ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
430 WL head; 463 WL head;
431} ANFS; 464} ANFS;
432#endif 465#endif
433 466
434/* Heap Entry */ 467/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 468#if EV_HEAP_CACHE_AT
437 typedef struct { 469 typedef struct {
470 ev_tstamp at;
438 WT w; 471 WT w;
439 ev_tstamp at;
440 } ANHE; 472 } ANHE;
441 473
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 477#else
446 typedef WT ANHE; 478 typedef WT ANHE;
447 479
448 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
451#endif 483#endif
452 484
453#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
454 486
455 struct ev_loop 487 struct ev_loop
676 events |= (unsigned char)w->events; 708 events |= (unsigned char)w->events;
677 709
678#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
679 if (events) 711 if (events)
680 { 712 {
681 unsigned long argp; 713 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 714 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 716 #else
685 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
686 #endif 718 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 720 }
689#endif 721#endif
690 722
691 { 723 {
692 unsigned char o_events = anfd->events; 724 unsigned char o_events = anfd->events;
745{ 777{
746 int fd; 778 int fd;
747 779
748 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 781 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
752} 784}
753 785
754/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 787static void noinline
791 * at the moment we allow libev the luxury of two heaps, 823 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 825 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 826 * the difference is about 5% with 50000+ watchers.
795 */ 827 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 828#if EV_USE_4HEAP
798 829
799#define DHEAP 4 830#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 833#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 834
824/* away from the root */ 835/* away from the root */
825void inline_speed 836void inline_speed
826downheap (ANHE *heap, int N, int k) 837downheap (ANHE *heap, int N, int k)
827{ 838{
830 841
831 for (;;) 842 for (;;)
832 { 843 {
833 ev_tstamp minat; 844 ev_tstamp minat;
834 ANHE *minpos; 845 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 847
837 // find minimum child 848 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 849 if (expect_true (pos + DHEAP - 1 < E))
839 { 850 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 855 }
845 else if (pos < E) 856 else if (pos < E)
846 { 857 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 864 break;
854 865
855 if (ANHE_at (he) <= minat) 866 if (ANHE_at (he) <= minat)
856 break; 867 break;
857 868
869 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 870 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 871
861 k = minpos - heap; 872 k = minpos - heap;
862 } 873 }
863 874
875 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 876 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 877}
867 878
868#else // 4HEAP 879#else /* 4HEAP */
869 880
870#define HEAP0 1 881#define HEAP0 1
871 882#define HPARENT(k) ((k) >> 1)
872/* towards the root */ 883#define UPHEAP_DONE(p,k) (!(p))
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894 884
895/* away from the root */ 885/* away from the root */
896void inline_speed 886void inline_speed
897downheap (ANHE *heap, int N, int k) 887downheap (ANHE *heap, int N, int k)
898{ 888{
900 890
901 for (;;) 891 for (;;)
902 { 892 {
903 int c = k << 1; 893 int c = k << 1;
904 894
905 if (c > N) 895 if (c > N + HEAP0 - 1)
906 break; 896 break;
907 897
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 899 ? 1 : 0;
910 900
911 if (w->at <= ANHE_at (heap [c])) 901 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 902 break;
913 903
914 heap [k] = heap [c]; 904 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 905 ev_active (ANHE_w (heap [k])) = k;
916 906
920 heap [k] = he; 910 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 911 ev_active (ANHE_w (he)) = k;
922} 912}
923#endif 913#endif
924 914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
935}
936
925void inline_size 937void inline_size
926adjustheap (ANHE *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
927{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 941 upheap (heap, k);
942 else
929 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
930} 956}
931 957
932/*****************************************************************************/ 958/*****************************************************************************/
933 959
934typedef struct 960typedef struct
958 984
959void inline_speed 985void inline_speed
960fd_intern (int fd) 986fd_intern (int fd)
961{ 987{
962#ifdef _WIN32 988#ifdef _WIN32
963 int arg = 1; 989 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 991#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 994#endif
1452 1478
1453 postfork = 0; 1479 postfork = 0;
1454} 1480}
1455 1481
1456#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
1457struct ev_loop * 1484struct ev_loop *
1458ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
1459{ 1486{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1488
1479void 1506void
1480ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
1481{ 1508{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1509 postfork = 1; /* must be in line with ev_default_fork */
1483} 1510}
1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1485 1612
1486#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1487struct ev_loop * 1614struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1489#else 1616#else
1565 { 1692 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567 1694
1568 p->w->pending = 0; 1695 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1570 } 1698 }
1571 } 1699 }
1572} 1700}
1573 1701
1574#if EV_IDLE_ENABLE 1702#if EV_IDLE_ENABLE
1595#endif 1723#endif
1596 1724
1597void inline_size 1725void inline_size
1598timers_reify (EV_P) 1726timers_reify (EV_P)
1599{ 1727{
1728 EV_FREQUENT_CHECK;
1729
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1731 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603 1733
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605 1735
1606 /* first reschedule or stop timer */ 1736 /* first reschedule or stop timer */
1607 if (w->repeat) 1737 if (w->repeat)
1608 { 1738 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat; 1739 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now) 1740 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now; 1741 ev_at (w) = mn_now;
1614 1742
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744
1615 ANHE_at_set (timers [HEAP0]); 1745 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1746 downheap (timers, timercnt, HEAP0);
1617 } 1747 }
1618 else 1748 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1750
1751 EV_FREQUENT_CHECK;
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 } 1753 }
1623} 1754}
1624 1755
1625#if EV_PERIODIC_ENABLE 1756#if EV_PERIODIC_ENABLE
1626void inline_size 1757void inline_size
1627periodics_reify (EV_P) 1758periodics_reify (EV_P)
1628{ 1759{
1760 EV_FREQUENT_CHECK;
1761
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1763 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632 1765
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634 1767
1635 /* first reschedule or stop timer */ 1768 /* first reschedule or stop timer */
1636 if (w->reschedule_cb) 1769 if (w->reschedule_cb)
1637 { 1770 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1640 ANHE_at_set (periodics [HEAP0]); 1775 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1776 downheap (periodics, periodiccnt, HEAP0);
1642 } 1777 }
1643 else if (w->interval) 1778 else if (w->interval)
1644 { 1779 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1648 ANHE_at_set (periodics [HEAP0]); 1794 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1795 downheap (periodics, periodiccnt, HEAP0);
1650 } 1796 }
1651 else 1797 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1799
1800 EV_FREQUENT_CHECK;
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 } 1802 }
1656} 1803}
1657 1804
1658static void noinline 1805static void noinline
1668 if (w->reschedule_cb) 1815 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1817 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1819
1673 ANHE_at_set (periodics [i]); 1820 ANHE_at_cache (periodics [i]);
1674 } 1821 }
1675 1822
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0); 1823 reheap (periodics, periodiccnt);
1679} 1824}
1680#endif 1825#endif
1681 1826
1682void inline_speed 1827void inline_speed
1683time_update (EV_P_ ev_tstamp max_block) 1828time_update (EV_P_ ev_tstamp max_block)
1741 /* adjust timers. this is easy, as the offset is the same for all of them */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1743 { 1888 {
1744 ANHE *he = timers + i + HEAP0; 1889 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he); 1891 ANHE_at_cache (*he);
1747 } 1892 }
1748 } 1893 }
1749 1894
1750 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1751 } 1896 }
1772 1917
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 1919
1775 do 1920 do
1776 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1777#ifndef _WIN32 1926#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1780 { 1929 {
1781 curpid = getpid (); 1930 curpid = getpid ();
1976 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1977 return; 2126 return;
1978 2127
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1980 2129
2130 EV_FREQUENT_CHECK;
2131
1981 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1983 wlist_add (&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1984 2135
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2137 w->events &= ~EV_IOFDSET;
2138
2139 EV_FREQUENT_CHECK;
1987} 2140}
1988 2141
1989void noinline 2142void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1991{ 2144{
1993 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1994 return; 2147 return;
1995 2148
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997 2150
2151 EV_FREQUENT_CHECK;
2152
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
2000 2155
2001 fd_change (EV_A_ w->fd, 1); 2156 fd_change (EV_A_ w->fd, 1);
2157
2158 EV_FREQUENT_CHECK;
2002} 2159}
2003 2160
2004void noinline 2161void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
2006{ 2163{
2009 2166
2010 ev_at (w) += mn_now; 2167 ev_at (w) += mn_now;
2011 2168
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2177 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2178 upheap (timers, ev_active (w));
2179
2180 EV_FREQUENT_CHECK;
2019 2181
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2183}
2022 2184
2023void noinline 2185void noinline
2025{ 2187{
2026 clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
2028 return; 2190 return;
2029 2191
2192 EV_FREQUENT_CHECK;
2193
2030 { 2194 {
2031 int active = ev_active (w); 2195 int active = ev_active (w);
2032 2196
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2198
2199 --timercnt;
2200
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2201 if (expect_true (active < timercnt + HEAP0))
2036 { 2202 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2203 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2204 adjustheap (timers, timercnt, active);
2039 } 2205 }
2040
2041 --timercnt;
2042 } 2206 }
2207
2208 EV_FREQUENT_CHECK;
2043 2209
2044 ev_at (w) -= mn_now; 2210 ev_at (w) -= mn_now;
2045 2211
2046 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
2047} 2213}
2048 2214
2049void noinline 2215void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
2051{ 2217{
2218 EV_FREQUENT_CHECK;
2219
2052 if (ev_is_active (w)) 2220 if (ev_is_active (w))
2053 { 2221 {
2054 if (w->repeat) 2222 if (w->repeat)
2055 { 2223 {
2056 ev_at (w) = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2225 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2226 adjustheap (timers, timercnt, ev_active (w));
2059 } 2227 }
2060 else 2228 else
2061 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
2062 } 2230 }
2063 else if (w->repeat) 2231 else if (w->repeat)
2064 { 2232 {
2065 ev_at (w) = w->repeat; 2233 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
2067 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
2068} 2238}
2069 2239
2070#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
2071void noinline 2241void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2254 }
2085 else 2255 else
2086 ev_at (w) = w->offset; 2256 ev_at (w) = w->offset;
2087 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2264 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2265 upheap (periodics, ev_active (w));
2266
2267 EV_FREQUENT_CHECK;
2092 2268
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2270}
2095 2271
2096void noinline 2272void noinline
2098{ 2274{
2099 clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
2101 return; 2277 return;
2102 2278
2279 EV_FREQUENT_CHECK;
2280
2103 { 2281 {
2104 int active = ev_active (w); 2282 int active = ev_active (w);
2105 2283
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2285
2286 --periodiccnt;
2287
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2288 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2289 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2291 adjustheap (periodics, periodiccnt, active);
2112 } 2292 }
2113
2114 --periodiccnt;
2115 } 2293 }
2294
2295 EV_FREQUENT_CHECK;
2116 2296
2117 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
2118} 2298}
2119 2299
2120void noinline 2300void noinline
2140 return; 2320 return;
2141 2321
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143 2323
2144 evpipe_init (EV_A); 2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2145 2327
2146 { 2328 {
2147#ifndef _WIN32 2329#ifndef _WIN32
2148 sigset_t full, prev; 2330 sigset_t full, prev;
2149 sigfillset (&full); 2331 sigfillset (&full);
2170 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
2173#endif 2355#endif
2174 } 2356 }
2357
2358 EV_FREQUENT_CHECK;
2175} 2359}
2176 2360
2177void noinline 2361void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2363{
2180 clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
2182 return; 2366 return;
2183 2367
2368 EV_FREQUENT_CHECK;
2369
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2186 2372
2187 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
2189} 2377}
2190 2378
2191void 2379void
2192ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
2193{ 2381{
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2384#endif
2197 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
2198 return; 2386 return;
2199 2387
2388 EV_FREQUENT_CHECK;
2389
2200 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
2202} 2394}
2203 2395
2204void 2396void
2205ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
2206{ 2398{
2207 clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
2209 return; 2401 return;
2210 2402
2403 EV_FREQUENT_CHECK;
2404
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
2213} 2409}
2214 2410
2215#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
2216 2412
2217# ifdef _WIN32 2413# ifdef _WIN32
2372 } 2568 }
2373 2569
2374 } 2570 }
2375} 2571}
2376 2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 2579#endif
2378 2580
2379void 2581void
2380ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
2381{ 2583{
2445 else 2647 else
2446#endif 2648#endif
2447 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
2448 2650
2449 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2450} 2654}
2451 2655
2452void 2656void
2453ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2658{
2455 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2457 return; 2661 return;
2458 2662
2663 EV_FREQUENT_CHECK;
2664
2459#if EV_USE_INOTIFY 2665#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2666 infy_del (EV_A_ w);
2461#endif 2667#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
2463 2669
2464 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2465} 2673}
2466#endif 2674#endif
2467 2675
2468#if EV_IDLE_ENABLE 2676#if EV_IDLE_ENABLE
2469void 2677void
2471{ 2679{
2472 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2473 return; 2681 return;
2474 2682
2475 pri_adjust (EV_A_ (W)w); 2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2476 2686
2477 { 2687 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2688 int active = ++idlecnt [ABSPRI (w)];
2479 2689
2480 ++idleall; 2690 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2691 ev_start (EV_A_ (W)w, active);
2482 2692
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2485 } 2695 }
2696
2697 EV_FREQUENT_CHECK;
2486} 2698}
2487 2699
2488void 2700void
2489ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2702{
2491 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2493 return; 2705 return;
2494 2706
2707 EV_FREQUENT_CHECK;
2708
2495 { 2709 {
2496 int active = ev_active (w); 2710 int active = ev_active (w);
2497 2711
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2714
2501 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2502 --idleall; 2716 --idleall;
2503 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2504} 2720}
2505#endif 2721#endif
2506 2722
2507void 2723void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2725{
2510 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2511 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
2512 2730
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2516} 2736}
2517 2737
2518void 2738void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2740{
2521 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2523 return; 2743 return;
2524 2744
2745 EV_FREQUENT_CHECK;
2746
2525 { 2747 {
2526 int active = ev_active (w); 2748 int active = ev_active (w);
2527 2749
2528 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2751 ev_active (prepares [active - 1]) = active;
2530 } 2752 }
2531 2753
2532 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2533} 2757}
2534 2758
2535void 2759void
2536ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
2537{ 2761{
2538 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2539 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
2540 2766
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2544} 2772}
2545 2773
2546void 2774void
2547ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
2548{ 2776{
2549 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2551 return; 2779 return;
2552 2780
2781 EV_FREQUENT_CHECK;
2782
2553 { 2783 {
2554 int active = ev_active (w); 2784 int active = ev_active (w);
2555 2785
2556 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2787 ev_active (checks [active - 1]) = active;
2558 } 2788 }
2559 2789
2560 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2561} 2793}
2562 2794
2563#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
2564void noinline 2796void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
2612 struct ev_loop *loop = w->other; 2844 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 2847 }
2616 2848
2849 EV_FREQUENT_CHECK;
2850
2617 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
2619 2853
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 2855 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 2856 ev_prepare_start (EV_A_ &w->prepare);
2623 2857
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 2859
2626 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2627} 2863}
2628 2864
2629void 2865void
2630ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
2631{ 2867{
2632 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2634 return; 2870 return;
2635 2871
2872 EV_FREQUENT_CHECK;
2873
2636 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 2875 ev_prepare_stop (EV_A_ &w->prepare);
2638 2876
2639 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2640} 2880}
2641#endif 2881#endif
2642 2882
2643#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
2644void 2884void
2645ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
2646{ 2886{
2647 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2648 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
2649 2891
2650 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2653} 2897}
2654 2898
2655void 2899void
2656ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
2657{ 2901{
2658 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2660 return; 2904 return;
2661 2905
2906 EV_FREQUENT_CHECK;
2907
2662 { 2908 {
2663 int active = ev_active (w); 2909 int active = ev_active (w);
2664 2910
2665 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 2912 ev_active (forks [active - 1]) = active;
2667 } 2913 }
2668 2914
2669 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2670} 2918}
2671#endif 2919#endif
2672 2920
2673#if EV_ASYNC_ENABLE 2921#if EV_ASYNC_ENABLE
2674void 2922void
2676{ 2924{
2677 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2678 return; 2926 return;
2679 2927
2680 evpipe_init (EV_A); 2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2681 2931
2682 ev_start (EV_A_ (W)w, ++asynccnt); 2932 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2685} 2937}
2686 2938
2687void 2939void
2688ev_async_stop (EV_P_ ev_async *w) 2940ev_async_stop (EV_P_ ev_async *w)
2689{ 2941{
2690 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2692 return; 2944 return;
2693 2945
2946 EV_FREQUENT_CHECK;
2947
2694 { 2948 {
2695 int active = ev_active (w); 2949 int active = ev_active (w);
2696 2950
2697 asyncs [active - 1] = asyncs [--asynccnt]; 2951 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 2952 ev_active (asyncs [active - 1]) = active;
2699 } 2953 }
2700 2954
2701 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2702} 2958}
2703 2959
2704void 2960void
2705ev_async_send (EV_P_ ev_async *w) 2961ev_async_send (EV_P_ ev_async *w)
2706{ 2962{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines