ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
75#endif 164# endif
76/**/ 165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
77 168
78#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
80#endif 187#endif
81 188
82#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
84#endif 191#endif
85 192
86#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
88#endif 199#endif
89 200
90#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
91# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
92#endif 207#endif
93 208
94#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
96#endif 211#endif
97 212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
98#ifndef EV_USE_WIN32 217#ifndef EV_USE_INOTIFY
99# ifdef WIN32 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 219# define EV_USE_INOTIFY 1
103# else 220# else
104# define EV_USE_WIN32 0 221# define EV_USE_INOTIFY 0
105# endif 222# endif
106#endif 223#endif
107 224
108#ifndef EV_USE_REALTIME 225#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
110#endif 230# endif
231#endif
111 232
112/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 268
114#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
117#endif 272#endif
119#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
122#endif 277#endif
123 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif
297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
124/**/ 310/**/
125 311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 331
131#include "ev.h"
132
133#if __GNUC__ >= 3 332#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 334# define noinline __attribute__ ((noinline))
136#else 335#else
137# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
138# define inline static 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
139#endif 341#endif
140 342
141#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
143 352
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 355
356#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */
358
147typedef struct ev_watcher *W; 359typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
150 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
152 371
153#if WIN32 372#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 373# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 374#endif
211 375
212/*****************************************************************************/ 376/*****************************************************************************/
213 377
214static void (*syserr_cb)(const char *msg); 378static void (*syserr_cb)(const char *msg);
215 379
380void
216void ev_set_syserr_cb (void (*cb)(const char *msg)) 381ev_set_syserr_cb (void (*cb)(const char *msg))
217{ 382{
218 syserr_cb = cb; 383 syserr_cb = cb;
219} 384}
220 385
221static void 386static void noinline
222syserr (const char *msg) 387syserr (const char *msg)
223{ 388{
224 if (!msg) 389 if (!msg)
225 msg = "(libev) system error"; 390 msg = "(libev) system error";
226 391
231 perror (msg); 396 perror (msg);
232 abort (); 397 abort ();
233 } 398 }
234} 399}
235 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
236static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
237 417
418void
238void ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
239{ 420{
240 alloc = cb; 421 alloc = cb;
241} 422}
242 423
243static void * 424inline_speed void *
244ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
245{ 426{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
247 428
248 if (!ptr && size) 429 if (!ptr && size)
249 { 430 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251 abort (); 432 abort ();
262typedef struct 443typedef struct
263{ 444{
264 WL head; 445 WL head;
265 unsigned char events; 446 unsigned char events;
266 unsigned char reify; 447 unsigned char reify;
448#if EV_SELECT_IS_WINSOCKET
449 SOCKET handle;
450#endif
267} ANFD; 451} ANFD;
268 452
269typedef struct 453typedef struct
270{ 454{
271 W w; 455 W w;
272 int events; 456 int events;
273} ANPENDING; 457} ANPENDING;
274 458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
484
275#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
276 486
277struct ev_loop 487 struct ev_loop
278{ 488 {
489 ev_tstamp ev_rt_now;
490 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 491 #define VAR(name,decl) decl;
280# include "ev_vars.h" 492 #include "ev_vars.h"
281};
282# undef VAR 493 #undef VAR
494 };
283# include "ev_wrap.h" 495 #include "ev_wrap.h"
496
497 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr;
284 499
285#else 500#else
286 501
502 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 503 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 504 #include "ev_vars.h"
289# undef VAR 505 #undef VAR
506
507 static int ev_default_loop_ptr;
290 508
291#endif 509#endif
292 510
293/*****************************************************************************/ 511/*****************************************************************************/
294 512
295inline ev_tstamp 513ev_tstamp
296ev_time (void) 514ev_time (void)
297{ 515{
298#if EV_USE_REALTIME 516#if EV_USE_REALTIME
299 struct timespec ts; 517 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 518 clock_gettime (CLOCK_REALTIME, &ts);
304 gettimeofday (&tv, 0); 522 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 523 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif 524#endif
307} 525}
308 526
309inline ev_tstamp 527ev_tstamp inline_size
310get_clock (void) 528get_clock (void)
311{ 529{
312#if EV_USE_MONOTONIC 530#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 531 if (expect_true (have_monotonic))
314 { 532 {
319#endif 537#endif
320 538
321 return ev_time (); 539 return ev_time ();
322} 540}
323 541
542#if EV_MULTIPLICITY
324ev_tstamp 543ev_tstamp
325ev_now (EV_P) 544ev_now (EV_P)
326{ 545{
327 return rt_now; 546 return ev_rt_now;
328} 547}
548#endif
329 549
330#define array_roundsize(base,n) ((n) | 4 & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
331 557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 select (0, 0, 0, 0, &tv);
571#endif
572 }
573}
574
575/*****************************************************************************/
576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578
579int inline_size
580array_nextsize (int elem, int cur, int cnt)
581{
582 int ncur = cur + 1;
583
584 do
585 ncur <<= 1;
586 while (cnt > ncur);
587
588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
590 {
591 ncur *= elem;
592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
593 ncur = ncur - sizeof (void *) * 4;
594 ncur /= elem;
595 }
596
597 return ncur;
598}
599
600static noinline void *
601array_realloc (int elem, void *base, int *cur, int cnt)
602{
603 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur);
605}
606
332#define array_needsize(base,cur,cnt,init) \ 607#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 608 if (expect_false ((cnt) > (cur))) \
334 { \ 609 { \
335 int newcnt = cur; \ 610 int ocur_ = (cur); \
336 do \ 611 (base) = (type *)array_realloc \
337 { \ 612 (sizeof (type), (base), &(cur), (cnt)); \
338 newcnt = array_roundsize (base, newcnt << 1); \ 613 init ((base) + (ocur_), (cur) - ocur_); \
339 } \
340 while ((cnt) > newcnt); \
341 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
343 init (base + cur, newcnt - cur); \
344 cur = newcnt; \
345 } 614 }
346 615
616#if 0
347#define array_slim(stem) \ 617#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 618 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 619 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 620 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 621 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 623 }
354 624#endif
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 625
360#define array_free(stem, idx) \ 626#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 628
363/*****************************************************************************/ 629/*****************************************************************************/
364 630
365static void 631void noinline
632ev_feed_event (EV_P_ void *w, int revents)
633{
634 W w_ = (W)w;
635 int pri = ABSPRI (w_);
636
637 if (expect_false (w_->pending))
638 pendings [pri][w_->pending - 1].events |= revents;
639 else
640 {
641 w_->pending = ++pendingcnt [pri];
642 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
643 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents;
645 }
646}
647
648void inline_speed
649queue_events (EV_P_ W *events, int eventcnt, int type)
650{
651 int i;
652
653 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type);
655}
656
657/*****************************************************************************/
658
659void inline_size
366anfds_init (ANFD *base, int count) 660anfds_init (ANFD *base, int count)
367{ 661{
368 while (count--) 662 while (count--)
369 { 663 {
370 base->head = 0; 664 base->head = 0;
373 667
374 ++base; 668 ++base;
375 } 669 }
376} 670}
377 671
378static void 672void inline_speed
379event (EV_P_ W w, int events)
380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
384 return;
385 }
386
387 w->pending = ++pendingcnt [ABSPRI (w)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w;
390 pendings [ABSPRI (w)][w->pending - 1].events = events;
391}
392
393static void
394queue_events (EV_P_ W *events, int eventcnt, int type)
395{
396 int i;
397
398 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type);
400}
401
402static void
403fd_event (EV_P_ int fd, int events) 673fd_event (EV_P_ int fd, int revents)
404{ 674{
405 ANFD *anfd = anfds + fd; 675 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 676 ev_io *w;
407 677
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 679 {
410 int ev = w->events & events; 680 int ev = w->events & revents;
411 681
412 if (ev) 682 if (ev)
413 event (EV_A_ (W)w, ev); 683 ev_feed_event (EV_A_ (W)w, ev);
414 } 684 }
415} 685}
416 686
417/*****************************************************************************/ 687void
688ev_feed_fd_event (EV_P_ int fd, int revents)
689{
690 if (fd >= 0 && fd < anfdmax)
691 fd_event (EV_A_ fd, revents);
692}
418 693
419static void 694void inline_size
420fd_reify (EV_P) 695fd_reify (EV_P)
421{ 696{
422 int i; 697 int i;
423 698
424 for (i = 0; i < fdchangecnt; ++i) 699 for (i = 0; i < fdchangecnt; ++i)
425 { 700 {
426 int fd = fdchanges [i]; 701 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 702 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 703 ev_io *w;
429 704
430 int events = 0; 705 unsigned char events = 0;
431 706
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
433 events |= w->events; 708 events |= (unsigned char)w->events;
434 709
710#if EV_SELECT_IS_WINSOCKET
711 if (events)
712 {
713 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
717 anfd->handle = _get_osfhandle (fd);
718 #endif
719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
720 }
721#endif
722
723 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
435 anfd->reify = 0; 727 anfd->reify = 0;
436
437 method_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events);
732 }
439 } 733 }
440 734
441 fdchangecnt = 0; 735 fdchangecnt = 0;
442} 736}
443 737
444static void 738void inline_size
445fd_change (EV_P_ int fd) 739fd_change (EV_P_ int fd, int flags)
446{ 740{
447 if (anfds [fd].reify) 741 unsigned char reify = anfds [fd].reify;
448 return;
449
450 anfds [fd].reify = 1; 742 anfds [fd].reify |= flags;
451 743
744 if (expect_true (!reify))
745 {
452 ++fdchangecnt; 746 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 748 fdchanges [fdchangecnt - 1] = fd;
749 }
455} 750}
456 751
457static void 752void inline_speed
458fd_kill (EV_P_ int fd) 753fd_kill (EV_P_ int fd)
459{ 754{
460 struct ev_io *w; 755 ev_io *w;
461 756
462 while ((w = (struct ev_io *)anfds [fd].head)) 757 while ((w = (ev_io *)anfds [fd].head))
463 { 758 {
464 ev_io_stop (EV_A_ w); 759 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 761 }
467} 762}
468 763
469static int 764int inline_size
470fd_valid (int fd) 765fd_valid (int fd)
471{ 766{
472#ifdef WIN32 767#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 768 return _get_osfhandle (fd) != -1;
474#else 769#else
475 return fcntl (fd, F_GETFD) != -1; 770 return fcntl (fd, F_GETFD) != -1;
476#endif 771#endif
477} 772}
478 773
479/* called on EBADF to verify fds */ 774/* called on EBADF to verify fds */
480static void 775static void noinline
481fd_ebadf (EV_P) 776fd_ebadf (EV_P)
482{ 777{
483 int fd; 778 int fd;
484 779
485 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events) 781 if (anfds [fd].events)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
488 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
489} 784}
490 785
491/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 787static void noinline
493fd_enomem (EV_P) 788fd_enomem (EV_P)
494{ 789{
495 int fd; 790 int fd;
496 791
497 for (fd = anfdmax; fd--; ) 792 for (fd = anfdmax; fd--; )
500 fd_kill (EV_A_ fd); 795 fd_kill (EV_A_ fd);
501 return; 796 return;
502 } 797 }
503} 798}
504 799
505/* usually called after fork if method needs to re-arm all fds from scratch */ 800/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 801static void noinline
507fd_rearm_all (EV_P) 802fd_rearm_all (EV_P)
508{ 803{
509 int fd; 804 int fd;
510 805
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd) 806 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events) 807 if (anfds [fd].events)
514 { 808 {
515 anfds [fd].events = 0; 809 anfds [fd].events = 0;
516 fd_change (EV_A_ fd); 810 fd_change (EV_A_ fd, EV_IOFDSET | 1);
517 } 811 }
518} 812}
519 813
520/*****************************************************************************/ 814/*****************************************************************************/
521 815
522static void 816/*
523upheap (WT *heap, int k) 817 * the heap functions want a real array index. array index 0 uis guaranteed to not
524{ 818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
525 WT w = heap [k]; 819 * the branching factor of the d-tree.
820 */
526 821
527 while (k && heap [k >> 1]->at > w->at) 822/*
528 { 823 * at the moment we allow libev the luxury of two heaps,
529 heap [k] = heap [k >> 1]; 824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
530 ((W)heap [k])->active = k + 1; 825 * which is more cache-efficient.
531 k >>= 1; 826 * the difference is about 5% with 50000+ watchers.
532 } 827 */
828#if EV_USE_4HEAP
533 829
534 heap [k] = w; 830#define DHEAP 4
535 ((W)heap [k])->active = k + 1; 831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
536 834
537} 835/* away from the root */
538 836void inline_speed
539static void
540downheap (WT *heap, int N, int k) 837downheap (ANHE *heap, int N, int k)
541{ 838{
542 WT w = heap [k]; 839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
543 841
544 while (k < (N >> 1)) 842 for (;;)
545 { 843 {
546 int j = k << 1; 844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
547 847
548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
549 ++j; 850 {
550 851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
551 if (w->at <= heap [j]->at) 852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
552 break; 864 break;
553 865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
875 heap [k] = he;
876 ev_active (ANHE_w (he)) = k;
877}
878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
886void inline_speed
887downheap (ANHE *heap, int N, int k)
888{
889 ANHE he = heap [k];
890
891 for (;;)
892 {
893 int c = k << 1;
894
895 if (c > N + HEAP0 - 1)
896 break;
897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
554 heap [k] = heap [j]; 904 heap [k] = heap [c];
555 ((W)heap [k])->active = k + 1; 905 ev_active (ANHE_w (heap [k])) = k;
906
556 k = j; 907 k = c;
557 } 908 }
558 909
559 heap [k] = w; 910 heap [k] = he;
560 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
912}
913#endif
914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
935}
936
937void inline_size
938adjustheap (ANHE *heap, int N, int k)
939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
941 upheap (heap, k);
942 else
943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
561} 956}
562 957
563/*****************************************************************************/ 958/*****************************************************************************/
564 959
565typedef struct 960typedef struct
566{ 961{
567 WL head; 962 WL head;
568 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
569} ANSIG; 964} ANSIG;
570 965
571static ANSIG *signals; 966static ANSIG *signals;
572static int signalmax; 967static int signalmax;
573 968
574static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
575static sig_atomic_t volatile gotsig;
576static struct ev_io sigev;
577 970
578static void 971void inline_size
579signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
580{ 973{
581 while (count--) 974 while (count--)
582 { 975 {
583 base->head = 0; 976 base->head = 0;
585 978
586 ++base; 979 ++base;
587 } 980 }
588} 981}
589 982
983/*****************************************************************************/
984
985void inline_speed
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
590static void 1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
1088}
1089
1090/*****************************************************************************/
1091
1092static void
591sighandler (int signum) 1093ev_sighandler (int signum)
592{ 1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
593#if WIN32 1099#if _WIN32
594 signal (signum, sighandler); 1100 signal (signum, ev_sighandler);
595#endif 1101#endif
596 1102
597 signals [signum - 1].gotsig = 1; 1103 signals [signum - 1].gotsig = 1;
598 1104 evpipe_write (EV_A_ &gotsig);
599 if (!gotsig)
600 {
601 int old_errno = errno;
602 gotsig = 1;
603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
605 }
606} 1105}
607 1106
608static void 1107void noinline
609sigcb (EV_P_ struct ev_io *iow, int revents) 1108ev_feed_signal_event (EV_P_ int signum)
610{ 1109{
611 WL w; 1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
612 int signum; 1116 --signum;
613 1117
614 read (sigpipe [0], &revents, 1); 1118 if (signum < 0 || signum >= signalmax)
615 gotsig = 0; 1119 return;
616 1120
617 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig)
619 {
620 signals [signum].gotsig = 0; 1121 signals [signum].gotsig = 0;
621 1122
622 for (w = signals [signum].head; w; w = w->next) 1123 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624 }
625}
626
627static void
628siginit (EV_P)
629{
630#ifndef WIN32
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638
639 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 1125}
643 1126
644/*****************************************************************************/ 1127/*****************************************************************************/
645 1128
646static struct ev_child *childs [PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
647 1130
648#ifndef WIN32 1131#ifndef _WIN32
649 1132
650static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
651 1157
652#ifndef WCONTINUED 1158#ifndef WCONTINUED
653# define WCONTINUED 0 1159# define WCONTINUED 0
654#endif 1160#endif
655 1161
656static void 1162static void
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
658{
659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
673{ 1164{
674 int pid, status; 1165 int pid, status;
675 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
678 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 1177
681 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 }
684} 1181}
685 1182
686#endif 1183#endif
687 1184
688/*****************************************************************************/ 1185/*****************************************************************************/
689 1186
1187#if EV_USE_PORT
1188# include "ev_port.c"
1189#endif
690#if EV_USE_KQUEUE 1190#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 1191# include "ev_kqueue.c"
692#endif 1192#endif
693#if EV_USE_EPOLL 1193#if EV_USE_EPOLL
694# include "ev_epoll.c" 1194# include "ev_epoll.c"
711{ 1211{
712 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
713} 1213}
714 1214
715/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
716static int 1216int inline_size
717enable_secure (void) 1217enable_secure (void)
718{ 1218{
719#ifdef WIN32 1219#ifdef _WIN32
720 return 0; 1220 return 0;
721#else 1221#else
722 return getuid () != geteuid () 1222 return getuid () != geteuid ()
723 || getgid () != getegid (); 1223 || getgid () != getegid ();
724#endif 1224#endif
725} 1225}
726 1226
727int 1227unsigned int
728ev_method (EV_P) 1228ev_supported_backends (void)
729{ 1229{
730 return method; 1230 unsigned int flags = 0;
731}
732 1231
733static void 1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
734loop_init (EV_P_ int methods) 1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
735{ 1243{
736 if (!method) 1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
1296loop_init (EV_P_ unsigned int flags)
1297{
1298 if (!backend)
737 { 1299 {
738#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
739 { 1301 {
740 struct timespec ts; 1302 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 1304 have_monotonic = 1;
743 } 1305 }
744#endif 1306#endif
745 1307
746 rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 1309 mn_now = get_clock ();
748 now_floor = mn_now; 1310 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
750 1312
751 if (methods == EVMETHOD_AUTO) 1313 io_blocktime = 0.;
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 1332
757 method = 0; 1333 if (!(flags & 0x0000ffffU))
758#if EV_USE_WIN32 1334 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1335
1336#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 1338#endif
761#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 1341#endif
764#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 1344#endif
767#if EV_USE_POLL 1345#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 1347#endif
770#if EV_USE_SELECT 1348#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 1350#endif
773 1351
774 ev_watcher_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
775 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
776 } 1354 }
777} 1355}
778 1356
779void 1357static void noinline
780loop_destroy (EV_P) 1358loop_destroy (EV_P)
781{ 1359{
782 int i; 1360 int i;
783 1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
784#if EV_USE_WIN32 1379#if EV_USE_INOTIFY
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 1389#endif
787#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 1392#endif
790#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 1395#endif
793#if EV_USE_POLL 1396#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 1398#endif
796#if EV_USE_SELECT 1399#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 1401#endif
799 1402
800 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
801 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
802 1412
803 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 1414 array_free (fdchange, EMPTY);
805 array_free_microshit (timer); 1415 array_free (timer, EMPTY);
806 array_free_microshit (periodic); 1416#if EV_PERIODIC_ENABLE
807 array_free_microshit (idle); 1417 array_free (periodic, EMPTY);
808 array_free_microshit (prepare); 1418#endif
809 array_free_microshit (check); 1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1422 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
810 1427
811 method = 0; 1428 backend = 0;
812} 1429}
813 1430
814static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
815loop_fork (EV_P) 1436loop_fork (EV_P)
816{ 1437{
1438#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif
1441#if EV_USE_KQUEUE
1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1443#endif
817#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif 1446#endif
820#if EV_USE_KQUEUE 1447#if EV_USE_INOTIFY
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1448 infy_fork (EV_A);
822#endif 1449#endif
823 1450
824 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
825 { 1452 {
826 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
827 1459
828 ev_ref (EV_A); 1460 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
830 close (sigpipe [0]); 1470 close (evpipe [0]);
831 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
832 1473
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
837 } 1477 }
838 1478
839 postfork = 0; 1479 postfork = 0;
840} 1480}
1481
1482#if EV_MULTIPLICITY
1483
1484struct ev_loop *
1485ev_loop_new (unsigned int flags)
1486{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488
1489 memset (loop, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags);
1492
1493 if (ev_backend (EV_A))
1494 return loop;
1495
1496 return 0;
1497}
1498
1499void
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
841 1612
842#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
843struct ev_loop * 1614struct ev_loop *
844ev_loop_new (int methods) 1615ev_default_loop_init (unsigned int flags)
845{ 1616#else
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1617int
847 1618ev_default_loop (unsigned int flags)
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif 1619#endif
872 1620{
1621 if (!ev_default_loop_ptr)
1622 {
873#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct; 1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else 1625#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1; 1626 ev_default_loop_ptr = 1;
895#endif 1627#endif
896 1628
897 loop_init (EV_A_ methods); 1629 loop_init (EV_A_ flags);
898 1630
899 if (ev_method (EV_A)) 1631 if (ev_backend (EV_A))
900 { 1632 {
901 siginit (EV_A);
902
903#ifndef WIN32 1633#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1634 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1635 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1636 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1637 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1638#endif
909 } 1639 }
910 else 1640 else
911 default_loop = 0; 1641 ev_default_loop_ptr = 0;
912 } 1642 }
913 1643
914 return default_loop; 1644 return ev_default_loop_ptr;
915} 1645}
916 1646
917void 1647void
918ev_default_destroy (void) 1648ev_default_destroy (void)
919{ 1649{
920#if EV_MULTIPLICITY 1650#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1651 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1652#endif
923 1653
924#ifndef WIN32 1654#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1655 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1656 ev_signal_stop (EV_A_ &childev);
927#endif 1657#endif
928 1658
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A); 1659 loop_destroy (EV_A);
936} 1660}
937 1661
938void 1662void
939ev_default_fork (void) 1663ev_default_fork (void)
940{ 1664{
941#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1666 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1667#endif
944 1668
945 if (method) 1669 if (backend)
946 postfork = 1; 1670 postfork = 1; /* must be in line with ev_loop_fork */
947} 1671}
948 1672
949/*****************************************************************************/ 1673/*****************************************************************************/
950 1674
951static void 1675void
1676ev_invoke (EV_P_ void *w, int revents)
1677{
1678 EV_CB_INVOKE ((W)w, revents);
1679}
1680
1681void inline_speed
952call_pending (EV_P) 1682call_pending (EV_P)
953{ 1683{
954 int pri; 1684 int pri;
955 1685
956 for (pri = NUMPRI; pri--; ) 1686 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1687 while (pendingcnt [pri])
958 { 1688 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1690
961 if (p->w) 1691 if (expect_true (p->w))
962 { 1692 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1694
963 p->w->pending = 0; 1695 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
965 } 1698 }
966 } 1699 }
967} 1700}
968 1701
969static void 1702#if EV_IDLE_ENABLE
1703void inline_size
1704idle_reify (EV_P)
1705{
1706 if (expect_false (idleall))
1707 {
1708 int pri;
1709
1710 for (pri = NUMPRI; pri--; )
1711 {
1712 if (pendingcnt [pri])
1713 break;
1714
1715 if (idlecnt [pri])
1716 {
1717 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1718 break;
1719 }
1720 }
1721 }
1722}
1723#endif
1724
1725void inline_size
970timers_reify (EV_P) 1726timers_reify (EV_P)
971{ 1727{
1728 EV_FREQUENT_CHECK;
1729
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
973 { 1731 {
974 struct ev_timer *w = timers [0]; 1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
975 1733
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
977 1735
978 /* first reschedule or stop timer */ 1736 /* first reschedule or stop timer */
979 if (w->repeat) 1737 if (w->repeat)
980 { 1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
982 ((WT)w)->at = mn_now + w->repeat; 1744
1745 ANHE_at_cache (timers [HEAP0]);
983 downheap ((WT *)timers, timercnt, 0); 1746 downheap (timers, timercnt, HEAP0);
984 } 1747 }
985 else 1748 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1750
1751 EV_FREQUENT_CHECK;
988 event (EV_A_ (W)w, EV_TIMEOUT); 1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1753 }
990} 1754}
991 1755
992static void 1756#if EV_PERIODIC_ENABLE
1757void inline_size
993periodics_reify (EV_P) 1758periodics_reify (EV_P)
994{ 1759{
1760 EV_FREQUENT_CHECK;
1761
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
996 { 1763 {
997 struct ev_periodic *w = periodics [0]; 1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
998 1765
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1000 1767
1001 /* first reschedule or stop timer */ 1768 /* first reschedule or stop timer */
1002 if (w->interval) 1769 if (w->reschedule_cb)
1003 { 1770 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1772
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1006 downheap ((WT *)periodics, periodiccnt, 0); 1776 downheap (periodics, periodiccnt, HEAP0);
1777 }
1778 else if (w->interval)
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1007 } 1796 }
1008 else 1797 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1799
1800 EV_FREQUENT_CHECK;
1011 event (EV_A_ (W)w, EV_PERIODIC); 1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1802 }
1013} 1803}
1014 1804
1015static void 1805static void noinline
1016periodics_reschedule (EV_P) 1806periodics_reschedule (EV_P)
1017{ 1807{
1018 int i; 1808 int i;
1019 1809
1020 /* adjust periodics after time jump */ 1810 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1022 { 1812 {
1023 struct ev_periodic *w = periodics [i]; 1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1024 1814
1815 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1817 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1824}
1825#endif
1826
1827void inline_speed
1828time_update (EV_P_ ev_tstamp max_block)
1829{
1830 int i;
1831
1832#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic))
1834 {
1835 ev_tstamp odiff = rtmn_diff;
1836
1837 mn_now = get_clock ();
1838
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1840 /* interpolate in the meantime */
1841 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1026 { 1842 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1843 ev_rt_now = rtmn_diff + mn_now;
1844 return;
1845 }
1028 1846
1029 if (fabs (diff) >= 1e-4) 1847 now_floor = mn_now;
1848 ev_rt_now = ev_time ();
1849
1850 /* loop a few times, before making important decisions.
1851 * on the choice of "4": one iteration isn't enough,
1852 * in case we get preempted during the calls to
1853 * ev_time and get_clock. a second call is almost guaranteed
1854 * to succeed in that case, though. and looping a few more times
1855 * doesn't hurt either as we only do this on time-jumps or
1856 * in the unlikely event of having been preempted here.
1857 */
1858 for (i = 4; --i; )
1859 {
1860 rtmn_diff = ev_rt_now - mn_now;
1861
1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1863 return; /* all is well */
1864
1865 ev_rt_now = ev_time ();
1866 mn_now = get_clock ();
1867 now_floor = mn_now;
1868 }
1869
1870# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A);
1872# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 }
1876 else
1877#endif
1878 {
1879 ev_rt_now = ev_time ();
1880
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 {
1883#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A);
1885#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1030 { 1888 {
1031 ev_periodic_stop (EV_A_ w); 1889 ANHE *he = timers + i + HEAP0;
1032 ev_periodic_start (EV_A_ w); 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1033 1891 ANHE_at_cache (*he);
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 } 1892 }
1036 } 1893 }
1037 }
1038}
1039 1894
1040inline int
1041time_update_monotonic (EV_P)
1042{
1043 mn_now = get_clock ();
1044
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 {
1047 rt_now = rtmn_diff + mn_now;
1048 return 0;
1049 }
1050 else
1051 {
1052 now_floor = mn_now;
1053 rt_now = ev_time ();
1054 return 1;
1055 }
1056}
1057
1058static void
1059time_update (EV_P)
1060{
1061 int i;
1062
1063#if EV_USE_MONOTONIC
1064 if (expect_true (have_monotonic))
1065 {
1066 if (time_update_monotonic (EV_A))
1067 {
1068 ev_tstamp odiff = rtmn_diff;
1069
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 {
1072 rtmn_diff = rt_now - mn_now;
1073
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */
1076
1077 rt_now = ev_time ();
1078 mn_now = get_clock ();
1079 now_floor = mn_now;
1080 }
1081
1082 periodics_reschedule (EV_A);
1083 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 }
1086 }
1087 else
1088#endif
1089 {
1090 rt_now = ev_time ();
1091
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 {
1094 periodics_reschedule (EV_A);
1095
1096 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now;
1099 }
1100
1101 mn_now = rt_now; 1895 mn_now = ev_rt_now;
1102 } 1896 }
1103} 1897}
1104 1898
1105void 1899void
1106ev_ref (EV_P) 1900ev_ref (EV_P)
1117static int loop_done; 1911static int loop_done;
1118 1912
1119void 1913void
1120ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1121{ 1915{
1122 double block; 1916 loop_done = EVUNLOOP_CANCEL;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1917
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1124 1919
1125 do 1920 do
1126 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork))
1938 if (forkcnt)
1939 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A);
1942 }
1943#endif
1944
1127 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1129 { 1947 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1131 call_pending (EV_A); 1949 call_pending (EV_A);
1132 } 1950 }
1133 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1134 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1136 loop_fork (EV_A); 1957 loop_fork (EV_A);
1137 1958
1138 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1960 fd_reify (EV_A);
1140 1961
1141 /* calculate blocking time */ 1962 /* calculate blocking time */
1963 {
1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1142 1966
1143 /* we only need this for !monotonic clockor timers, but as we basically 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1144 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A);
1148 else
1149#endif
1150 { 1968 {
1151 rt_now = ev_time (); 1969 /* update time to cancel out callback processing overhead */
1152 mn_now = rt_now; 1970 time_update (EV_A_ 1e100);
1153 }
1154 1971
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1160 1973
1161 if (timercnt) 1974 if (timercnt)
1162 { 1975 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1164 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1165 } 1978 }
1166 1979
1980#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 1981 if (periodiccnt)
1168 { 1982 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1171 } 1985 }
1986#endif
1172 1987
1173 if (block < 0.) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1174 } 2001 }
1175 2002
1176 method_poll (EV_A_ block); 2003 ++loop_count;
2004 backend_poll (EV_A_ waittime);
1177 2005
1178 /* update rt_now, do magic */ 2006 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 2007 time_update (EV_A_ waittime + sleeptime);
2008 }
1180 2009
1181 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
2012#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
2014#endif
1184 2015
2016#if EV_IDLE_ENABLE
1185 /* queue idle watchers unless io or timers are pending */ 2017 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 2018 idle_reify (EV_A);
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1188 2020
1189 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1190 if (checkcnt) 2022 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 2024
1193 call_pending (EV_A); 2025 call_pending (EV_A);
1194 } 2026 }
1195 while (activecnt && !loop_done); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1196 2032
1197 if (loop_done != 2) 2033 if (loop_done == EVUNLOOP_ONE)
1198 loop_done = 0; 2034 loop_done = EVUNLOOP_CANCEL;
1199} 2035}
1200 2036
1201void 2037void
1202ev_unloop (EV_P_ int how) 2038ev_unloop (EV_P_ int how)
1203{ 2039{
1204 loop_done = how; 2040 loop_done = how;
1205} 2041}
1206 2042
1207/*****************************************************************************/ 2043/*****************************************************************************/
1208 2044
1209inline void 2045void inline_size
1210wlist_add (WL *head, WL elem) 2046wlist_add (WL *head, WL elem)
1211{ 2047{
1212 elem->next = *head; 2048 elem->next = *head;
1213 *head = elem; 2049 *head = elem;
1214} 2050}
1215 2051
1216inline void 2052void inline_size
1217wlist_del (WL *head, WL elem) 2053wlist_del (WL *head, WL elem)
1218{ 2054{
1219 while (*head) 2055 while (*head)
1220 { 2056 {
1221 if (*head == elem) 2057 if (*head == elem)
1226 2062
1227 head = &(*head)->next; 2063 head = &(*head)->next;
1228 } 2064 }
1229} 2065}
1230 2066
1231inline void 2067void inline_speed
1232ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1233{ 2069{
1234 if (w->pending) 2070 if (w->pending)
1235 { 2071 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1237 w->pending = 0; 2073 w->pending = 0;
1238 } 2074 }
1239} 2075}
1240 2076
1241inline void 2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
2103void inline_speed
1242ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1243{ 2105{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246
1247 w->active = active; 2107 w->active = active;
1248 ev_ref (EV_A); 2108 ev_ref (EV_A);
1249} 2109}
1250 2110
1251inline void 2111void inline_size
1252ev_stop (EV_P_ W w) 2112ev_stop (EV_P_ W w)
1253{ 2113{
1254 ev_unref (EV_A); 2114 ev_unref (EV_A);
1255 w->active = 0; 2115 w->active = 0;
1256} 2116}
1257 2117
1258/*****************************************************************************/ 2118/*****************************************************************************/
1259 2119
1260void 2120void noinline
1261ev_io_start (EV_P_ struct ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1262{ 2122{
1263 int fd = w->fd; 2123 int fd = w->fd;
1264 2124
1265 if (ev_is_active (w)) 2125 if (expect_false (ev_is_active (w)))
1266 return; 2126 return;
1267 2127
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1269 2129
2130 EV_FREQUENT_CHECK;
2131
1270 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1273 2135
1274 fd_change (EV_A_ fd); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1275} 2137 w->events &= ~EV_IOFDSET;
1276 2138
1277void 2139 EV_FREQUENT_CHECK;
2140}
2141
2142void noinline
1278ev_io_stop (EV_P_ struct ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1279{ 2144{
1280 ev_clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 2146 if (expect_false (!ev_is_active (w)))
1282 return; 2147 return;
1283 2148
2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150
2151 EV_FREQUENT_CHECK;
2152
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1286 2155
1287 fd_change (EV_A_ w->fd); 2156 fd_change (EV_A_ w->fd, 1);
1288}
1289 2157
1290void 2158 EV_FREQUENT_CHECK;
2159}
2160
2161void noinline
1291ev_timer_start (EV_P_ struct ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1292{ 2163{
1293 if (ev_is_active (w)) 2164 if (expect_false (ev_is_active (w)))
1294 return; 2165 return;
1295 2166
1296 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1297 2168
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1300 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1301 array_needsize (timers, timermax, timercnt, (void)); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1302 timers [timercnt - 1] = w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1304 2179
2180 EV_FREQUENT_CHECK;
2181
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1306} 2183}
1307 2184
1308void 2185void noinline
1309ev_timer_stop (EV_P_ struct ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1310{ 2187{
1311 ev_clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2189 if (expect_false (!ev_is_active (w)))
1313 return; 2190 return;
1314 2191
2192 EV_FREQUENT_CHECK;
2193
2194 {
2195 int active = ev_active (w);
2196
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1316 2198
1317 if (((W)w)->active < timercnt--) 2199 --timercnt;
2200
2201 if (expect_true (active < timercnt + HEAP0))
1318 { 2202 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2204 adjustheap (timers, timercnt, active);
1321 } 2205 }
2206 }
1322 2207
1323 ((WT)w)->at = w->repeat; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1324 2211
1325 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1326} 2213}
1327 2214
1328void 2215void noinline
1329ev_timer_again (EV_P_ struct ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1330{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1331 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1332 { 2221 {
1333 if (w->repeat) 2222 if (w->repeat)
1334 { 2223 {
1335 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 ANHE_at_cache (timers [ev_active (w)]);
2226 adjustheap (timers, timercnt, ev_active (w));
1337 } 2227 }
1338 else 2228 else
1339 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1340 } 2230 }
1341 else if (w->repeat) 2231 else if (w->repeat)
2232 {
2233 ev_at (w) = w->repeat;
1342 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1343} 2235 }
1344 2236
1345void 2237 EV_FREQUENT_CHECK;
2238}
2239
2240#if EV_PERIODIC_ENABLE
2241void noinline
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 2243{
1348 if (ev_is_active (w)) 2244 if (expect_false (ev_is_active (w)))
1349 return; 2245 return;
1350 2246
2247 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval)
2250 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2254 }
2255 else
2256 ev_at (w) = w->offset;
1356 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1361 2266
2267 EV_FREQUENT_CHECK;
2268
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1363} 2270}
1364 2271
1365void 2272void noinline
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 2274{
1368 ev_clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 2276 if (expect_false (!ev_is_active (w)))
1370 return; 2277 return;
1371 2278
2279 EV_FREQUENT_CHECK;
2280
2281 {
2282 int active = ev_active (w);
2283
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1373 2285
1374 if (((W)w)->active < periodiccnt--) 2286 --periodiccnt;
2287
2288 if (expect_true (active < periodiccnt + HEAP0))
1375 { 2289 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2291 adjustheap (periodics, periodiccnt, active);
1378 } 2292 }
2293 }
2294
2295 EV_FREQUENT_CHECK;
1379 2296
1380 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1381} 2298}
1382 2299
1383void 2300void noinline
1384ev_idle_start (EV_P_ struct ev_idle *w) 2301ev_periodic_again (EV_P_ ev_periodic *w)
1385{ 2302{
1386 if (ev_is_active (w)) 2303 /* TODO: use adjustheap and recalculation */
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 2304 ev_periodic_stop (EV_A_ w);
2305 ev_periodic_start (EV_A_ w);
1403} 2306}
1404 2307#endif
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448 2308
1449#ifndef SA_RESTART 2309#ifndef SA_RESTART
1450# define SA_RESTART 0 2310# define SA_RESTART 0
1451#endif 2311#endif
1452 2312
1453void 2313void noinline
1454ev_signal_start (EV_P_ struct ev_signal *w) 2314ev_signal_start (EV_P_ ev_signal *w)
1455{ 2315{
1456#if EV_MULTIPLICITY 2316#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 2318#endif
1459 if (ev_is_active (w)) 2319 if (expect_false (ev_is_active (w)))
1460 return; 2320 return;
1461 2321
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 2323
2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2327
2328 {
2329#ifndef _WIN32
2330 sigset_t full, prev;
2331 sigfillset (&full);
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2336
2337#ifndef _WIN32
2338 sigprocmask (SIG_SETMASK, &prev, 0);
2339#endif
2340 }
2341
1464 ev_start (EV_A_ (W)w, 1); 2342 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2343 wlist_add (&signals [w->signum - 1].head, (WL)w);
1467 2344
1468 if (!((WL)w)->next) 2345 if (!((WL)w)->next)
1469 { 2346 {
1470#if WIN32 2347#if _WIN32
1471 signal (w->signum, sighandler); 2348 signal (w->signum, ev_sighandler);
1472#else 2349#else
1473 struct sigaction sa; 2350 struct sigaction sa;
1474 sa.sa_handler = sighandler; 2351 sa.sa_handler = ev_sighandler;
1475 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1477 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
1478#endif 2355#endif
1479 } 2356 }
1480}
1481 2357
1482void 2358 EV_FREQUENT_CHECK;
2359}
2360
2361void noinline
1483ev_signal_stop (EV_P_ struct ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
1484{ 2363{
1485 ev_clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 2365 if (expect_false (!ev_is_active (w)))
1487 return; 2366 return;
1488 2367
2368 EV_FREQUENT_CHECK;
2369
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1491 2372
1492 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
1493 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
1494}
1495 2375
2376 EV_FREQUENT_CHECK;
2377}
2378
1496void 2379void
1497ev_child_start (EV_P_ struct ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
1498{ 2381{
1499#if EV_MULTIPLICITY 2382#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 2384#endif
1502 if (ev_is_active (w)) 2385 if (expect_false (ev_is_active (w)))
1503 return; 2386 return;
1504 2387
2388 EV_FREQUENT_CHECK;
2389
1505 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1507}
1508 2392
2393 EV_FREQUENT_CHECK;
2394}
2395
1509void 2396void
1510ev_child_stop (EV_P_ struct ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
1511{ 2398{
1512 ev_clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 2400 if (expect_false (!ev_is_active (w)))
1514 return; 2401 return;
1515 2402
2403 EV_FREQUENT_CHECK;
2404
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
1518} 2409}
2410
2411#if EV_STAT_ENABLE
2412
2413# ifdef _WIN32
2414# undef lstat
2415# define lstat(a,b) _stati64 (a,b)
2416# endif
2417
2418#define DEF_STAT_INTERVAL 5.0074891
2419#define MIN_STAT_INTERVAL 0.1074891
2420
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422
2423#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192
2425
2426static void noinline
2427infy_add (EV_P_ ev_stat *w)
2428{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430
2431 if (w->wd < 0)
2432 {
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2434
2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 {
2440 char path [4096];
2441 strcpy (path, w->path);
2442
2443 do
2444 {
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447
2448 char *pend = strrchr (path, '/');
2449
2450 if (!pend)
2451 break; /* whoops, no '/', complain to your admin */
2452
2453 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 }
2458 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461
2462 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2464}
2465
2466static void noinline
2467infy_del (EV_P_ ev_stat *w)
2468{
2469 int slot;
2470 int wd = w->wd;
2471
2472 if (wd < 0)
2473 return;
2474
2475 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w);
2478
2479 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd);
2481}
2482
2483static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{
2486 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2489 infy_wd (EV_A_ slot, wd, ev);
2490 else
2491 {
2492 WL w_;
2493
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2495 {
2496 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */
2498
2499 if (w->wd == wd || wd == -1)
2500 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 {
2503 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */
2505 }
2506
2507 stat_timer_cb (EV_A_ &w->timer, 0);
2508 }
2509 }
2510 }
2511}
2512
2513static void
2514infy_cb (EV_P_ ev_io *w, int revents)
2515{
2516 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf));
2520
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2523}
2524
2525void inline_size
2526infy_init (EV_P)
2527{
2528 if (fs_fd != -2)
2529 return;
2530
2531 fs_fd = inotify_init ();
2532
2533 if (fs_fd >= 0)
2534 {
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w);
2538 }
2539}
2540
2541void inline_size
2542infy_fork (EV_P)
2543{
2544 int slot;
2545
2546 if (fs_fd < 0)
2547 return;
2548
2549 close (fs_fd);
2550 fs_fd = inotify_init ();
2551
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2553 {
2554 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0;
2556
2557 while (w_)
2558 {
2559 ev_stat *w = (ev_stat *)w_;
2560 w_ = w_->next; /* lets us add this watcher */
2561
2562 w->wd = -1;
2563
2564 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else
2567 ev_timer_start (EV_A_ &w->timer);
2568 }
2569
2570 }
2571}
2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2579#endif
2580
2581void
2582ev_stat_stat (EV_P_ ev_stat *w)
2583{
2584 if (lstat (w->path, &w->attr) < 0)
2585 w->attr.st_nlink = 0;
2586 else if (!w->attr.st_nlink)
2587 w->attr.st_nlink = 1;
2588}
2589
2590static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594
2595 /* we copy this here each the time so that */
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w);
2599
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if (
2602 w->prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime
2613 ) {
2614 #if EV_USE_INOTIFY
2615 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */
2618 #endif
2619
2620 ev_feed_event (EV_A_ w, EV_STAT);
2621 }
2622}
2623
2624void
2625ev_stat_start (EV_P_ ev_stat *w)
2626{
2627 if (expect_false (ev_is_active (w)))
2628 return;
2629
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w);
2635
2636 if (w->interval < MIN_STAT_INTERVAL)
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2640 ev_set_priority (&w->timer, ev_priority (w));
2641
2642#if EV_USE_INOTIFY
2643 infy_init (EV_A);
2644
2645 if (fs_fd >= 0)
2646 infy_add (EV_A_ w);
2647 else
2648#endif
2649 ev_timer_start (EV_A_ &w->timer);
2650
2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2654}
2655
2656void
2657ev_stat_stop (EV_P_ ev_stat *w)
2658{
2659 clear_pending (EV_A_ (W)w);
2660 if (expect_false (!ev_is_active (w)))
2661 return;
2662
2663 EV_FREQUENT_CHECK;
2664
2665#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w);
2667#endif
2668 ev_timer_stop (EV_A_ &w->timer);
2669
2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2673}
2674#endif
2675
2676#if EV_IDLE_ENABLE
2677void
2678ev_idle_start (EV_P_ ev_idle *w)
2679{
2680 if (expect_false (ev_is_active (w)))
2681 return;
2682
2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2686
2687 {
2688 int active = ++idlecnt [ABSPRI (w)];
2689
2690 ++idleall;
2691 ev_start (EV_A_ (W)w, active);
2692
2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2694 idles [ABSPRI (w)][active - 1] = w;
2695 }
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_idle_stop (EV_P_ ev_idle *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2714
2715 ev_stop (EV_A_ (W)w);
2716 --idleall;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721#endif
2722
2723void
2724ev_prepare_start (EV_P_ ev_prepare *w)
2725{
2726 if (expect_false (ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 ev_start (EV_A_ (W)w, ++preparecnt);
2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_prepare_stop (EV_P_ ev_prepare *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 prepares [active - 1] = prepares [--preparecnt];
2751 ev_active (prepares [active - 1]) = active;
2752 }
2753
2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2757}
2758
2759void
2760ev_check_start (EV_P_ ev_check *w)
2761{
2762 if (expect_false (ev_is_active (w)))
2763 return;
2764
2765 EV_FREQUENT_CHECK;
2766
2767 ev_start (EV_A_ (W)w, ++checkcnt);
2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2772}
2773
2774void
2775ev_check_stop (EV_P_ ev_check *w)
2776{
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 checks [active - 1] = checks [--checkcnt];
2787 ev_active (checks [active - 1]) = active;
2788 }
2789
2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2793}
2794
2795#if EV_EMBED_ENABLE
2796void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w)
2798{
2799 ev_loop (w->other, EVLOOP_NONBLOCK);
2800}
2801
2802static void
2803embed_io_cb (EV_P_ ev_io *io, int revents)
2804{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806
2807 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK);
2811}
2812
2813static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817
2818 {
2819 struct ev_loop *loop = w->other;
2820
2821 while (fdchangecnt)
2822 {
2823 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2825 }
2826 }
2827}
2828
2829#if 0
2830static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832{
2833 ev_idle_stop (EV_A_ idle);
2834}
2835#endif
2836
2837void
2838ev_embed_start (EV_P_ ev_embed *w)
2839{
2840 if (expect_false (ev_is_active (w)))
2841 return;
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 }
2848
2849 EV_FREQUENT_CHECK;
2850
2851 ev_set_priority (&w->io, ev_priority (w));
2852 ev_io_start (EV_A_ &w->io);
2853
2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare);
2857
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859
2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_embed_stop (EV_P_ ev_embed *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare);
2876
2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2880}
2881#endif
2882
2883#if EV_FORK_ENABLE
2884void
2885ev_fork_start (EV_P_ ev_fork *w)
2886{
2887 if (expect_false (ev_is_active (w)))
2888 return;
2889
2890 EV_FREQUENT_CHECK;
2891
2892 ev_start (EV_A_ (W)w, ++forkcnt);
2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2897}
2898
2899void
2900ev_fork_stop (EV_P_ ev_fork *w)
2901{
2902 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w)))
2904 return;
2905
2906 EV_FREQUENT_CHECK;
2907
2908 {
2909 int active = ev_active (w);
2910
2911 forks [active - 1] = forks [--forkcnt];
2912 ev_active (forks [active - 1]) = active;
2913 }
2914
2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_ASYNC_ENABLE
2922void
2923ev_async_start (EV_P_ ev_async *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++asynccnt);
2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_async_stop (EV_P_ ev_async *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 asyncs [active - 1] = asyncs [--asynccnt];
2952 ev_active (asyncs [active - 1]) = active;
2953 }
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960void
2961ev_async_send (EV_P_ ev_async *w)
2962{
2963 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync);
2965}
2966#endif
1519 2967
1520/*****************************************************************************/ 2968/*****************************************************************************/
1521 2969
1522struct ev_once 2970struct ev_once
1523{ 2971{
1524 struct ev_io io; 2972 ev_io io;
1525 struct ev_timer to; 2973 ev_timer to;
1526 void (*cb)(int revents, void *arg); 2974 void (*cb)(int revents, void *arg);
1527 void *arg; 2975 void *arg;
1528}; 2976};
1529 2977
1530static void 2978static void
1539 2987
1540 cb (revents, arg); 2988 cb (revents, arg);
1541} 2989}
1542 2990
1543static void 2991static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 2992once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 2993{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1547} 2995}
1548 2996
1549static void 2997static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 2998once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 2999{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1553} 3001}
1554 3002
1555void 3003void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 3005{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 3007
1560 if (!once) 3008 if (expect_false (!once))
3009 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 3011 return;
1563 { 3012 }
3013
1564 once->cb = cb; 3014 once->cb = cb;
1565 once->arg = arg; 3015 once->arg = arg;
1566 3016
1567 ev_watcher_init (&once->io, once_cb_io); 3017 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 3018 if (fd >= 0)
1569 { 3019 {
1570 ev_io_set (&once->io, fd, events); 3020 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 3021 ev_io_start (EV_A_ &once->io);
1572 } 3022 }
1573 3023
1574 ev_watcher_init (&once->to, once_cb_to); 3024 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 3025 if (timeout >= 0.)
1576 { 3026 {
1577 ev_timer_set (&once->to, timeout, 0.); 3027 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 3028 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 3029 }
1581} 3030}
1582 3031
3032#if EV_MULTIPLICITY
3033 #include "ev_wrap.h"
3034#endif
3035
3036#ifdef __cplusplus
3037}
3038#endif
3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines