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
1353 } 2710 }
1354} 2711}
1355 2712
1356static void noinline 2713/* free up a loop structure */
2714void ecb_cold
1357loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
1358{ 2716{
1359 int i; 2717 int i;
1360 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
1361 if (ev_is_active (&pipeev)) 2742 if (ev_is_active (&pipe_w))
1362 { 2743 {
1363 ev_ref (EV_A); /* signal watcher */ 2744 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2745 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
1366#if EV_USE_EVENTFD 2751#if EV_USE_SIGNALFD
1367 if (evfd >= 0) 2752 if (ev_is_active (&sigfd_w))
1368 close (evfd); 2753 close (sigfd);
1369#endif 2754#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377 2755
1378#if EV_USE_INOTIFY 2756#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2757 if (fs_fd >= 0)
1380 close (fs_fd); 2758 close (fs_fd);
1381#endif 2759#endif
1382 2760
1383 if (backend_fd >= 0) 2761 if (backend_fd >= 0)
1384 close (backend_fd); 2762 close (backend_fd);
1385 2763
2764#if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
1386#if EV_USE_PORT 2767#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2769#endif
1389#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2786#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2787 array_free (idle, [i]);
1407#endif 2788#endif
1408 } 2789 }
1409 2790
1410 ev_free (anfds); anfdmax = 0; 2791 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2792
1412 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2795 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2796 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2797#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2798 array_free (periodic, EMPTY);
1417#endif 2799#endif
1418#if EV_FORK_ENABLE 2800#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2801 array_free (fork, EMPTY);
1420#endif 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
1421 array_free (prepare, EMPTY); 2806 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2807 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2808#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2809 array_free (async, EMPTY);
1425#endif 2810#endif
1426 2811
1427 backend = 0; 2812 backend = 0;
2813
2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
1428} 2822}
1429 2823
1430#if EV_USE_INOTIFY 2824#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2825inline_size void infy_fork (EV_P);
1432#endif 2826#endif
1433 2827
1434void inline_size 2828inline_size void
1435loop_fork (EV_P) 2829loop_fork (EV_P)
1436{ 2830{
1437#if EV_USE_PORT 2831#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2833#endif
1445#endif 2839#endif
1446#if EV_USE_INOTIFY 2840#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2841 infy_fork (EV_A);
1448#endif 2842#endif
1449 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1450 if (ev_is_active (&pipeev)) 2845 if (ev_is_active (&pipe_w))
1451 { 2846 {
1452 /* this "locks" the handlers against writing to the pipe */ 2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2848
1459 ev_ref (EV_A); 2849 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2850 ev_io_stop (EV_A_ &pipe_w);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466 2851
1467 if (evpipe [0] >= 0) 2852 if (evpipe [0] >= 0)
1468 { 2853 EV_WIN32_CLOSE_FD (evpipe [0]);
1469 close (evpipe [0]);
1470 close (evpipe [1]);
1471 }
1472 2854
1473 evpipe_init (EV_A); 2855 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2856 /* iterate over everything, in case we missed something before */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1476 } 2858 }
2859#endif
1477 2860
1478 postfork = 0; 2861 postfork = 0;
1479} 2862}
1480 2863
1481#if EV_MULTIPLICITY 2864#if EV_MULTIPLICITY
1482 2865
1483struct ev_loop * 2866struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2867ev_loop_new (unsigned int flags) EV_THROW
1485{ 2868{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2870
1488 memset (loop, 0, sizeof (struct ev_loop)); 2871 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2872 loop_init (EV_A_ flags);
1491 2873
1492 if (ev_backend (EV_A)) 2874 if (ev_backend (EV_A))
1493 return loop; 2875 return EV_A;
1494 2876
2877 ev_free (EV_A);
1495 return 0; 2878 return 0;
1496} 2879}
1497 2880
1498void 2881#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2882
1511#if EV_VERIFY 2883#if EV_VERIFY
1512void noinline 2884static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2885verify_watcher (EV_P_ W w)
1514{ 2886{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2888
1517 if (w->pending) 2889 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2891}
1520 2892
1521static void noinline 2893static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2894verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2895{
1524 int i; 2896 int i;
1525 2897
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2898 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2899 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2903
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2905 }
1534} 2906}
1535 2907
1536static void noinline 2908static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2909array_verify (EV_P_ W *ws, int cnt)
1538{ 2910{
1539 while (cnt--) 2911 while (cnt--)
1540 { 2912 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2914 verify_watcher (EV_A_ ws [cnt]);
1543 } 2915 }
1544} 2916}
1545#endif 2917#endif
1546 2918
1547void 2919#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
1549{ 2922{
1550#if EV_VERIFY 2923#if EV_VERIFY
1551 int i; 2924 int i;
1552 WL w; 2925 WL w, w2;
1553 2926
1554 assert (activecnt >= -1); 2927 assert (activecnt >= -1);
1555 2928
1556 assert (fdchangemax >= fdchangecnt); 2929 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2930 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2932
1560 assert (anfdmax >= 0); 2933 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
1562 for (w = anfds [i].head; w; w = w->next) 2938 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2939 {
1564 verify_watcher (EV_A_ (W)w); 2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 2950 }
2951 }
1568 2952
1569 assert (timermax >= timercnt); 2953 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 2954 verify_heap (EV_A_ timers, timercnt);
1571 2955
1572#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 2972 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 2973 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 2974#endif
1591 2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
1592#if EV_ASYNC_ENABLE 2981#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 2982 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 2984#endif
1596 2985
2986#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 2987 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
1599 2990
2991#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 2992 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
1602 2995
1603# if 0 2996# if 0
2997#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
1606# endif 3001# endif
1607#endif 3002#endif
1608} 3003}
1609 3004#endif
1610#endif /* multiplicity */
1611 3005
1612#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
1613struct ev_loop * 3007struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 3008#else
1616int 3009int
3010#endif
1617ev_default_loop (unsigned int flags) 3011ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 3012{
1620 if (!ev_default_loop_ptr) 3013 if (!ev_default_loop_ptr)
1621 { 3014 {
1622#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 3017#else
1625 ev_default_loop_ptr = 1; 3018 ev_default_loop_ptr = 1;
1626#endif 3019#endif
1627 3020
1628 loop_init (EV_A_ flags); 3021 loop_init (EV_A_ flags);
1629 3022
1630 if (ev_backend (EV_A)) 3023 if (ev_backend (EV_A))
1631 { 3024 {
1632#ifndef _WIN32 3025#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 3030#endif
1642 3035
1643 return ev_default_loop_ptr; 3036 return ev_default_loop_ptr;
1644} 3037}
1645 3038
1646void 3039void
1647ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
1648{ 3041{
1649#if EV_MULTIPLICITY 3042 postfork = 1;
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */
1670} 3043}
1671 3044
1672/*****************************************************************************/ 3045/*****************************************************************************/
1673 3046
1674void 3047void
1675ev_invoke (EV_P_ void *w, int revents) 3048ev_invoke (EV_P_ void *w, int revents)
1676{ 3049{
1677 EV_CB_INVOKE ((W)w, revents); 3050 EV_CB_INVOKE ((W)w, revents);
1678} 3051}
1679 3052
1680void inline_speed 3053unsigned int
1681call_pending (EV_P) 3054ev_pending_count (EV_P) EV_THROW
1682{ 3055{
1683 int pri; 3056 int pri;
3057 unsigned int count = 0;
1684 3058
1685 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063}
3064
3065void noinline
3066ev_invoke_pending (EV_P)
3067{
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
1686 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
1687 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689
1690 if (expect_true (p->w))
1691 { 3075 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1693 3077
1694 p->w->pending = 0; 3078 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 3079 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 3080 EV_FREQUENT_CHECK;
1697 } 3081 }
1698 } 3082 }
1699} 3083}
1700 3084
1701#if EV_IDLE_ENABLE 3085#if EV_IDLE_ENABLE
1702void inline_size 3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
1703idle_reify (EV_P) 3089idle_reify (EV_P)
1704{ 3090{
1705 if (expect_false (idleall)) 3091 if (expect_false (idleall))
1706 { 3092 {
1707 int pri; 3093 int pri;
1719 } 3105 }
1720 } 3106 }
1721} 3107}
1722#endif 3108#endif
1723 3109
1724void inline_size 3110/* make timers pending */
3111inline_size void
1725timers_reify (EV_P) 3112timers_reify (EV_P)
1726{ 3113{
1727 EV_FREQUENT_CHECK; 3114 EV_FREQUENT_CHECK;
1728 3115
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 3117 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3118 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
1738 ev_at (w) += w->repeat; 3127 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 3128 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 3129 ev_at (w) = mn_now;
1741 3130
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 3132
1744 ANHE_at_cache (timers [HEAP0]); 3133 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
1746 } 3141 }
1747 else 3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 3143
1750 EV_FREQUENT_CHECK; 3144 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 3145 }
1753} 3146}
1754 3147
1755#if EV_PERIODIC_ENABLE 3148#if EV_PERIODIC_ENABLE
1756void inline_size 3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
1757periodics_reify (EV_P) 3176periodics_reify (EV_P)
1758{ 3177{
1759 EV_FREQUENT_CHECK; 3178 EV_FREQUENT_CHECK;
1760 3179
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 3181 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3182 do
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 3192
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 3194
1774 ANHE_at_cache (periodics [HEAP0]); 3195 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
1776 } 3209 }
1777 else if (w->interval) 3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 3211
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3212 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 3213 }
1802} 3214}
1803 3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 3218static void noinline ecb_cold
1805periodics_reschedule (EV_P) 3219periodics_reschedule (EV_P)
1806{ 3220{
1807 int i; 3221 int i;
1808 3222
1809 /* adjust periodics after time jump */ 3223 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 3227
1814 if (w->reschedule_cb) 3228 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 3230 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3231 periodic_recalc (EV_A_ w);
1818 3232
1819 ANHE_at_cache (periodics [i]); 3233 ANHE_at_cache (periodics [i]);
1820 } 3234 }
1821 3235
1822 reheap (periodics, periodiccnt); 3236 reheap (periodics, periodiccnt);
1823} 3237}
1824#endif 3238#endif
1825 3239
1826void inline_speed 3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252}
3253
3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 3257time_update (EV_P_ ev_tstamp max_block)
1828{ 3258{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 3259#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 3260 if (expect_true (have_monotonic))
1833 { 3261 {
3262 int i;
1834 ev_tstamp odiff = rtmn_diff; 3263 ev_tstamp odiff = rtmn_diff;
1835 3264
1836 mn_now = get_clock (); 3265 mn_now = get_clock ();
1837 3266
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 3283 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 3284 * in the unlikely event of having been preempted here.
1856 */ 3285 */
1857 for (i = 4; --i; ) 3286 for (i = 4; --i; )
1858 { 3287 {
3288 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1860 3290
3291 diff = odiff - rtmn_diff;
3292
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 3294 return; /* all is well */
1863 3295
1864 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 3297 mn_now = get_clock ();
1866 now_floor = mn_now; 3298 now_floor = mn_now;
1867 } 3299 }
1868 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 3303# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 3304 periodics_reschedule (EV_A);
1871# endif 3305# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 3306 }
1875 else 3307 else
1876#endif 3308#endif
1877 { 3309 {
1878 ev_rt_now = ev_time (); 3310 ev_rt_now = ev_time ();
1879 3311
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 3316#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1884#endif 3318#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 3319 }
1893 3320
1894 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1895 } 3322 }
1896} 3323}
1897 3324
1898void 3325int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1914{ 3327{
3328#if EV_FEATURE_API
3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
1915 loop_done = EVUNLOOP_CANCEL; 3334 loop_done = EVBREAK_CANCEL;
1916 3335
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 3337
1919 do 3338 do
1920 { 3339 {
1921#if EV_VERIFY >= 2 3340#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 3341 ev_verify (EV_A);
1923#endif 3342#endif
1924 3343
1925#ifndef _WIN32 3344#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 3345 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 3346 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 3354 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 3355 if (expect_false (postfork))
1937 if (forkcnt) 3356 if (forkcnt)
1938 { 3357 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 3359 EV_INVOKE_PENDING;
1941 } 3360 }
1942#endif 3361#endif
1943 3362
3363#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1946 { 3366 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1949 } 3369 }
3370#endif
1950 3371
1951 if (expect_false (!activecnt)) 3372 if (expect_false (loop_done))
1952 break; 3373 break;
1953 3374
1954 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3376 if (expect_false (postfork))
1956 loop_fork (EV_A); 3377 loop_fork (EV_A);
1961 /* calculate blocking time */ 3382 /* calculate blocking time */
1962 { 3383 {
1963 ev_tstamp waittime = 0.; 3384 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3385 ev_tstamp sleeptime = 0.;
1965 3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3399 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
1972 3401
1973 if (timercnt) 3402 if (timercnt)
1974 { 3403 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
1977 } 3406 }
1978 3407
1979#if EV_PERIODIC_ENABLE 3408#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3409 if (periodiccnt)
1981 { 3410 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3412 if (waittime > to) waittime = to;
1984 } 3413 }
1985#endif 3414#endif
1986 3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3417 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3418 waittime = timeout_blocktime;
1989 3419
1990 sleeptime = waittime - backend_fudge; 3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
1991 3424
3425 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3426 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
1997 ev_sleep (sleeptime); 3435 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3436 waittime -= sleeptime;
3437 }
1999 } 3438 }
2000 } 3439 }
2001 3440
3441#if EV_FEATURE_API
2002 ++loop_count; 3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
2004 3457
2005 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3459 time_update (EV_A_ waittime + sleeptime);
2007 } 3460 }
2008 3461
2015#if EV_IDLE_ENABLE 3468#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3469 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3470 idle_reify (EV_A);
2018#endif 3471#endif
2019 3472
3473#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3475 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
2023 3478
2024 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
2025 } 3480 }
2026 while (expect_true ( 3481 while (expect_true (
2027 activecnt 3482 activecnt
2028 && !loop_done 3483 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3485 ));
2031 3486
2032 if (loop_done == EVUNLOOP_ONE) 3487 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
2034} 3495}
2035 3496
2036void 3497void
2037ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
2038{ 3499{
2039 loop_done = how; 3500 loop_done = how;
2040} 3501}
2041 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
2042/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
2043 3542
2044void inline_size 3543inline_size void
2045wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
2046{ 3545{
2047 elem->next = *head; 3546 elem->next = *head;
2048 *head = elem; 3547 *head = elem;
2049} 3548}
2050 3549
2051void inline_size 3550inline_size void
2052wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
2053{ 3552{
2054 while (*head) 3553 while (*head)
2055 { 3554 {
2056 if (*head == elem) 3555 if (expect_true (*head == elem))
2057 { 3556 {
2058 *head = elem->next; 3557 *head = elem->next;
2059 return; 3558 break;
2060 } 3559 }
2061 3560
2062 head = &(*head)->next; 3561 head = &(*head)->next;
2063 } 3562 }
2064} 3563}
2065 3564
2066void inline_speed 3565/* internal, faster, version of ev_clear_pending */
3566inline_speed void
2067clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
2068{ 3568{
2069 if (w->pending) 3569 if (w->pending)
2070 { 3570 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3572 w->pending = 0;
2073 } 3573 }
2074} 3574}
2075 3575
2076int 3576int
2077ev_clear_pending (EV_P_ void *w) 3577ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3578{
2079 W w_ = (W)w; 3579 W w_ = (W)w;
2080 int pending = w_->pending; 3580 int pending = w_->pending;
2081 3581
2082 if (expect_true (pending)) 3582 if (expect_true (pending))
2083 { 3583 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
2085 w_->pending = 0; 3586 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3587 return p->events;
2088 } 3588 }
2089 else 3589 else
2090 return 0; 3590 return 0;
2091} 3591}
2092 3592
2093void inline_size 3593inline_size void
2094pri_adjust (EV_P_ W w) 3594pri_adjust (EV_P_ W w)
2095{ 3595{
2096 int pri = w->priority; 3596 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3599 ev_set_priority (w, pri);
2100} 3600}
2101 3601
2102void inline_speed 3602inline_speed void
2103ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
2104{ 3604{
2105 pri_adjust (EV_A_ w); 3605 pri_adjust (EV_A_ w);
2106 w->active = active; 3606 w->active = active;
2107 ev_ref (EV_A); 3607 ev_ref (EV_A);
2108} 3608}
2109 3609
2110void inline_size 3610inline_size void
2111ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
2112{ 3612{
2113 ev_unref (EV_A); 3613 ev_unref (EV_A);
2114 w->active = 0; 3614 w->active = 0;
2115} 3615}
2116 3616
2117/*****************************************************************************/ 3617/*****************************************************************************/
2118 3618
2119void noinline 3619void noinline
2120ev_io_start (EV_P_ ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3621{
2122 int fd = w->fd; 3622 int fd = w->fd;
2123 3623
2124 if (expect_false (ev_is_active (w))) 3624 if (expect_false (ev_is_active (w)))
2125 return; 3625 return;
2126 3626
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3629
2129 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2130 3631
2131 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
2134 3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3640 w->events &= ~EV__IOFDSET;
2137 3641
2138 EV_FREQUENT_CHECK; 3642 EV_FREQUENT_CHECK;
2139} 3643}
2140 3644
2141void noinline 3645void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3647{
2144 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
2146 return; 3650 return;
2147 3651
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3653
2150 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2151 3655
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
2154 3658
2155 fd_change (EV_A_ w->fd, 1); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3660
2157 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
2158} 3662}
2159 3663
2160void noinline 3664void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3666{
2163 if (expect_false (ev_is_active (w))) 3667 if (expect_false (ev_is_active (w)))
2164 return; 3668 return;
2165 3669
2166 ev_at (w) += mn_now; 3670 ev_at (w) += mn_now;
2167 3671
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3673
2170 EV_FREQUENT_CHECK; 3674 EV_FREQUENT_CHECK;
2171 3675
2172 ++timercnt; 3676 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3680 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3681 upheap (timers, ev_active (w));
2178 3682
2179 EV_FREQUENT_CHECK; 3683 EV_FREQUENT_CHECK;
2180 3684
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3686}
2183 3687
2184void noinline 3688void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3690{
2187 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
2189 return; 3693 return;
2190 3694
2191 EV_FREQUENT_CHECK; 3695 EV_FREQUENT_CHECK;
2192 3696
2193 { 3697 {
2194 int active = ev_active (w); 3698 int active = ev_active (w);
2195 3699
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3701
2198 --timercnt; 3702 --timercnt;
2199 3703
2200 if (expect_true (active < timercnt + HEAP0)) 3704 if (expect_true (active < timercnt + HEAP0))
2201 { 3705 {
2202 timers [active] = timers [timercnt + HEAP0]; 3706 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3707 adjustheap (timers, timercnt, active);
2204 } 3708 }
2205 } 3709 }
2206 3710
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3711 ev_at (w) -= mn_now;
2210 3712
2211 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
2212} 3716}
2213 3717
2214void noinline 3718void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3720{
2217 EV_FREQUENT_CHECK; 3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
2218 3724
2219 if (ev_is_active (w)) 3725 if (ev_is_active (w))
2220 { 3726 {
2221 if (w->repeat) 3727 if (w->repeat)
2222 { 3728 {
2234 } 3740 }
2235 3741
2236 EV_FREQUENT_CHECK; 3742 EV_FREQUENT_CHECK;
2237} 3743}
2238 3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749}
3750
2239#if EV_PERIODIC_ENABLE 3751#if EV_PERIODIC_ENABLE
2240void noinline 3752void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3754{
2243 if (expect_false (ev_is_active (w))) 3755 if (expect_false (ev_is_active (w)))
2244 return; 3756 return;
2245 3757
2246 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3760 else if (w->interval)
2249 { 3761 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3764 }
2254 else 3765 else
2255 ev_at (w) = w->offset; 3766 ev_at (w) = w->offset;
2256 3767
2257 EV_FREQUENT_CHECK; 3768 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3774 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3775 upheap (periodics, ev_active (w));
2265 3776
2266 EV_FREQUENT_CHECK; 3777 EV_FREQUENT_CHECK;
2267 3778
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3780}
2270 3781
2271void noinline 3782void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3784{
2274 clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3786 if (expect_false (!ev_is_active (w)))
2276 return; 3787 return;
2277 3788
2278 EV_FREQUENT_CHECK; 3789 EV_FREQUENT_CHECK;
2279 3790
2280 { 3791 {
2281 int active = ev_active (w); 3792 int active = ev_active (w);
2282 3793
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3795
2285 --periodiccnt; 3796 --periodiccnt;
2286 3797
2287 if (expect_true (active < periodiccnt + HEAP0)) 3798 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3799 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3801 adjustheap (periodics, periodiccnt, active);
2291 } 3802 }
2292 } 3803 }
2293 3804
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
2297} 3808}
2298 3809
2299void noinline 3810void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3812{
2302 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
2305} 3816}
2307 3818
2308#ifndef SA_RESTART 3819#ifndef SA_RESTART
2309# define SA_RESTART 0 3820# define SA_RESTART 0
2310#endif 3821#endif
2311 3822
3823#if EV_SIGNAL_ENABLE
3824
2312void noinline 3825void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3827{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3828 if (expect_false (ev_is_active (w)))
2319 return; 3829 return;
2320 3830
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3832
2323 evpipe_init (EV_A); 3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3836
2325 EV_FREQUENT_CHECK; 3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
2326 3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
2327 { 3845 {
2328#ifndef _WIN32 3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3847 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3849
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3853
2336#ifndef _WIN32 3854 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3855
2338#endif 3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
2339 } 3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
2340 3872
2341 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3875
2344 if (!((WL)w)->next) 3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
2345 { 3880 {
2346#if _WIN32 3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
2347 signal (w->signum, ev_sighandler); 3884 signal (w->signum, ev_sighandler);
2348#else 3885# else
2349 struct sigaction sa; 3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
2350 sa.sa_handler = ev_sighandler; 3890 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3891 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
2354#endif 3901#endif
2355 } 3902 }
2356 3903
2357 EV_FREQUENT_CHECK; 3904 EV_FREQUENT_CHECK;
2358} 3905}
2359 3906
2360void noinline 3907void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3909{
2363 clear_pending (EV_A_ (W)w); 3910 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3911 if (expect_false (!ev_is_active (w)))
2365 return; 3912 return;
2366 3913
2368 3915
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3917 ev_stop (EV_A_ (W)w);
2371 3918
2372 if (!signals [w->signum - 1].head) 3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
2373 signal (w->signum, SIG_DFL); 3938 signal (w->signum, SIG_DFL);
3939 }
2374 3940
2375 EV_FREQUENT_CHECK; 3941 EV_FREQUENT_CHECK;
2376} 3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
2377 3947
2378void 3948void
2379ev_child_start (EV_P_ ev_child *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 3950{
2381#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3953#endif
2384 if (expect_false (ev_is_active (w))) 3954 if (expect_false (ev_is_active (w)))
2385 return; 3955 return;
2386 3956
2387 EV_FREQUENT_CHECK; 3957 EV_FREQUENT_CHECK;
2388 3958
2389 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3961
2392 EV_FREQUENT_CHECK; 3962 EV_FREQUENT_CHECK;
2393} 3963}
2394 3964
2395void 3965void
2396ev_child_stop (EV_P_ ev_child *w) 3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 3967{
2398 clear_pending (EV_A_ (W)w); 3968 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3969 if (expect_false (!ev_is_active (w)))
2400 return; 3970 return;
2401 3971
2402 EV_FREQUENT_CHECK; 3972 EV_FREQUENT_CHECK;
2403 3973
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3975 ev_stop (EV_A_ (W)w);
2406 3976
2407 EV_FREQUENT_CHECK; 3977 EV_FREQUENT_CHECK;
2408} 3978}
3979
3980#endif
2409 3981
2410#if EV_STAT_ENABLE 3982#if EV_STAT_ENABLE
2411 3983
2412# ifdef _WIN32 3984# ifdef _WIN32
2413# undef lstat 3985# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3986# define lstat(a,b) _stati64 (a,b)
2415# endif 3987# endif
2416 3988
2417#define DEF_STAT_INTERVAL 5.0074891 3989#define DEF_STAT_INTERVAL 5.0074891
3990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3991#define MIN_STAT_INTERVAL 0.1074891
2419 3992
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3994
2422#if EV_USE_INOTIFY 3995#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3999
2425static void noinline 4000static void noinline
2426infy_add (EV_P_ ev_stat *w) 4001infy_add (EV_P_ ev_stat *w)
2427{ 4002{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 4007
2430 if (w->wd < 0) 4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 4034 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4035 else
4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 4039
2434 /* monitor some parent directory for speedup hints */ 4040 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 4042 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 4044 {
2439 char path [4096]; 4045 char path [4096];
2440 strcpy (path, w->path); 4046 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 4052
2447 char *pend = strrchr (path, '/'); 4053 char *pend = strrchr (path, '/');
2448 4054
2449 if (!pend) 4055 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 4056 break;
2451 4057
2452 *pend = 0; 4058 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 4059 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 4060 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 4062 }
2457 } 4063 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 4064
2461 if (w->wd >= 0) 4065 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 4072}
2464 4073
2465static void noinline 4074static void noinline
2466infy_del (EV_P_ ev_stat *w) 4075infy_del (EV_P_ ev_stat *w)
2467{ 4076{
2470 4079
2471 if (wd < 0) 4080 if (wd < 0)
2472 return; 4081 return;
2473 4082
2474 w->wd = -2; 4083 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 4085 wlist_del (&fs_hash [slot].head, (WL)w);
2477 4086
2478 /* remove this watcher, if others are watching it, they will rearm */ 4087 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 4088 inotify_rm_watch (fs_fd, wd);
2480} 4089}
2481 4090
2482static void noinline 4091static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 4093{
2485 if (slot < 0) 4094 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 4095 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 4097 infy_wd (EV_A_ slot, wd, ev);
2489 else 4098 else
2490 { 4099 {
2491 WL w_; 4100 WL w_;
2492 4101
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 4103 {
2495 ev_stat *w = (ev_stat *)w_; 4104 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 4105 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 4106
2498 if (w->wd == wd || wd == -1) 4107 if (w->wd == wd || wd == -1)
2499 { 4108 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 4112 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 4113 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 4114 }
2505 4115
2506 stat_timer_cb (EV_A_ &w->timer, 0); 4116 stat_timer_cb (EV_A_ &w->timer, 0);
2511 4121
2512static void 4122static void
2513infy_cb (EV_P_ ev_io *w, int revents) 4123infy_cb (EV_P_ ev_io *w, int revents)
2514{ 4124{
2515 char buf [EV_INOTIFY_BUFSIZE]; 4125 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 4126 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 4127 int len = read (fs_fd, buf, sizeof (buf));
2519 4128
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
2522} 4135}
2523 4136
2524void inline_size 4137inline_size void ecb_cold
4138ev_check_2625 (EV_P)
4139{
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147}
4148
4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
2525infy_init (EV_P) 4161infy_init (EV_P)
2526{ 4162{
2527 if (fs_fd != -2) 4163 if (fs_fd != -2)
2528 return; 4164 return;
2529 4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
2530 fs_fd = inotify_init (); 4170 fs_fd = infy_newfd ();
2531 4171
2532 if (fs_fd >= 0) 4172 if (fs_fd >= 0)
2533 { 4173 {
4174 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 4176 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
2537 } 4179 }
2538} 4180}
2539 4181
2540void inline_size 4182inline_size void
2541infy_fork (EV_P) 4183infy_fork (EV_P)
2542{ 4184{
2543 int slot; 4185 int slot;
2544 4186
2545 if (fs_fd < 0) 4187 if (fs_fd < 0)
2546 return; 4188 return;
2547 4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 4192 close (fs_fd);
2549 fs_fd = inotify_init (); 4193 fs_fd = infy_newfd ();
2550 4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 4204 {
2553 WL w_ = fs_hash [slot].head; 4205 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 4206 fs_hash [slot].head = 0;
2555 4207
2556 while (w_) 4208 while (w_)
2561 w->wd = -1; 4213 w->wd = -1;
2562 4214
2563 if (fs_fd >= 0) 4215 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 4216 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
2567 } 4224 }
2568
2569 } 4225 }
2570} 4226}
2571 4227
2572#endif 4228#endif
2573 4229
2576#else 4232#else
2577# define EV_LSTAT(p,b) lstat (p, b) 4233# define EV_LSTAT(p,b) lstat (p, b)
2578#endif 4234#endif
2579 4235
2580void 4236void
2581ev_stat_stat (EV_P_ ev_stat *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2582{ 4238{
2583 if (lstat (w->path, &w->attr) < 0) 4239 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0; 4240 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink) 4241 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1; 4242 w->attr.st_nlink = 1;
2589static void noinline 4245static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{ 4247{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593 4249
2594 /* we copy this here each the time so that */ 4250 ev_statdata prev = w->attr;
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2598 4252
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if ( 4254 if (
2601 w->prev.st_dev != w->attr.st_dev 4255 prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino 4256 || prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode 4257 || prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink 4258 || prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid 4259 || prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid 4260 || prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev 4261 || prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size 4262 || prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime 4263 || prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime 4264 || prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime 4265 || prev.st_ctime != w->attr.st_ctime
2612 ) { 4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
2613 #if EV_USE_INOTIFY 4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
2614 infy_del (EV_A_ w); 4275 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w); 4276 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */ 4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
2617 #endif 4279 #endif
2618 4280
2619 ev_feed_event (EV_A_ w, EV_STAT); 4281 ev_feed_event (EV_A_ w, EV_STAT);
2620 } 4282 }
2621} 4283}
2622 4284
2623void 4285void
2624ev_stat_start (EV_P_ ev_stat *w) 4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2625{ 4287{
2626 if (expect_false (ev_is_active (w))) 4288 if (expect_false (ev_is_active (w)))
2627 return; 4289 return;
2628 4290
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w); 4291 ev_stat_stat (EV_A_ w);
2634 4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2635 if (w->interval < MIN_STAT_INTERVAL) 4294 w->interval = MIN_STAT_INTERVAL;
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637 4295
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2639 ev_set_priority (&w->timer, ev_priority (w)); 4297 ev_set_priority (&w->timer, ev_priority (w));
2640 4298
2641#if EV_USE_INOTIFY 4299#if EV_USE_INOTIFY
2642 infy_init (EV_A); 4300 infy_init (EV_A);
2643 4301
2644 if (fs_fd >= 0) 4302 if (fs_fd >= 0)
2645 infy_add (EV_A_ w); 4303 infy_add (EV_A_ w);
2646 else 4304 else
2647#endif 4305#endif
4306 {
2648 ev_timer_start (EV_A_ &w->timer); 4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
2649 4310
2650 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
2651 4312
2652 EV_FREQUENT_CHECK; 4313 EV_FREQUENT_CHECK;
2653} 4314}
2654 4315
2655void 4316void
2656ev_stat_stop (EV_P_ ev_stat *w) 4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2657{ 4318{
2658 clear_pending (EV_A_ (W)w); 4319 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4320 if (expect_false (!ev_is_active (w)))
2660 return; 4321 return;
2661 4322
2662 EV_FREQUENT_CHECK; 4323 EV_FREQUENT_CHECK;
2663 4324
2664#if EV_USE_INOTIFY 4325#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w); 4326 infy_del (EV_A_ w);
2666#endif 4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
2667 ev_timer_stop (EV_A_ &w->timer); 4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
2668 4334
2669 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2670 4336
2671 EV_FREQUENT_CHECK; 4337 EV_FREQUENT_CHECK;
2672} 4338}
2673#endif 4339#endif
2674 4340
2675#if EV_IDLE_ENABLE 4341#if EV_IDLE_ENABLE
2676void 4342void
2677ev_idle_start (EV_P_ ev_idle *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2678{ 4344{
2679 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2680 return; 4346 return;
2681 4347
2682 pri_adjust (EV_A_ (W)w); 4348 pri_adjust (EV_A_ (W)w);
2695 4361
2696 EV_FREQUENT_CHECK; 4362 EV_FREQUENT_CHECK;
2697} 4363}
2698 4364
2699void 4365void
2700ev_idle_stop (EV_P_ ev_idle *w) 4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2701{ 4367{
2702 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 4369 if (expect_false (!ev_is_active (w)))
2704 return; 4370 return;
2705 4371
2717 4383
2718 EV_FREQUENT_CHECK; 4384 EV_FREQUENT_CHECK;
2719} 4385}
2720#endif 4386#endif
2721 4387
4388#if EV_PREPARE_ENABLE
2722void 4389void
2723ev_prepare_start (EV_P_ ev_prepare *w) 4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2724{ 4391{
2725 if (expect_false (ev_is_active (w))) 4392 if (expect_false (ev_is_active (w)))
2726 return; 4393 return;
2727 4394
2728 EV_FREQUENT_CHECK; 4395 EV_FREQUENT_CHECK;
2733 4400
2734 EV_FREQUENT_CHECK; 4401 EV_FREQUENT_CHECK;
2735} 4402}
2736 4403
2737void 4404void
2738ev_prepare_stop (EV_P_ ev_prepare *w) 4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2739{ 4406{
2740 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2742 return; 4409 return;
2743 4410
2752 4419
2753 ev_stop (EV_A_ (W)w); 4420 ev_stop (EV_A_ (W)w);
2754 4421
2755 EV_FREQUENT_CHECK; 4422 EV_FREQUENT_CHECK;
2756} 4423}
4424#endif
2757 4425
4426#if EV_CHECK_ENABLE
2758void 4427void
2759ev_check_start (EV_P_ ev_check *w) 4428ev_check_start (EV_P_ ev_check *w) EV_THROW
2760{ 4429{
2761 if (expect_false (ev_is_active (w))) 4430 if (expect_false (ev_is_active (w)))
2762 return; 4431 return;
2763 4432
2764 EV_FREQUENT_CHECK; 4433 EV_FREQUENT_CHECK;
2769 4438
2770 EV_FREQUENT_CHECK; 4439 EV_FREQUENT_CHECK;
2771} 4440}
2772 4441
2773void 4442void
2774ev_check_stop (EV_P_ ev_check *w) 4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
2775{ 4444{
2776 clear_pending (EV_A_ (W)w); 4445 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w))) 4446 if (expect_false (!ev_is_active (w)))
2778 return; 4447 return;
2779 4448
2788 4457
2789 ev_stop (EV_A_ (W)w); 4458 ev_stop (EV_A_ (W)w);
2790 4459
2791 EV_FREQUENT_CHECK; 4460 EV_FREQUENT_CHECK;
2792} 4461}
4462#endif
2793 4463
2794#if EV_EMBED_ENABLE 4464#if EV_EMBED_ENABLE
2795void noinline 4465void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w) 4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2797{ 4467{
2798 ev_loop (w->other, EVLOOP_NONBLOCK); 4468 ev_run (w->other, EVRUN_NOWAIT);
2799} 4469}
2800 4470
2801static void 4471static void
2802embed_io_cb (EV_P_ ev_io *io, int revents) 4472embed_io_cb (EV_P_ ev_io *io, int revents)
2803{ 4473{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805 4475
2806 if (ev_cb (w)) 4476 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else 4478 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK); 4479 ev_run (w->other, EVRUN_NOWAIT);
2810} 4480}
2811 4481
2812static void 4482static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{ 4484{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816 4486
2817 { 4487 {
2818 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2819 4489
2820 while (fdchangecnt) 4490 while (fdchangecnt)
2821 { 4491 {
2822 fd_reify (EV_A); 4492 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4493 ev_run (EV_A_ EVRUN_NOWAIT);
2824 } 4494 }
2825 } 4495 }
4496}
4497
4498static void
4499embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500{
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
2826} 4513}
2827 4514
2828#if 0 4515#if 0
2829static void 4516static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4517embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832 ev_idle_stop (EV_A_ idle); 4519 ev_idle_stop (EV_A_ idle);
2833} 4520}
2834#endif 4521#endif
2835 4522
2836void 4523void
2837ev_embed_start (EV_P_ ev_embed *w) 4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2838{ 4525{
2839 if (expect_false (ev_is_active (w))) 4526 if (expect_false (ev_is_active (w)))
2840 return; 4527 return;
2841 4528
2842 { 4529 {
2843 struct ev_loop *loop = w->other; 4530 EV_P = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 } 4533 }
2847 4534
2848 EV_FREQUENT_CHECK; 4535 EV_FREQUENT_CHECK;
2849 4536
2852 4539
2853 ev_prepare_init (&w->prepare, embed_prepare_cb); 4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI); 4541 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare); 4542 ev_prepare_start (EV_A_ &w->prepare);
2856 4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858 4548
2859 ev_start (EV_A_ (W)w, 1); 4549 ev_start (EV_A_ (W)w, 1);
2860 4550
2861 EV_FREQUENT_CHECK; 4551 EV_FREQUENT_CHECK;
2862} 4552}
2863 4553
2864void 4554void
2865ev_embed_stop (EV_P_ ev_embed *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2866{ 4556{
2867 clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w))) 4558 if (expect_false (!ev_is_active (w)))
2869 return; 4559 return;
2870 4560
2871 EV_FREQUENT_CHECK; 4561 EV_FREQUENT_CHECK;
2872 4562
2873 ev_io_stop (EV_A_ &w->io); 4563 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare); 4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
2875 4566
2876 ev_stop (EV_A_ (W)w); 4567 ev_stop (EV_A_ (W)w);
2877 4568
2878 EV_FREQUENT_CHECK; 4569 EV_FREQUENT_CHECK;
2879} 4570}
2880#endif 4571#endif
2881 4572
2882#if EV_FORK_ENABLE 4573#if EV_FORK_ENABLE
2883void 4574void
2884ev_fork_start (EV_P_ ev_fork *w) 4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2885{ 4576{
2886 if (expect_false (ev_is_active (w))) 4577 if (expect_false (ev_is_active (w)))
2887 return; 4578 return;
2888 4579
2889 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
2894 4585
2895 EV_FREQUENT_CHECK; 4586 EV_FREQUENT_CHECK;
2896} 4587}
2897 4588
2898void 4589void
2899ev_fork_stop (EV_P_ ev_fork *w) 4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2900{ 4591{
2901 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
2903 return; 4594 return;
2904 4595
2915 4606
2916 EV_FREQUENT_CHECK; 4607 EV_FREQUENT_CHECK;
2917} 4608}
2918#endif 4609#endif
2919 4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
4649}
4650#endif
4651
2920#if EV_ASYNC_ENABLE 4652#if EV_ASYNC_ENABLE
2921void 4653void
2922ev_async_start (EV_P_ ev_async *w) 4654ev_async_start (EV_P_ ev_async *w) EV_THROW
2923{ 4655{
2924 if (expect_false (ev_is_active (w))) 4656 if (expect_false (ev_is_active (w)))
2925 return; 4657 return;
4658
4659 w->sent = 0;
2926 4660
2927 evpipe_init (EV_A); 4661 evpipe_init (EV_A);
2928 4662
2929 EV_FREQUENT_CHECK; 4663 EV_FREQUENT_CHECK;
2930 4664
2934 4668
2935 EV_FREQUENT_CHECK; 4669 EV_FREQUENT_CHECK;
2936} 4670}
2937 4671
2938void 4672void
2939ev_async_stop (EV_P_ ev_async *w) 4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
2940{ 4674{
2941 clear_pending (EV_A_ (W)w); 4675 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w))) 4676 if (expect_false (!ev_is_active (w)))
2943 return; 4677 return;
2944 4678
2955 4689
2956 EV_FREQUENT_CHECK; 4690 EV_FREQUENT_CHECK;
2957} 4691}
2958 4692
2959void 4693void
2960ev_async_send (EV_P_ ev_async *w) 4694ev_async_send (EV_P_ ev_async *w) EV_THROW
2961{ 4695{
2962 w->sent = 1; 4696 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync); 4697 evpipe_write (EV_A_ &async_pending);
2964} 4698}
2965#endif 4699#endif
2966 4700
2967/*****************************************************************************/ 4701/*****************************************************************************/
2968 4702
2978once_cb (EV_P_ struct ev_once *once, int revents) 4712once_cb (EV_P_ struct ev_once *once, int revents)
2979{ 4713{
2980 void (*cb)(int revents, void *arg) = once->cb; 4714 void (*cb)(int revents, void *arg) = once->cb;
2981 void *arg = once->arg; 4715 void *arg = once->arg;
2982 4716
2983 ev_io_stop (EV_A_ &once->io); 4717 ev_io_stop (EV_A_ &once->io);
2984 ev_timer_stop (EV_A_ &once->to); 4718 ev_timer_stop (EV_A_ &once->to);
2985 ev_free (once); 4719 ev_free (once);
2986 4720
2987 cb (revents, arg); 4721 cb (revents, arg);
2988} 4722}
2989 4723
2990static void 4724static void
2991once_cb_io (EV_P_ ev_io *w, int revents) 4725once_cb_io (EV_P_ ev_io *w, int revents)
2992{ 4726{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2994} 4730}
2995 4731
2996static void 4732static void
2997once_cb_to (EV_P_ ev_timer *w, int revents) 4733once_cb_to (EV_P_ ev_timer *w, int revents)
2998{ 4734{
2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3000} 4738}
3001 4739
3002void 4740void
3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3004{ 4742{
3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3006 4744
3007 if (expect_false (!once)) 4745 if (expect_false (!once))
3008 { 4746 {
3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3010 return; 4748 return;
3011 } 4749 }
3012 4750
3013 once->cb = cb; 4751 once->cb = cb;
3014 once->arg = arg; 4752 once->arg = arg;
3026 ev_timer_set (&once->to, timeout, 0.); 4764 ev_timer_set (&once->to, timeout, 0.);
3027 ev_timer_start (EV_A_ &once->to); 4765 ev_timer_start (EV_A_ &once->to);
3028 } 4766 }
3029} 4767}
3030 4768
4769/*****************************************************************************/
4770
4771#if EV_WALK_ENABLE
4772void ecb_cold
4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774{
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
4781 {
4782 wn = wl->next;
4783
4784#if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791#endif
4792#if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796#endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
4802 }
4803
4804 if (types & (EV_TIMER | EV_STAT))
4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806#if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809 {
4810 if (types & EV_STAT)
4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812 }
4813 else
4814#endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817
4818#if EV_PERIODIC_ENABLE
4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822#endif
4823
4824#if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829#endif
4830
4831#if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836#endif
4837
4838#if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842#endif
4843
4844#if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847# if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849# endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
4852
4853#if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
4858
4859#if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868#endif
4869
4870#if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879#endif
4880/* EV_STAT 0x00001000 /* stat data changed */
4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882}
4883#endif
4884
3031#if EV_MULTIPLICITY 4885#if EV_MULTIPLICITY
3032 #include "ev_wrap.h" 4886 #include "ev_wrap.h"
3033#endif 4887#endif
3034 4888
3035#ifdef __cplusplus
3036}
3037#endif
3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines