ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.257 by root, Sun Jun 29 22:32:51 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
422 W w; 455 W w;
423 int events; 456 int events;
424} ANPENDING; 457} ANPENDING;
425 458
426#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
427typedef struct 461typedef struct
428{ 462{
429 WL head; 463 WL head;
430} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
431#endif 483#endif
432 484
433#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
434 486
435 struct ev_loop 487 struct ev_loop
513 struct timeval tv; 565 struct timeval tv;
514 566
515 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
518 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
519#endif 574#endif
520 } 575 }
521} 576}
522 577
656 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
657 712
658#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
659 if (events) 714 if (events)
660 { 715 {
661 unsigned long argp; 716 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 719 #else
665 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
666 #endif 721 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 723 }
669#endif 724#endif
670 725
671 { 726 {
672 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
725{ 780{
726 int fd; 781 int fd;
727 782
728 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 784 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
732} 787}
733 788
734/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 790static void noinline
760} 815}
761 816
762/*****************************************************************************/ 817/*****************************************************************************/
763 818
764/* 819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
765 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 828 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
769 */ 830 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 831#if EV_USE_4HEAP
772 832
773#define DHEAP 4 833#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775 835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
776/* towards the root */ 836#define UPHEAP_DONE(p,k) ((p) == (k))
777void inline_speed
778upheap (WT *heap, int k)
779{
780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
782
783 for (;;)
784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798 837
799/* away from the root */ 838/* away from the root */
800void inline_speed 839void inline_speed
801downheap (WT *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
802{ 841{
803 WT w = heap [k]; 842 ANHE he = heap [k];
804 WT *E = heap + N + HEAP0; 843 ANHE *E = heap + N + HEAP0;
805 844
806 for (;;) 845 for (;;)
807 { 846 {
808 ev_tstamp minat; 847 ev_tstamp minat;
809 WT *minpos; 848 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 850
812 // find minimum child 851 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 852 if (expect_true (pos + DHEAP - 1 < E))
814 { 853 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 858 }
820 else if (pos < E) 859 else if (pos < E)
821 { 860 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 865 }
827 else 866 else
828 break; 867 break;
829 868
830 if (w->at <= minat) 869 if (ANHE_at (he) <= minat)
831 break; 870 break;
832 871
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
835 874
836 k = minpos - heap; 875 k = minpos - heap;
837 } 876 }
838 877
839 heap [k] = w; 878 heap [k] = he;
840 ev_active (heap [k]) = k; 879 ev_active (ANHE_w (he)) = k;
841} 880}
842 881
843#else // 4HEAP 882#else /* 4HEAP */
844 883
845#define HEAP0 1 884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
846 917
847/* towards the root */ 918/* towards the root */
848void inline_speed 919void inline_speed
849upheap (WT *heap, int k) 920upheap (ANHE *heap, int k)
850{ 921{
851 WT w = heap [k]; 922 ANHE he = heap [k];
852 923
853 for (;;) 924 for (;;)
854 { 925 {
855 int p = k >> 1; 926 int p = HPARENT (k);
856 927
857 /* maybe we could use a dummy element at heap [0]? */ 928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
858 if (!p || heap [p]->at <= w->at)
859 break; 929 break;
860 930
861 heap [k] = heap [p]; 931 heap [k] = heap [p];
862 ev_active (heap [k]) = k; 932 ev_active (ANHE_w (heap [k])) = k;
863 k = p; 933 k = p;
864 } 934 }
865 935
866 heap [k] = w; 936 heap [k] = he;
867 ev_active (heap [k]) = k; 937 ev_active (ANHE_w (he)) = k;
868} 938}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
890 ((W)heap [k])->active = k;
891
892 k = c;
893 }
894
895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899 939
900void inline_size 940void inline_size
901adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
902{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
903 upheap (heap, k); 944 upheap (heap, k);
945 else
904 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
905} 959}
906 960
907/*****************************************************************************/ 961/*****************************************************************************/
908 962
909typedef struct 963typedef struct
933 987
934void inline_speed 988void inline_speed
935fd_intern (int fd) 989fd_intern (int fd)
936{ 990{
937#ifdef _WIN32 991#ifdef _WIN32
938 int arg = 1; 992 unsigned long arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else 994#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif 997#endif
1427 1481
1428 postfork = 0; 1482 postfork = 0;
1429} 1483}
1430 1484
1431#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1432struct ev_loop * 1487struct ev_loop *
1433ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1434{ 1489{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 1491
1454void 1509void
1455ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1456{ 1511{
1457 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1458} 1513}
1514
1515#if EV_VERIFY
1516void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1459#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1460 1615
1461#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1462struct ev_loop * 1617struct ev_loop *
1463ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1464#else 1619#else
1540 { 1695 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542 1697
1543 p->w->pending = 0; 1698 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1545 } 1701 }
1546 } 1702 }
1547} 1703}
1548 1704
1549#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1570#endif 1726#endif
1571 1727
1572void inline_size 1728void inline_size
1573timers_reify (EV_P) 1729timers_reify (EV_P)
1574{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 1734 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1578 1736
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580 1738
1581 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1582 if (w->repeat) 1740 if (w->repeat)
1583 { 1741 {
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585
1586 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1589 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1590 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1591 } 1750 }
1592 else 1751 else
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 1753
1754 EV_FREQUENT_CHECK;
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1596 } 1756 }
1597} 1757}
1598 1758
1599#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1600void inline_size 1760void inline_size
1601periodics_reify (EV_P) 1761periodics_reify (EV_P)
1602{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 1766 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1606 1768
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608 1770
1609 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1610 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1611 { 1773 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 1779 downheap (periodics, periodiccnt, HEAP0);
1615 } 1780 }
1616 else if (w->interval) 1781 else if (w->interval)
1617 { 1782 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1621 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1622 } 1799 }
1623 else 1800 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 1802
1803 EV_FREQUENT_CHECK;
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1627 } 1805 }
1628} 1806}
1629 1807
1630static void noinline 1808static void noinline
1631periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1632{ 1810{
1633 int i; 1811 int i;
1634 1812
1635 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 1815 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 1817
1640 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 1820 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1644 }
1645 1822
1646 /* now rebuild the heap */ 1823 ANHE_at_cache (periodics [i]);
1647 for (i = periodiccnt >> 1; --i; ) 1824 }
1825
1648 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1649} 1827}
1650#endif 1828#endif
1651 1829
1652void inline_speed 1830void inline_speed
1653time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1707 { 1885 {
1708#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1710#endif 1888#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now; 1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1714 } 1896 }
1715 1897
1716 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1717 } 1899 }
1718} 1900}
1738 1920
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1740 1922
1741 do 1923 do
1742 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1743#ifndef _WIN32 1929#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1746 { 1932 {
1747 curpid = getpid (); 1933 curpid = getpid ();
1788 1974
1789 waittime = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1790 1976
1791 if (timercnt) 1977 if (timercnt)
1792 { 1978 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1794 if (waittime > to) waittime = to; 1980 if (waittime > to) waittime = to;
1795 } 1981 }
1796 1982
1797#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 1984 if (periodiccnt)
1799 { 1985 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1801 if (waittime > to) waittime = to; 1987 if (waittime > to) waittime = to;
1802 } 1988 }
1803#endif 1989#endif
1804 1990
1805 if (expect_false (waittime < timeout_blocktime)) 1991 if (expect_false (waittime < timeout_blocktime))
1942 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1943 return; 2129 return;
1944 2130
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1946 2132
2133 EV_FREQUENT_CHECK;
2134
1947 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1949 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1950 2138
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1953} 2143}
1954 2144
1955void noinline 2145void noinline
1956ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1957{ 2147{
1958 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1960 return; 2150 return;
1961 2151
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1963 2155
1964 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1966 2158
1967 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1968} 2162}
1969 2163
1970void noinline 2164void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1972{ 2166{
1975 2169
1976 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
1977 2171
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2180 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
1984 2182
2183 EV_FREQUENT_CHECK;
2184
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 2186}
1987 2187
1988void noinline 2188void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1990{ 2190{
1991 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1993 return; 2193 return;
1994 2194
2195 EV_FREQUENT_CHECK;
2196
1995 { 2197 {
1996 int active = ev_active (w); 2198 int active = ev_active (w);
1997 2199
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 2201
2202 --timercnt;
2203
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2001 { 2205 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2004 } 2208 }
2005
2006 --timercnt;
2007 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2008 2212
2009 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2010 2214
2011 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2012} 2216}
2013 2217
2014void noinline 2218void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2016{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2017 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2018 { 2224 {
2019 if (w->repeat) 2225 if (w->repeat)
2020 { 2226 {
2021 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2023 } 2230 }
2024 else 2231 else
2025 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2026 } 2233 }
2027 else if (w->repeat) 2234 else if (w->repeat)
2028 { 2235 {
2029 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2031 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2032} 2241}
2033 2242
2034#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2035void noinline 2244void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 2257 }
2049 else 2258 else
2050 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2051 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2056 2269
2270 EV_FREQUENT_CHECK;
2271
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 2273}
2059 2274
2060void noinline 2275void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
2062{ 2277{
2063 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2065 return; 2280 return;
2066 2281
2282 EV_FREQUENT_CHECK;
2283
2067 { 2284 {
2068 int active = ev_active (w); 2285 int active = ev_active (w);
2069 2286
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 2288
2289 --periodiccnt;
2290
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2073 { 2292 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2076 } 2295 }
2077
2078 --periodiccnt;
2079 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2080 2299
2081 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2082} 2301}
2083 2302
2084void noinline 2303void noinline
2104 return; 2323 return;
2105 2324
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2107 2326
2108 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2109 2330
2110 { 2331 {
2111#ifndef _WIN32 2332#ifndef _WIN32
2112 sigset_t full, prev; 2333 sigset_t full, prev;
2113 sigfillset (&full); 2334 sigfillset (&full);
2134 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2137#endif 2358#endif
2138 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2139} 2362}
2140 2363
2141void noinline 2364void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2143{ 2366{
2144 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2146 return; 2369 return;
2147 2370
2371 EV_FREQUENT_CHECK;
2372
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2150 2375
2151 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2152 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2153} 2380}
2154 2381
2155void 2382void
2156ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2157{ 2384{
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 2387#endif
2161 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2162 return; 2389 return;
2163 2390
2391 EV_FREQUENT_CHECK;
2392
2164 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2166} 2397}
2167 2398
2168void 2399void
2169ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2170{ 2401{
2171 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2173 return; 2404 return;
2174 2405
2406 EV_FREQUENT_CHECK;
2407
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2177} 2412}
2178 2413
2179#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2180 2415
2181# ifdef _WIN32 2416# ifdef _WIN32
2336 } 2571 }
2337 2572
2338 } 2573 }
2339} 2574}
2340 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 2582#endif
2342 2583
2343void 2584void
2344ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2345{ 2586{
2409 else 2650 else
2410#endif 2651#endif
2411 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2412 2653
2413 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2414} 2657}
2415 2658
2416void 2659void
2417ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2418{ 2661{
2419 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2421 return; 2664 return;
2422 2665
2666 EV_FREQUENT_CHECK;
2667
2423#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2425#endif 2670#endif
2426 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2427 2672
2428 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2429} 2676}
2430#endif 2677#endif
2431 2678
2432#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2433void 2680void
2435{ 2682{
2436 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2437 return; 2684 return;
2438 2685
2439 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2440 2689
2441 { 2690 {
2442 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2443 2692
2444 ++idleall; 2693 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2446 2695
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2449 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2450} 2701}
2451 2702
2452void 2703void
2453ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2454{ 2705{
2455 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2457 return; 2708 return;
2458 2709
2710 EV_FREQUENT_CHECK;
2711
2459 { 2712 {
2460 int active = ev_active (w); 2713 int active = ev_active (w);
2461 2714
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 2717
2465 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2466 --idleall; 2719 --idleall;
2467 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2468} 2723}
2469#endif 2724#endif
2470 2725
2471void 2726void
2472ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2473{ 2728{
2474 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2475 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2476 2733
2477 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2480} 2739}
2481 2740
2482void 2741void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2484{ 2743{
2485 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2487 return; 2746 return;
2488 2747
2748 EV_FREQUENT_CHECK;
2749
2489 { 2750 {
2490 int active = ev_active (w); 2751 int active = ev_active (w);
2491 2752
2492 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2494 } 2755 }
2495 2756
2496 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2497} 2760}
2498 2761
2499void 2762void
2500ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2501{ 2764{
2502 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2503 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2504 2769
2505 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2508} 2775}
2509 2776
2510void 2777void
2511ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2512{ 2779{
2513 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2515 return; 2782 return;
2516 2783
2784 EV_FREQUENT_CHECK;
2785
2517 { 2786 {
2518 int active = ev_active (w); 2787 int active = ev_active (w);
2519 2788
2520 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2522 } 2791 }
2523 2792
2524 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2525} 2796}
2526 2797
2527#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2528void noinline 2799void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2576 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 2850 }
2580 2851
2852 EV_FREQUENT_CHECK;
2853
2581 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2583 2856
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2587 2860
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 2862
2590 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2591} 2866}
2592 2867
2593void 2868void
2594ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2595{ 2870{
2596 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2598 return; 2873 return;
2599 2874
2875 EV_FREQUENT_CHECK;
2876
2600 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2602 2879
2603 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2604} 2883}
2605#endif 2884#endif
2606 2885
2607#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2608void 2887void
2609ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2610{ 2889{
2611 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2612 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2613 2894
2614 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2617} 2900}
2618 2901
2619void 2902void
2620ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2621{ 2904{
2622 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2624 return; 2907 return;
2625 2908
2909 EV_FREQUENT_CHECK;
2910
2626 { 2911 {
2627 int active = ev_active (w); 2912 int active = ev_active (w);
2628 2913
2629 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2631 } 2916 }
2632 2917
2633 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2634} 2921}
2635#endif 2922#endif
2636 2923
2637#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2638void 2925void
2640{ 2927{
2641 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2642 return; 2929 return;
2643 2930
2644 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2645 2934
2646 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2649} 2940}
2650 2941
2651void 2942void
2652ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2653{ 2944{
2654 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2656 return; 2947 return;
2657 2948
2949 EV_FREQUENT_CHECK;
2950
2658 { 2951 {
2659 int active = ev_active (w); 2952 int active = ev_active (w);
2660 2953
2661 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2663 } 2956 }
2664 2957
2665 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2666} 2961}
2667 2962
2668void 2963void
2669ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2670{ 2965{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines