ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.257 by root, Sun Jun 29 22:32:51 2008 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
164# endif 178# endif
165#endif 179#endif
166 180
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
168 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
169#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
172# else 194# else
173# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
174# endif 196# endif
175#endif 197#endif
176 198
177#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 201#endif
180 202
181#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
262 284
263#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif 287#endif
266 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 304
269#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
286# include <sys/select.h> 322# include <sys/select.h>
287# endif 323# endif
288#endif 324#endif
289 325
290#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
291# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
292#endif 335#endif
293 336
294#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h> 338# include <winsock.h>
296#endif 339#endif
348# define inline_speed static noinline 391# define inline_speed static noinline
349#else 392#else
350# define inline_speed static inline 393# define inline_speed static inline
351#endif 394#endif
352 395
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
355 403
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
358 406
359typedef ev_watcher *W; 407typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
362 410
363#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
365 413
366#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif 422#endif
371 423
372#ifdef _WIN32 424#ifdef _WIN32
373# include "ev_win32.c" 425# include "ev_win32.c"
382{ 434{
383 syserr_cb = cb; 435 syserr_cb = cb;
384} 436}
385 437
386static void noinline 438static void noinline
387syserr (const char *msg) 439ev_syserr (const char *msg)
388{ 440{
389 if (!msg) 441 if (!msg)
390 msg = "(libev) system error"; 442 msg = "(libev) system error";
391 443
392 if (syserr_cb) 444 if (syserr_cb)
438#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
440 492
441/*****************************************************************************/ 493/*****************************************************************************/
442 494
495/* file descriptor info structure */
443typedef struct 496typedef struct
444{ 497{
445 WL head; 498 WL head;
446 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
448#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
449 SOCKET handle; 507 SOCKET handle;
450#endif 508#endif
451} ANFD; 509} ANFD;
452 510
511/* stores the pending event set for a given watcher */
453typedef struct 512typedef struct
454{ 513{
455 W w; 514 W w;
456 int events; 515 int events; /* the pending event set for the given watcher */
457} ANPENDING; 516} ANPENDING;
458 517
459#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
461typedef struct 520typedef struct
464} ANFS; 523} ANFS;
465#endif 524#endif
466 525
467/* Heap Entry */ 526/* Heap Entry */
468#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
469 typedef struct { 529 typedef struct {
470 ev_tstamp at; 530 ev_tstamp at;
471 WT w; 531 WT w;
472 } ANHE; 532 } ANHE;
473 533
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 537#else
538 /* a heap element */
478 typedef WT ANHE; 539 typedef WT ANHE;
479 540
480 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
508 569
509#endif 570#endif
510 571
511/*****************************************************************************/ 572/*****************************************************************************/
512 573
574#ifndef EV_HAVE_EV_TIME
513ev_tstamp 575ev_tstamp
514ev_time (void) 576ev_time (void)
515{ 577{
516#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
517 struct timespec ts; 581 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 584 }
585#endif
586
521 struct timeval tv; 587 struct timeval tv;
522 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 590}
591#endif
526 592
527ev_tstamp inline_size 593inline_size ev_tstamp
528get_clock (void) 594get_clock (void)
529{ 595{
530#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
532 { 598 {
566 632
567 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569 635
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 637 /* somehting not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 638 /* by older ones */
573 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
574#endif 640#endif
575 } 641 }
576} 642}
577 643
578/*****************************************************************************/ 644/*****************************************************************************/
579 645
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 647
582int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
583array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
584{ 652{
585 int ncur = cur + 1; 653 int ncur = cur + 1;
586 654
587 do 655 do
604array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
605{ 673{
606 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
608} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 680
610#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
612 { \ 683 { \
613 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 697 }
627#endif 698#endif
628 699
629#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 702
632/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
633 710
634void noinline 711void noinline
635ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
636{ 713{
637 W w_ = (W)w; 714 W w_ = (W)w;
646 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
648 } 725 }
649} 726}
650 727
651void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 745{
654 int i; 746 int i;
655 747
656 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
658} 750}
659 751
660/*****************************************************************************/ 752/*****************************************************************************/
661 753
662void inline_size 754inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
677{ 756{
678 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
679 ev_io *w; 758 ev_io *w;
680 759
692{ 771{
693 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
695} 774}
696 775
697void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
698fd_reify (EV_P) 779fd_reify (EV_P)
699{ 780{
700 int i; 781 int i;
701 782
702 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
717 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else 800 #else
720 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
721 #endif 802 #endif
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
723 } 804 }
724#endif 805#endif
725 806
726 { 807 {
727 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
729 810
730 anfd->reify = 0; 811 anfd->reify = 0;
731 anfd->events = events; 812 anfd->events = events;
732 813
733 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
735 } 816 }
736 } 817 }
737 818
738 fdchangecnt = 0; 819 fdchangecnt = 0;
739} 820}
740 821
741void inline_size 822/* something about the given fd changed */
823inline_size void
742fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
743{ 825{
744 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
746 828
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
752 } 834 }
753} 835}
754 836
755void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
756fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
757{ 840{
758 ev_io *w; 841 ev_io *w;
759 842
760 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 847 }
765} 848}
766 849
767int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
768fd_valid (int fd) 852fd_valid (int fd)
769{ 853{
770#ifdef _WIN32 854#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
772#else 856#else
808 892
809 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 894 if (anfds [fd].events)
811 { 895 {
812 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
814 } 899 }
815} 900}
816 901
817/*****************************************************************************/ 902/*****************************************************************************/
818 903
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 921#define UPHEAP_DONE(p,k) ((p) == (k))
837 922
838/* away from the root */ 923/* away from the root */
839void inline_speed 924inline_speed void
840downheap (ANHE *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
841{ 926{
842 ANHE he = heap [k]; 927 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 928 ANHE *E = heap + N + HEAP0;
844 929
884#define HEAP0 1 969#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 970#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 971#define UPHEAP_DONE(p,k) (!(p))
887 972
888/* away from the root */ 973/* away from the root */
889void inline_speed 974inline_speed void
890downheap (ANHE *heap, int N, int k) 975downheap (ANHE *heap, int N, int k)
891{ 976{
892 ANHE he = heap [k]; 977 ANHE he = heap [k];
893 978
894 for (;;) 979 for (;;)
914 ev_active (ANHE_w (he)) = k; 999 ev_active (ANHE_w (he)) = k;
915} 1000}
916#endif 1001#endif
917 1002
918/* towards the root */ 1003/* towards the root */
919void inline_speed 1004inline_speed void
920upheap (ANHE *heap, int k) 1005upheap (ANHE *heap, int k)
921{ 1006{
922 ANHE he = heap [k]; 1007 ANHE he = heap [k];
923 1008
924 for (;;) 1009 for (;;)
935 1020
936 heap [k] = he; 1021 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 1022 ev_active (ANHE_w (he)) = k;
938} 1023}
939 1024
940void inline_size 1025/* move an element suitably so it is in a correct place */
1026inline_size void
941adjustheap (ANHE *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
942{ 1028{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
944 upheap (heap, k); 1030 upheap (heap, k);
945 else 1031 else
946 downheap (heap, N, k); 1032 downheap (heap, N, k);
947} 1033}
948 1034
949/* rebuild the heap: this function is used only once and executed rarely */ 1035/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 1036inline_size void
951reheap (ANHE *heap, int N) 1037reheap (ANHE *heap, int N)
952{ 1038{
953 int i; 1039 int i;
954 1040
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 1044 upheap (heap, i + HEAP0);
959} 1045}
960 1046
961/*****************************************************************************/ 1047/*****************************************************************************/
962 1048
1049/* associate signal watchers to a signal signal */
963typedef struct 1050typedef struct
964{ 1051{
965 WL head; 1052 WL head;
966 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
967} ANSIG; 1054} ANSIG;
969static ANSIG *signals; 1056static ANSIG *signals;
970static int signalmax; 1057static int signalmax;
971 1058
972static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
973 1060
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985
986/*****************************************************************************/ 1061/*****************************************************************************/
987 1062
988void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
989fd_intern (int fd) 1066fd_intern (int fd)
990{ 1067{
991#ifdef _WIN32 1068#ifdef _WIN32
992 unsigned long arg = 1; 1069 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
998} 1075}
999 1076
1000static void noinline 1077static void noinline
1001evpipe_init (EV_P) 1078evpipe_init (EV_P)
1002{ 1079{
1003 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
1004 { 1081 {
1005#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
1007 { 1084 {
1008 evpipe [0] = -1; 1085 evpipe [0] = -1;
1009 fd_intern (evfd); 1086 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
1011 } 1088 }
1012 else 1089 else
1013#endif 1090#endif
1014 { 1091 {
1015 while (pipe (evpipe)) 1092 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
1017 1094
1018 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1021 } 1098 }
1022 1099
1023 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 } 1102 }
1026} 1103}
1027 1104
1028void inline_size 1105inline_size void
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{ 1107{
1031 if (!*flag) 1108 if (!*flag)
1032 { 1109 {
1033 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
1046 1123
1047 errno = old_errno; 1124 errno = old_errno;
1048 } 1125 }
1049} 1126}
1050 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1051static void 1130static void
1052pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
1053{ 1132{
1054#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1055 if (evfd >= 0) 1134 if (evfd >= 0)
1111ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
1112{ 1191{
1113 WL w; 1192 WL w;
1114 1193
1115#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif 1196#endif
1118 1197
1119 --signum; 1198 --signum;
1120 1199
1121 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
1137 1216
1138#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1140#endif 1219#endif
1141 1220
1142void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1144{ 1224{
1145 ev_child *w; 1225 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 1227
1160 1240
1161#ifndef WCONTINUED 1241#ifndef WCONTINUED
1162# define WCONTINUED 0 1242# define WCONTINUED 0
1163#endif 1243#endif
1164 1244
1245/* called on sigchld etc., calls waitpid */
1165static void 1246static void
1166childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1167{ 1248{
1168 int pid, status; 1249 int pid, status;
1169 1250
1250 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1253#endif 1334#endif
1254#ifdef __APPLE__ 1335#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1257#endif 1339#endif
1258 1340
1259 return flags; 1341 return flags;
1260} 1342}
1261 1343
1281ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1282{ 1364{
1283 return loop_count; 1365 return loop_count;
1284} 1366}
1285 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1286void 1374void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{ 1376{
1289 io_blocktime = interval; 1377 io_blocktime = interval;
1290} 1378}
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{ 1382{
1295 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1296} 1384}
1297 1385
1386/* initialise a loop structure, must be zero-initialised */
1298static void noinline 1387static void noinline
1299loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1300{ 1389{
1301 if (!backend) 1390 if (!backend)
1302 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1303#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1304 { 1404 {
1305 struct timespec ts; 1405 struct timespec ts;
1406
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 1408 have_monotonic = 1;
1308 } 1409 }
1309#endif 1410#endif
1310 1411
1311 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1312 mn_now = get_clock (); 1413 mn_now = get_clock ();
1313 now_floor = mn_now; 1414 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1315 1417
1316 io_blocktime = 0.; 1418 io_blocktime = 0.;
1317 timeout_blocktime = 0.; 1419 timeout_blocktime = 0.;
1318 backend = 0; 1420 backend = 0;
1319 backend_fd = -1; 1421 backend_fd = -1;
1350#endif 1452#endif
1351#if EV_USE_SELECT 1453#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 1455#endif
1354 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1355 ev_init (&pipeev, pipecb); 1459 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1357 } 1461 }
1358} 1462}
1359 1463
1464/* free up a loop structure */
1360static void noinline 1465static void noinline
1361loop_destroy (EV_P) 1466loop_destroy (EV_P)
1362{ 1467{
1363 int i; 1468 int i;
1364 1469
1365 if (ev_is_active (&pipeev)) 1470 if (ev_is_active (&pipe_w))
1366 { 1471 {
1367 ev_ref (EV_A); /* signal watcher */ 1472 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev); 1473 ev_io_stop (EV_A_ &pipe_w);
1369 1474
1370#if EV_USE_EVENTFD 1475#if EV_USE_EVENTFD
1371 if (evfd >= 0) 1476 if (evfd >= 0)
1372 close (evfd); 1477 close (evfd);
1373#endif 1478#endif
1412 } 1517 }
1413 1518
1414 ev_free (anfds); anfdmax = 0; 1519 ev_free (anfds); anfdmax = 0;
1415 1520
1416 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 1523 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 1524 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 1525#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 1526 array_free (periodic, EMPTY);
1421#endif 1527#endif
1430 1536
1431 backend = 0; 1537 backend = 0;
1432} 1538}
1433 1539
1434#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 1541inline_size void infy_fork (EV_P);
1436#endif 1542#endif
1437 1543
1438void inline_size 1544inline_size void
1439loop_fork (EV_P) 1545loop_fork (EV_P)
1440{ 1546{
1441#if EV_USE_PORT 1547#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 1549#endif
1449#endif 1555#endif
1450#if EV_USE_INOTIFY 1556#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 1557 infy_fork (EV_A);
1452#endif 1558#endif
1453 1559
1454 if (ev_is_active (&pipeev)) 1560 if (ev_is_active (&pipe_w))
1455 { 1561 {
1456 /* this "locks" the handlers against writing to the pipe */ 1562 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */ 1563 /* while we modify the fd vars */
1458 gotsig = 1; 1564 gotsig = 1;
1459#if EV_ASYNC_ENABLE 1565#if EV_ASYNC_ENABLE
1460 gotasync = 1; 1566 gotasync = 1;
1461#endif 1567#endif
1462 1568
1463 ev_ref (EV_A); 1569 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 1570 ev_io_stop (EV_A_ &pipe_w);
1465 1571
1466#if EV_USE_EVENTFD 1572#if EV_USE_EVENTFD
1467 if (evfd >= 0) 1573 if (evfd >= 0)
1468 close (evfd); 1574 close (evfd);
1469#endif 1575#endif
1474 close (evpipe [1]); 1580 close (evpipe [1]);
1475 } 1581 }
1476 1582
1477 evpipe_init (EV_A); 1583 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 1584 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ); 1585 pipecb (EV_A_ &pipe_w, EV_READ);
1480 } 1586 }
1481 1587
1482 postfork = 0; 1588 postfork = 0;
1483} 1589}
1484 1590
1511{ 1617{
1512 postfork = 1; /* must be in line with ev_default_fork */ 1618 postfork = 1; /* must be in line with ev_default_fork */
1513} 1619}
1514 1620
1515#if EV_VERIFY 1621#if EV_VERIFY
1516void noinline 1622static void noinline
1517verify_watcher (EV_P_ W w) 1623verify_watcher (EV_P_ W w)
1518{ 1624{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 1626
1521 if (w->pending) 1627 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 1629}
1524 1630
1525static void noinline 1631static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N) 1632verify_heap (EV_P_ ANHE *heap, int N)
1527{ 1633{
1528 int i; 1634 int i;
1529 1635
1530 for (i = HEAP0; i < N + HEAP0; ++i) 1636 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 1637 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 1641
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 1643 }
1538} 1644}
1539 1645
1540static void noinline 1646static void noinline
1541array_verify (EV_P_ W *ws, int cnt) 1647array_verify (EV_P_ W *ws, int cnt)
1542{ 1648{
1543 while (cnt--) 1649 while (cnt--)
1544 { 1650 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 1652 verify_watcher (EV_A_ ws [cnt]);
1547 } 1653 }
1548} 1654}
1549#endif 1655#endif
1550 1656
1557 1663
1558 assert (activecnt >= -1); 1664 assert (activecnt >= -1);
1559 1665
1560 assert (fdchangemax >= fdchangecnt); 1666 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 1667 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 1669
1564 assert (anfdmax >= 0); 1670 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 1671 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next) 1672 for (w = anfds [i].head; w; w = w->next)
1567 { 1673 {
1568 verify_watcher (EV_A_ (W)w); 1674 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 1677 }
1572 1678
1573 assert (timermax >= timercnt); 1679 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 1680 verify_heap (EV_A_ timers, timercnt);
1575 1681
1652{ 1758{
1653#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
1654 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif 1761#endif
1656 1762
1763 ev_default_loop_ptr = 0;
1764
1657#ifndef _WIN32 1765#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
1660#endif 1768#endif
1661 1769
1667{ 1775{
1668#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif 1778#endif
1671 1779
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */ 1780 postfork = 1; /* must be in line with ev_loop_fork */
1674} 1781}
1675 1782
1676/*****************************************************************************/ 1783/*****************************************************************************/
1677 1784
1678void 1785void
1679ev_invoke (EV_P_ void *w, int revents) 1786ev_invoke (EV_P_ void *w, int revents)
1680{ 1787{
1681 EV_CB_INVOKE ((W)w, revents); 1788 EV_CB_INVOKE ((W)w, revents);
1682} 1789}
1683 1790
1684void inline_speed 1791void
1685call_pending (EV_P) 1792ev_invoke_pending (EV_P)
1686{ 1793{
1687 int pri; 1794 int pri;
1688 1795
1689 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1690 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1691 { 1798 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693 1800
1694 if (expect_true (p->w))
1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1697 1803
1698 p->w->pending = 0; 1804 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 1806 EV_FREQUENT_CHECK;
1701 }
1702 } 1807 }
1703} 1808}
1704 1809
1705#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1706void inline_size 1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1707idle_reify (EV_P) 1814idle_reify (EV_P)
1708{ 1815{
1709 if (expect_false (idleall)) 1816 if (expect_false (idleall))
1710 { 1817 {
1711 int pri; 1818 int pri;
1723 } 1830 }
1724 } 1831 }
1725} 1832}
1726#endif 1833#endif
1727 1834
1728void inline_size 1835/* make timers pending */
1836inline_size void
1729timers_reify (EV_P) 1837timers_reify (EV_P)
1730{ 1838{
1731 EV_FREQUENT_CHECK; 1839 EV_FREQUENT_CHECK;
1732 1840
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 1842 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1843 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1742 ev_at (w) += w->repeat; 1852 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 1853 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 1854 ev_at (w) = mn_now;
1745 1855
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 1857
1748 ANHE_at_cache (timers [HEAP0]); 1858 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1750 } 1866 }
1751 else 1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 1868
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1756 } 1870 }
1757} 1871}
1758 1872
1759#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1760void inline_size 1874/* make periodics pending */
1875inline_size void
1761periodics_reify (EV_P) 1876periodics_reify (EV_P)
1762{ 1877{
1763 EV_FREQUENT_CHECK; 1878 EV_FREQUENT_CHECK;
1764 1879
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 1881 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1882 int feed_count = 0;
1768 1883
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1884 do
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 1894
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 1896
1778 ANHE_at_cache (periodics [HEAP0]); 1897 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1780 } 1924 }
1781 else if (w->interval) 1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 1926
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 1928 }
1806} 1929}
1807 1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1808static void noinline 1933static void noinline
1809periodics_reschedule (EV_P) 1934periodics_reschedule (EV_P)
1810{ 1935{
1811 int i; 1936 int i;
1812 1937
1825 1950
1826 reheap (periodics, periodiccnt); 1951 reheap (periodics, periodiccnt);
1827} 1952}
1828#endif 1953#endif
1829 1954
1830void inline_speed 1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 1972time_update (EV_P_ ev_tstamp max_block)
1832{ 1973{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 1974#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 1975 if (expect_true (have_monotonic))
1837 { 1976 {
1977 int i;
1838 ev_tstamp odiff = rtmn_diff; 1978 ev_tstamp odiff = rtmn_diff;
1839 1979
1840 mn_now = get_clock (); 1980 mn_now = get_clock ();
1841 1981
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1868 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 2009 mn_now = get_clock ();
1870 now_floor = mn_now; 2010 now_floor = mn_now;
1871 } 2011 }
1872 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 2015# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2016 periodics_reschedule (EV_A);
1875# endif 2017# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 2018 }
1879 else 2019 else
1880#endif 2020#endif
1881 { 2021 {
1882 ev_rt_now = ev_time (); 2022 ev_rt_now = ev_time ();
1883 2023
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1888#endif 2030#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 2031 }
1897 2032
1898 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1899 } 2034 }
1900} 2035}
1901 2036
1902void 2037void
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914static int loop_done;
1915
1916void
1917ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1918{ 2039{
2040 ++loop_depth;
2041
1919 loop_done = EVUNLOOP_CANCEL; 2042 loop_done = EVUNLOOP_CANCEL;
1920 2043
1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1922 2045
1923 do 2046 do
1924 { 2047 {
1925#if EV_VERIFY >= 2 2048#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A); 2049 ev_loop_verify (EV_A);
1939 /* we might have forked, so queue fork handlers */ 2062 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork)) 2063 if (expect_false (postfork))
1941 if (forkcnt) 2064 if (forkcnt)
1942 { 2065 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A); 2067 invoke_cb (EV_A);
1945 } 2068 }
1946#endif 2069#endif
1947 2070
1948 /* queue prepare watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1949 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1950 { 2073 {
1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952 call_pending (EV_A); 2075 invoke_cb (EV_A);
1953 } 2076 }
1954
1955 if (expect_false (!activecnt))
1956 break;
1957 2077
1958 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1959 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1960 loop_fork (EV_A); 2080 loop_fork (EV_A);
1961 2081
1967 ev_tstamp waittime = 0.; 2087 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.; 2088 ev_tstamp sleeptime = 0.;
1969 2089
1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1971 { 2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
1972 /* update time to cancel out callback processing overhead */ 2095 /* update time to cancel out callback processing overhead */
1973 time_update (EV_A_ 1e100); 2096 time_update (EV_A_ 1e100);
1974 2097
1975 waittime = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1976 2099
1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1987 if (waittime > to) waittime = to; 2110 if (waittime > to) waittime = to;
1988 } 2111 }
1989#endif 2112#endif
1990 2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
1991 if (expect_false (waittime < timeout_blocktime)) 2115 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime; 2116 waittime = timeout_blocktime;
1993 2117
1994 sleeptime = waittime - backend_fudge; 2118 /* extra check because io_blocktime is commonly 0 */
1995
1996 if (expect_true (sleeptime > io_blocktime)) 2119 if (expect_false (io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 { 2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2001 ev_sleep (sleeptime); 2128 ev_sleep (sleeptime);
2002 waittime -= sleeptime; 2129 waittime -= sleeptime;
2130 }
2003 } 2131 }
2004 } 2132 }
2005 2133
2006 ++loop_count; 2134 ++loop_count;
2007 backend_poll (EV_A_ waittime); 2135 backend_poll (EV_A_ waittime);
2023 2151
2024 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
2025 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2027 2155
2028 call_pending (EV_A); 2156 invoke_cb (EV_A);
2029 } 2157 }
2030 while (expect_true ( 2158 while (expect_true (
2031 activecnt 2159 activecnt
2032 && !loop_done 2160 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2034 )); 2162 ));
2035 2163
2036 if (loop_done == EVUNLOOP_ONE) 2164 if (loop_done == EVUNLOOP_ONE)
2037 loop_done = EVUNLOOP_CANCEL; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
2038} 2168}
2039 2169
2040void 2170void
2041ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
2042{ 2172{
2043 loop_done = how; 2173 loop_done = how;
2044} 2174}
2045 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
2046/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
2047 2215
2048void inline_size 2216inline_size void
2049wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
2050{ 2218{
2051 elem->next = *head; 2219 elem->next = *head;
2052 *head = elem; 2220 *head = elem;
2053} 2221}
2054 2222
2055void inline_size 2223inline_size void
2056wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
2057{ 2225{
2058 while (*head) 2226 while (*head)
2059 { 2227 {
2060 if (*head == elem) 2228 if (*head == elem)
2065 2233
2066 head = &(*head)->next; 2234 head = &(*head)->next;
2067 } 2235 }
2068} 2236}
2069 2237
2070void inline_speed 2238/* internal, faster, version of ev_clear_pending */
2239inline_speed void
2071clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
2072{ 2241{
2073 if (w->pending) 2242 if (w->pending)
2074 { 2243 {
2075 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2076 w->pending = 0; 2245 w->pending = 0;
2077 } 2246 }
2078} 2247}
2079 2248
2080int 2249int
2084 int pending = w_->pending; 2253 int pending = w_->pending;
2085 2254
2086 if (expect_true (pending)) 2255 if (expect_true (pending))
2087 { 2256 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2089 w_->pending = 0; 2259 w_->pending = 0;
2090 p->w = 0;
2091 return p->events; 2260 return p->events;
2092 } 2261 }
2093 else 2262 else
2094 return 0; 2263 return 0;
2095} 2264}
2096 2265
2097void inline_size 2266inline_size void
2098pri_adjust (EV_P_ W w) 2267pri_adjust (EV_P_ W w)
2099{ 2268{
2100 int pri = w->priority; 2269 int pri = ev_priority (w);
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri; 2272 ev_set_priority (w, pri);
2104} 2273}
2105 2274
2106void inline_speed 2275inline_speed void
2107ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
2108{ 2277{
2109 pri_adjust (EV_A_ w); 2278 pri_adjust (EV_A_ w);
2110 w->active = active; 2279 w->active = active;
2111 ev_ref (EV_A); 2280 ev_ref (EV_A);
2112} 2281}
2113 2282
2114void inline_size 2283inline_size void
2115ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
2116{ 2285{
2117 ev_unref (EV_A); 2286 ev_unref (EV_A);
2118 w->active = 0; 2287 w->active = 0;
2119} 2288}
2126 int fd = w->fd; 2295 int fd = w->fd;
2127 2296
2128 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
2129 return; 2298 return;
2130 2299
2131 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2132 2302
2133 EV_FREQUENT_CHECK; 2303 EV_FREQUENT_CHECK;
2134 2304
2135 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2137 wlist_add (&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
2138 2308
2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2140 w->events &= ~EV_IOFDSET; 2310 w->events &= ~EV__IOFDSET;
2141 2311
2142 EV_FREQUENT_CHECK; 2312 EV_FREQUENT_CHECK;
2143} 2313}
2144 2314
2145void noinline 2315void noinline
2147{ 2317{
2148 clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2319 if (expect_false (!ev_is_active (w)))
2150 return; 2320 return;
2151 2321
2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 2323
2154 EV_FREQUENT_CHECK; 2324 EV_FREQUENT_CHECK;
2155 2325
2156 wlist_del (&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
2157 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
2167 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
2168 return; 2338 return;
2169 2339
2170 ev_at (w) += mn_now; 2340 ev_at (w) += mn_now;
2171 2341
2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 2343
2174 EV_FREQUENT_CHECK; 2344 EV_FREQUENT_CHECK;
2175 2345
2176 ++timercnt; 2346 ++timercnt;
2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2180 ANHE_at_cache (timers [ev_active (w)]); 2350 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w)); 2351 upheap (timers, ev_active (w));
2182 2352
2183 EV_FREQUENT_CHECK; 2353 EV_FREQUENT_CHECK;
2184 2354
2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186} 2356}
2187 2357
2188void noinline 2358void noinline
2189ev_timer_stop (EV_P_ ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
2190{ 2360{
2195 EV_FREQUENT_CHECK; 2365 EV_FREQUENT_CHECK;
2196 2366
2197 { 2367 {
2198 int active = ev_active (w); 2368 int active = ev_active (w);
2199 2369
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 2371
2202 --timercnt; 2372 --timercnt;
2203 2373
2204 if (expect_true (active < timercnt + HEAP0)) 2374 if (expect_true (active < timercnt + HEAP0))
2205 { 2375 {
2249 2419
2250 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 else if (w->interval) 2422 else if (w->interval)
2253 { 2423 {
2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2255 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 } 2427 }
2258 else 2428 else
2259 ev_at (w) = w->offset; 2429 ev_at (w) = w->offset;
2267 ANHE_at_cache (periodics [ev_active (w)]); 2437 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w)); 2438 upheap (periodics, ev_active (w));
2269 2439
2270 EV_FREQUENT_CHECK; 2440 EV_FREQUENT_CHECK;
2271 2441
2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273} 2443}
2274 2444
2275void noinline 2445void noinline
2276ev_periodic_stop (EV_P_ ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
2277{ 2447{
2282 EV_FREQUENT_CHECK; 2452 EV_FREQUENT_CHECK;
2283 2453
2284 { 2454 {
2285 int active = ev_active (w); 2455 int active = ev_active (w);
2286 2456
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 2458
2289 --periodiccnt; 2459 --periodiccnt;
2290 2460
2291 if (expect_true (active < periodiccnt + HEAP0)) 2461 if (expect_true (active < periodiccnt + HEAP0))
2292 { 2462 {
2315 2485
2316void noinline 2486void noinline
2317ev_signal_start (EV_P_ ev_signal *w) 2487ev_signal_start (EV_P_ ev_signal *w)
2318{ 2488{
2319#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif 2491#endif
2322 if (expect_false (ev_is_active (w))) 2492 if (expect_false (ev_is_active (w)))
2323 return; 2493 return;
2324 2494
2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2326 2496
2327 evpipe_init (EV_A); 2497 evpipe_init (EV_A);
2328 2498
2329 EV_FREQUENT_CHECK; 2499 EV_FREQUENT_CHECK;
2330 2500
2333 sigset_t full, prev; 2503 sigset_t full, prev;
2334 sigfillset (&full); 2504 sigfillset (&full);
2335 sigprocmask (SIG_SETMASK, &full, &prev); 2505 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif 2506#endif
2337 2507
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2339 2509
2340#ifndef _WIN32 2510#ifndef _WIN32
2341 sigprocmask (SIG_SETMASK, &prev, 0); 2511 sigprocmask (SIG_SETMASK, &prev, 0);
2342#endif 2512#endif
2343 } 2513 }
2381 2551
2382void 2552void
2383ev_child_start (EV_P_ ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
2384{ 2554{
2385#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387#endif 2557#endif
2388 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
2389 return; 2559 return;
2390 2560
2391 EV_FREQUENT_CHECK; 2561 EV_FREQUENT_CHECK;
2416# ifdef _WIN32 2586# ifdef _WIN32
2417# undef lstat 2587# undef lstat
2418# define lstat(a,b) _stati64 (a,b) 2588# define lstat(a,b) _stati64 (a,b)
2419# endif 2589# endif
2420 2590
2421#define DEF_STAT_INTERVAL 5.0074891 2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891 2593#define MIN_STAT_INTERVAL 0.1074891
2423 2594
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 2596
2426#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 2598# define EV_INOTIFY_BUFSIZE 8192
2431{ 2602{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 2604
2434 if (w->wd < 0) 2605 if (w->wd < 0)
2435 { 2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2437 2609
2438 /* monitor some parent directory for speedup hints */ 2610 /* monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2440 /* but an efficiency issue only */ 2612 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 { 2614 {
2443 char path [4096]; 2615 char path [4096];
2444 strcpy (path, w->path); 2616 strcpy (path, w->path);
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450 2622
2451 char *pend = strrchr (path, '/'); 2623 char *pend = strrchr (path, '/');
2452 2624
2453 if (!pend) 2625 if (!pend || pend == path)
2454 break; /* whoops, no '/', complain to your admin */ 2626 break;
2455 2627
2456 *pend = 0; 2628 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask); 2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 } 2630 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 } 2632 }
2461 } 2633 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 2634
2465 if (w->wd >= 0) 2635 if (w->wd >= 0)
2636 {
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2467} 2656}
2468 2657
2469static void noinline 2658static void noinline
2470infy_del (EV_P_ ev_stat *w) 2659infy_del (EV_P_ ev_stat *w)
2471{ 2660{
2485 2674
2486static void noinline 2675static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 2677{
2489 if (slot < 0) 2678 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */ 2679 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 2681 infy_wd (EV_A_ slot, wd, ev);
2493 else 2682 else
2494 { 2683 {
2495 WL w_; 2684 WL w_;
2501 2690
2502 if (w->wd == wd || wd == -1) 2691 if (w->wd == wd || wd == -1)
2503 { 2692 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2506 w->wd = -1; 2696 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 2697 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 2698 }
2509 2699
2510 stat_timer_cb (EV_A_ &w->timer, 0); 2700 stat_timer_cb (EV_A_ &w->timer, 0);
2523 2713
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2526} 2716}
2527 2717
2528void inline_size 2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
2529infy_init (EV_P) 2742infy_init (EV_P)
2530{ 2743{
2531 if (fs_fd != -2) 2744 if (fs_fd != -2)
2532 return; 2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2533 2750
2534 fs_fd = inotify_init (); 2751 fs_fd = inotify_init ();
2535 2752
2536 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
2537 { 2754 {
2539 ev_set_priority (&fs_w, EV_MAXPRI); 2756 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w); 2757 ev_io_start (EV_A_ &fs_w);
2541 } 2758 }
2542} 2759}
2543 2760
2544void inline_size 2761inline_size void
2545infy_fork (EV_P) 2762infy_fork (EV_P)
2546{ 2763{
2547 int slot; 2764 int slot;
2548 2765
2549 if (fs_fd < 0) 2766 if (fs_fd < 0)
2565 w->wd = -1; 2782 w->wd = -1;
2566 2783
2567 if (fs_fd >= 0) 2784 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */ 2785 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else 2786 else
2570 ev_timer_start (EV_A_ &w->timer); 2787 ev_timer_again (EV_A_ &w->timer);
2571 } 2788 }
2572
2573 } 2789 }
2574} 2790}
2575 2791
2576#endif 2792#endif
2577 2793
2613 || w->prev.st_atime != w->attr.st_atime 2829 || w->prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime 2830 || w->prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime 2831 || w->prev.st_ctime != w->attr.st_ctime
2616 ) { 2832 ) {
2617 #if EV_USE_INOTIFY 2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2618 infy_del (EV_A_ w); 2836 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w); 2837 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */ 2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2621 #endif 2840 #endif
2622 2841
2623 ev_feed_event (EV_A_ w, EV_STAT); 2842 ev_feed_event (EV_A_ w, EV_STAT);
2624 } 2843 }
2625} 2844}
2628ev_stat_start (EV_P_ ev_stat *w) 2847ev_stat_start (EV_P_ ev_stat *w)
2629{ 2848{
2630 if (expect_false (ev_is_active (w))) 2849 if (expect_false (ev_is_active (w)))
2631 return; 2850 return;
2632 2851
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w); 2852 ev_stat_stat (EV_A_ w);
2638 2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2639 if (w->interval < MIN_STAT_INTERVAL) 2855 w->interval = MIN_STAT_INTERVAL;
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641 2856
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2643 ev_set_priority (&w->timer, ev_priority (w)); 2858 ev_set_priority (&w->timer, ev_priority (w));
2644 2859
2645#if EV_USE_INOTIFY 2860#if EV_USE_INOTIFY
2646 infy_init (EV_A); 2861 infy_init (EV_A);
2647 2862
2648 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2649 infy_add (EV_A_ w); 2864 infy_add (EV_A_ w);
2650 else 2865 else
2651#endif 2866#endif
2652 ev_timer_start (EV_A_ &w->timer); 2867 ev_timer_again (EV_A_ &w->timer);
2653 2868
2654 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2655 2870
2656 EV_FREQUENT_CHECK; 2871 EV_FREQUENT_CHECK;
2657} 2872}
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2828 } 3043 }
2829 } 3044 }
2830} 3045}
2831 3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
2832#if 0 3064#if 0
2833static void 3065static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2835{ 3067{
2836 ev_idle_stop (EV_A_ idle); 3068 ev_idle_stop (EV_A_ idle);
2843 if (expect_false (ev_is_active (w))) 3075 if (expect_false (ev_is_active (w)))
2844 return; 3076 return;
2845 3077
2846 { 3078 {
2847 struct ev_loop *loop = w->other; 3079 struct ev_loop *loop = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 } 3082 }
2851 3083
2852 EV_FREQUENT_CHECK; 3084 EV_FREQUENT_CHECK;
2853 3085
2856 3088
2857 ev_prepare_init (&w->prepare, embed_prepare_cb); 3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI); 3090 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare); 3091 ev_prepare_start (EV_A_ &w->prepare);
2860 3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862 3097
2863 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
2864 3099
2865 EV_FREQUENT_CHECK; 3100 EV_FREQUENT_CHECK;
2872 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2873 return; 3108 return;
2874 3109
2875 EV_FREQUENT_CHECK; 3110 EV_FREQUENT_CHECK;
2876 3111
2877 ev_io_stop (EV_A_ &w->io); 3112 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare); 3113 ev_prepare_stop (EV_A_ &w->prepare);
2879 3114 ev_fork_stop (EV_A_ &w->fork);
2880 ev_stop (EV_A_ (W)w);
2881 3115
2882 EV_FREQUENT_CHECK; 3116 EV_FREQUENT_CHECK;
2883} 3117}
2884#endif 3118#endif
2885 3119
2982once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
2983{ 3217{
2984 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
2985 void *arg = once->arg; 3219 void *arg = once->arg;
2986 3220
2987 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
2988 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
2989 ev_free (once); 3223 ev_free (once);
2990 3224
2991 cb (revents, arg); 3225 cb (revents, arg);
2992} 3226}
2993 3227
2994static void 3228static void
2995once_cb_io (EV_P_ ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
2996{ 3230{
2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2998} 3234}
2999 3235
3000static void 3236static void
3001once_cb_to (EV_P_ ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
3002{ 3238{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3004} 3242}
3005 3243
3006void 3244void
3007ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3008{ 3246{
3030 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
3031 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
3032 } 3270 }
3033} 3271}
3034 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
3035#if EV_MULTIPLICITY 3381#if EV_MULTIPLICITY
3036 #include "ev_wrap.h" 3382 #include "ev_wrap.h"
3037#endif 3383#endif
3038 3384
3039#ifdef __cplusplus 3385#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines