ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.258 by root, Sun Sep 7 18:15:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
207#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 295# include <winsock.h>
209#endif 296#endif
210 297
211#if !EV_STAT_ENABLE 298#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
213#endif 303# endif
214 304int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 305# ifdef __cplusplus
216# include <sys/inotify.h> 306}
307# endif
217#endif 308#endif
218 309
219/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 327
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 331
225#if __GNUC__ >= 3 332#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 335#else
236# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
240#endif 341#endif
241 342
242#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
244 352
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 355
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 357#define EMPTY2(a,b) /* used to suppress some warnings */
250 358
251typedef ev_watcher *W; 359typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
254 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
256 371
257#ifdef _WIN32 372#ifdef _WIN32
258# include "ev_win32.c" 373# include "ev_win32.c"
259#endif 374#endif
260 375
281 perror (msg); 396 perror (msg);
282 abort (); 397 abort ();
283 } 398 }
284} 399}
285 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
286static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 417
288void 418void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 420{
291 alloc = cb; 421 alloc = cb;
292} 422}
293 423
294inline_speed void * 424inline_speed void *
295ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
296{ 426{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
298 428
299 if (!ptr && size) 429 if (!ptr && size)
300 { 430 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 432 abort ();
325 W w; 455 W w;
326 int events; 456 int events;
327} ANPENDING; 457} ANPENDING;
328 458
329#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
330typedef struct 461typedef struct
331{ 462{
332 WL head; 463 WL head;
333} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
334#endif 483#endif
335 484
336#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
337 486
338 struct ev_loop 487 struct ev_loop
396{ 545{
397 return ev_rt_now; 546 return ev_rt_now;
398} 547}
399#endif 548#endif
400 549
401#define array_roundsize(type,n) (((n) | 4) & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
582int inline_size
583array_nextsize (int elem, int cur, int cnt)
584{
585 int ncur = cur + 1;
586
587 do
588 ncur <<= 1;
589 while (cnt > ncur);
590
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 {
594 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4;
597 ncur /= elem;
598 }
599
600 return ncur;
601}
602
603static noinline void *
604array_realloc (int elem, void *base, int *cur, int cnt)
605{
606 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur);
608}
402 609
403#define array_needsize(type,base,cur,cnt,init) \ 610#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 611 if (expect_false ((cnt) > (cur))) \
405 { \ 612 { \
406 int newcnt = cur; \ 613 int ocur_ = (cur); \
407 do \ 614 (base) = (type *)array_realloc \
408 { \ 615 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 616 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 617 }
417 618
619#if 0
418#define array_slim(type,stem) \ 620#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 621 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 622 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 623 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 624 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 626 }
627#endif
425 628
426#define array_free(stem, idx) \ 629#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 631
429/*****************************************************************************/ 632/*****************************************************************************/
430 633
431void noinline 634void noinline
432ev_feed_event (EV_P_ void *w, int revents) 635ev_feed_event (EV_P_ void *w, int revents)
433{ 636{
434 W w_ = (W)w; 637 W w_ = (W)w;
638 int pri = ABSPRI (w_);
435 639
436 if (expect_false (w_->pending)) 640 if (expect_false (w_->pending))
641 pendings [pri][w_->pending - 1].events |= revents;
642 else
437 { 643 {
644 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 647 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 648 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 649}
447 650
448void inline_size 651void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 652queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 653{
451 int i; 654 int i;
452 655
453 for (i = 0; i < eventcnt; ++i) 656 for (i = 0; i < eventcnt; ++i)
485} 688}
486 689
487void 690void
488ev_feed_fd_event (EV_P_ int fd, int revents) 691ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 692{
693 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 694 fd_event (EV_A_ fd, revents);
491} 695}
492 696
493void inline_size 697void inline_size
494fd_reify (EV_P) 698fd_reify (EV_P)
495{ 699{
499 { 703 {
500 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
502 ev_io *w; 706 ev_io *w;
503 707
504 int events = 0; 708 unsigned char events = 0;
505 709
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 711 events |= (unsigned char)w->events;
508 712
509#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
510 if (events) 714 if (events)
511 { 715 {
512 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
513 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 723 }
516#endif 724#endif
517 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
518 anfd->reify = 0; 730 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
522 } 736 }
523 737
524 fdchangecnt = 0; 738 fdchangecnt = 0;
525} 739}
526 740
527void inline_size 741void inline_size
528fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
529{ 743{
530 if (expect_false (anfds [fd].reify)) 744 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
534 746
747 if (expect_true (!reify))
748 {
535 ++fdchangecnt; 749 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
538} 753}
539 754
540void inline_speed 755void inline_speed
541fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
542{ 757{
565{ 780{
566 int fd; 781 int fd;
567 782
568 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 784 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
572} 787}
573 788
574/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 790static void noinline
593 808
594 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 810 if (anfds [fd].events)
596 { 811 {
597 anfds [fd].events = 0; 812 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 814 }
600} 815}
601 816
602/*****************************************************************************/ 817/*****************************************************************************/
603 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
604void inline_speed 839void inline_speed
605upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
606{ 841{
607 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
608 844
609 while (k && heap [k >> 1]->at > w->at) 845 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
616 heap [k] = w; 878 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 879 ev_active (ANHE_w (he)) = k;
618
619} 880}
620 881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
621void inline_speed 889void inline_speed
622downheap (WT *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
623{ 891{
624 WT w = heap [k]; 892 ANHE he = heap [k];
625 893
626 while (k < (N >> 1)) 894 for (;;)
627 { 895 {
628 int j = k << 1; 896 int c = k << 1;
629 897
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 898 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 899 break;
635 900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
636 heap [k] = heap [j]; 907 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
638 k = j; 910 k = c;
639 } 911 }
640 912
641 heap [k] = w; 913 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
643} 938}
644 939
645void inline_size 940void inline_size
646adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
647{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 944 upheap (heap, k);
945 else
649 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
650} 959}
651 960
652/*****************************************************************************/ 961/*****************************************************************************/
653 962
654typedef struct 963typedef struct
655{ 964{
656 WL head; 965 WL head;
657 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
658} ANSIG; 967} ANSIG;
659 968
660static ANSIG *signals; 969static ANSIG *signals;
661static int signalmax; 970static int signalmax;
662 971
663static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 973
667void inline_size 974void inline_size
668signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
669{ 976{
670 while (count--) 977 while (count--)
674 981
675 ++base; 982 ++base;
676 } 983 }
677} 984}
678 985
679static void 986/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 987
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 988void inline_speed
731fd_intern (int fd) 989fd_intern (int fd)
732{ 990{
733#ifdef _WIN32 991#ifdef _WIN32
734 int arg = 1; 992 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 994#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 997#endif
740} 998}
741 999
742static void noinline 1000static void noinline
743siginit (EV_P) 1001evpipe_init (EV_P)
744{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
745 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
747 1022
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
751} 1091}
752 1092
753/*****************************************************************************/ 1093/*****************************************************************************/
754 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
755static ev_child *childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
756 1133
757#ifndef _WIN32 1134#ifndef _WIN32
758 1135
759static ev_signal childev; 1136static ev_signal childev;
760 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
761void inline_speed 1142void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
763{ 1144{
764 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1147
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
767 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
768 { 1152 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1154 w->rpid = pid;
771 w->rstatus = status; 1155 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1157 }
1158 }
774} 1159}
775 1160
776#ifndef WCONTINUED 1161#ifndef WCONTINUED
777# define WCONTINUED 0 1162# define WCONTINUED 0
778#endif 1163#endif
787 if (!WCONTINUED 1172 if (!WCONTINUED
788 || errno != EINVAL 1173 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1175 return;
791 1176
792 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1180
796 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1184}
800 1185
801#endif 1186#endif
802 1187
803/*****************************************************************************/ 1188/*****************************************************************************/
875} 1260}
876 1261
877unsigned int 1262unsigned int
878ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
879{ 1264{
880 return EVBACKEND_EPOLL 1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1266
882 | EVBACKEND_PORT; 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
883} 1272}
884 1273
885unsigned int 1274unsigned int
886ev_backend (EV_P) 1275ev_backend (EV_P)
887{ 1276{
888 return backend; 1277 return backend;
1278}
1279
1280unsigned int
1281ev_loop_count (EV_P)
1282{
1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
889} 1296}
890 1297
891static void noinline 1298static void noinline
892loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
893{ 1300{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1307 have_monotonic = 1;
901 } 1308 }
902#endif 1309#endif
903 1310
904 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1312 mn_now = get_clock ();
906 now_floor = mn_now; 1313 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
1324
1325 /* pid check not overridable via env */
1326#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK)
1328 curpid = getpid ();
1329#endif
908 1330
909 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1332 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1335
914 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
916
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922 1338
923#if EV_USE_PORT 1339#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1341#endif
926#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
934#endif 1350#endif
935#if EV_USE_SELECT 1351#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1353#endif
938 1354
939 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
941 } 1357 }
942} 1358}
943 1359
944static void noinline 1360static void noinline
945loop_destroy (EV_P) 1361loop_destroy (EV_P)
946{ 1362{
947 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
948 1381
949#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
951 close (fs_fd); 1384 close (fs_fd);
952#endif 1385#endif
969#if EV_USE_SELECT 1402#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1403 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1404#endif
972 1405
973 for (i = NUMPRI; i--; ) 1406 for (i = NUMPRI; i--; )
1407 {
974 array_free (pending, [i]); 1408 array_free (pending, [i]);
1409#if EV_IDLE_ENABLE
1410 array_free (idle, [i]);
1411#endif
1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
975 1415
976 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1417 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1418 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1419#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1420 array_free (periodic, EMPTY);
981#endif 1421#endif
1422#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1423 array_free (fork, EMPTY);
1424#endif
983 array_free (prepare, EMPTY0); 1425 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
985 1430
986 backend = 0; 1431 backend = 0;
987} 1432}
988 1433
1434#if EV_USE_INOTIFY
989void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
990 1437
991void inline_size 1438void inline_size
992loop_fork (EV_P) 1439loop_fork (EV_P)
993{ 1440{
994#if EV_USE_PORT 1441#if EV_USE_PORT
1002#endif 1449#endif
1003#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1451 infy_fork (EV_A);
1005#endif 1452#endif
1006 1453
1007 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1008 { 1455 {
1009 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1010 1462
1011 ev_ref (EV_A); 1463 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1013 close (sigpipe [0]); 1473 close (evpipe [0]);
1014 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1015 1476
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1020 } 1480 }
1021 1481
1022 postfork = 0; 1482 postfork = 0;
1023} 1483}
1024 1484
1025#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1026struct ev_loop * 1487struct ev_loop *
1027ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1028{ 1489{
1029 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1030 1491
1046} 1507}
1047 1508
1048void 1509void
1049ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1050{ 1511{
1051 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1052} 1513}
1053 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1054#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1055 1615
1056#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1057struct ev_loop * 1617struct ev_loop *
1058ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1059#else 1619#else
1060int 1620int
1061ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1062#endif 1622#endif
1063{ 1623{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1069 { 1625 {
1070#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1628#else
1075 1631
1076 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1077 1633
1078 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1079 { 1635 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1636#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1103#ifndef _WIN32 1657#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1106#endif 1660#endif
1107 1661
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1115} 1663}
1116 1664
1117void 1665void
1118ev_default_fork (void) 1666ev_default_fork (void)
1120#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1670#endif
1123 1671
1124 if (backend) 1672 if (backend)
1125 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1126} 1674}
1127 1675
1128/*****************************************************************************/ 1676/*****************************************************************************/
1129 1677
1130int inline_size 1678void
1131any_pending (EV_P) 1679ev_invoke (EV_P_ void *w, int revents)
1132{ 1680{
1133 int pri; 1681 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1682}
1141 1683
1142void inline_speed 1684void inline_speed
1143call_pending (EV_P) 1685call_pending (EV_P)
1144{ 1686{
1153 { 1695 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1155 1697
1156 p->w->pending = 0; 1698 p->w->pending = 0;
1157 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1158 } 1701 }
1159 } 1702 }
1160} 1703}
1161 1704
1705#if EV_IDLE_ENABLE
1706void inline_size
1707idle_reify (EV_P)
1708{
1709 if (expect_false (idleall))
1710 {
1711 int pri;
1712
1713 for (pri = NUMPRI; pri--; )
1714 {
1715 if (pendingcnt [pri])
1716 break;
1717
1718 if (idlecnt [pri])
1719 {
1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1721 break;
1722 }
1723 }
1724 }
1725}
1726#endif
1727
1162void inline_size 1728void inline_size
1163timers_reify (EV_P) 1729timers_reify (EV_P)
1164{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1166 { 1734 {
1167 ev_timer *w = timers [0]; 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1168 1736
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1738
1171 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1172 if (w->repeat) 1740 if (w->repeat)
1173 { 1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175 1747
1176 ((WT)w)->at += w->repeat; 1748 ANHE_at_cache (timers [HEAP0]);
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
1180 downheap ((WT *)timers, timercnt, 0); 1749 downheap (timers, timercnt, HEAP0);
1181 } 1750 }
1182 else 1751 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1753
1754 EV_FREQUENT_CHECK;
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1186 } 1756 }
1187} 1757}
1188 1758
1189#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1190void inline_size 1760void inline_size
1191periodics_reify (EV_P) 1761periodics_reify (EV_P)
1192{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1194 { 1766 {
1195 ev_periodic *w = periodics [0]; 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1196 1768
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1770
1199 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1201 { 1773 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1204 downheap ((WT *)periodics, periodiccnt, 0); 1779 downheap (periodics, periodiccnt, HEAP0);
1205 } 1780 }
1206 else if (w->interval) 1781 else if (w->interval)
1207 { 1782 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1798 downheap (periodics, periodiccnt, HEAP0);
1211 } 1799 }
1212 else 1800 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1802
1803 EV_FREQUENT_CHECK;
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1216 } 1805 }
1217} 1806}
1218 1807
1219static void noinline 1808static void noinline
1220periodics_reschedule (EV_P) 1809periodics_reschedule (EV_P)
1221{ 1810{
1222 int i; 1811 int i;
1223 1812
1224 /* adjust periodics after time jump */ 1813 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1226 { 1815 {
1227 ev_periodic *w = periodics [i]; 1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1228 1817
1229 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1820 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1233 } 1837 {
1838 ev_tstamp odiff = rtmn_diff;
1234 1839
1235 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i);
1238}
1239#endif
1240
1241int inline_size
1242time_update_monotonic (EV_P)
1243{
1244 mn_now = get_clock (); 1840 mn_now = get_clock ();
1245 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1845 {
1248 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1847 return;
1250 } 1848 }
1251 else 1849
1252 {
1253 now_floor = mn_now; 1850 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1852
1259void inline_size 1853 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1261{ 1855 * in case we get preempted during the calls to
1262 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1263 1857 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1266 { 1860 */
1267 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1268 { 1862 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1282 1864
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1284 return; /* all is well */ 1866 return; /* all is well */
1285 1867
1286 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1869 mn_now = get_clock ();
1288 now_floor = mn_now; 1870 now_floor = mn_now;
1289 } 1871 }
1290 1872
1291# if EV_PERIODIC_ENABLE 1873# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1293# endif 1875# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1878 }
1298 else 1879 else
1299#endif 1880#endif
1300 { 1881 {
1301 ev_rt_now = ev_time (); 1882 ev_rt_now = ev_time ();
1302 1883
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1885 {
1305#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1307#endif 1888#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1312 } 1896 }
1313 1897
1314 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1315 } 1899 }
1316} 1900}
1330static int loop_done; 1914static int loop_done;
1331 1915
1332void 1916void
1333ev_loop (EV_P_ int flags) 1917ev_loop (EV_P_ int flags)
1334{ 1918{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1919 loop_done = EVUNLOOP_CANCEL;
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1338 1920
1339 while (activecnt) 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1922
1923 do
1340 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1929#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid))
1932 {
1933 curpid = getpid ();
1934 postfork = 1;
1935 }
1936#endif
1937
1341#if EV_FORK_ENABLE 1938#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1939 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1940 if (expect_false (postfork))
1344 if (forkcnt) 1941 if (forkcnt)
1345 { 1942 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1944 call_pending (EV_A);
1348 } 1945 }
1349#endif 1946#endif
1350 1947
1351 /* queue check watchers (and execute them) */ 1948 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1949 if (expect_false (preparecnt))
1353 { 1950 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1952 call_pending (EV_A);
1356 } 1953 }
1357 1954
1955 if (expect_false (!activecnt))
1956 break;
1957
1358 /* we might have forked, so reify kernel state if necessary */ 1958 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1959 if (expect_false (postfork))
1360 loop_fork (EV_A); 1960 loop_fork (EV_A);
1361 1961
1362 /* update fd-related kernel structures */ 1962 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 1963 fd_reify (EV_A);
1364 1964
1365 /* calculate blocking time */ 1965 /* calculate blocking time */
1366 { 1966 {
1367 ev_tstamp block; 1967 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.;
1368 1969
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 1971 {
1373 /* update time to cancel out callback processing overhead */ 1972 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1973 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1974
1384 block = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1385 1976
1386 if (timercnt) 1977 if (timercnt)
1387 { 1978 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1389 if (block > to) block = to; 1980 if (waittime > to) waittime = to;
1390 } 1981 }
1391 1982
1392#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 1984 if (periodiccnt)
1394 { 1985 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 1987 if (waittime > to) waittime = to;
1397 } 1988 }
1398#endif 1989#endif
1399 1990
1400 if (expect_false (block < 0.)) block = 0.; 1991 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime;
1993
1994 sleeptime = waittime - backend_fudge;
1995
1996 if (expect_true (sleeptime > io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 {
2001 ev_sleep (sleeptime);
2002 waittime -= sleeptime;
2003 }
1401 } 2004 }
1402 2005
2006 ++loop_count;
1403 backend_poll (EV_A_ block); 2007 backend_poll (EV_A_ waittime);
2008
2009 /* update ev_rt_now, do magic */
2010 time_update (EV_A_ waittime + sleeptime);
1404 } 2011 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 2012
1409 /* queue pending timers and reschedule them */ 2013 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 2014 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 2015#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 2016 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 2017#endif
1414 2018
2019#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 2020 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 2021 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2022#endif
1418 2023
1419 /* queue check watchers, to be executed first */ 2024 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 2025 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 2027
1423 call_pending (EV_A); 2028 call_pending (EV_A);
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 2029 }
2030 while (expect_true (
2031 activecnt
2032 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2034 ));
1428 2035
1429 if (loop_done == EVUNLOOP_ONE) 2036 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 2037 loop_done = EVUNLOOP_CANCEL;
1431} 2038}
1432 2039
1459 head = &(*head)->next; 2066 head = &(*head)->next;
1460 } 2067 }
1461} 2068}
1462 2069
1463void inline_speed 2070void inline_speed
1464ev_clear_pending (EV_P_ W w) 2071clear_pending (EV_P_ W w)
1465{ 2072{
1466 if (w->pending) 2073 if (w->pending)
1467 { 2074 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2075 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 2076 w->pending = 0;
1470 } 2077 }
1471} 2078}
1472 2079
2080int
2081ev_clear_pending (EV_P_ void *w)
2082{
2083 W w_ = (W)w;
2084 int pending = w_->pending;
2085
2086 if (expect_true (pending))
2087 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2089 w_->pending = 0;
2090 p->w = 0;
2091 return p->events;
2092 }
2093 else
2094 return 0;
2095}
2096
2097void inline_size
2098pri_adjust (EV_P_ W w)
2099{
2100 int pri = w->priority;
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri;
2104}
2105
1473void inline_speed 2106void inline_speed
1474ev_start (EV_P_ W w, int active) 2107ev_start (EV_P_ W w, int active)
1475{ 2108{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2109 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 2110 w->active = active;
1480 ev_ref (EV_A); 2111 ev_ref (EV_A);
1481} 2112}
1482 2113
1483void inline_size 2114void inline_size
1487 w->active = 0; 2118 w->active = 0;
1488} 2119}
1489 2120
1490/*****************************************************************************/ 2121/*****************************************************************************/
1491 2122
1492void 2123void noinline
1493ev_io_start (EV_P_ ev_io *w) 2124ev_io_start (EV_P_ ev_io *w)
1494{ 2125{
1495 int fd = w->fd; 2126 int fd = w->fd;
1496 2127
1497 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1498 return; 2129 return;
1499 2130
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1501 2132
2133 EV_FREQUENT_CHECK;
2134
1502 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1505 2138
1506 fd_change (EV_A_ fd); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1507} 2140 w->events &= ~EV_IOFDSET;
1508 2141
1509void 2142 EV_FREQUENT_CHECK;
2143}
2144
2145void noinline
1510ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1511{ 2147{
1512 ev_clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1514 return; 2150 return;
1515 2151
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 2153
2154 EV_FREQUENT_CHECK;
2155
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1520 2158
1521 fd_change (EV_A_ w->fd); 2159 fd_change (EV_A_ w->fd, 1);
1522}
1523 2160
1524void 2161 EV_FREQUENT_CHECK;
2162}
2163
2164void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1526{ 2166{
1527 if (expect_false (ev_is_active (w))) 2167 if (expect_false (ev_is_active (w)))
1528 return; 2168 return;
1529 2169
1530 ((WT)w)->at += mn_now; 2170 ev_at (w) += mn_now;
1531 2171
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1534 ev_start (EV_A_ (W)w, ++timercnt); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1536 timers [timercnt - 1] = w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 2180 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w));
1538 2182
2183 EV_FREQUENT_CHECK;
2184
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1540} 2186}
1541 2187
1542void 2188void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1544{ 2190{
1545 ev_clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1547 return; 2193 return;
1548 2194
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2195 EV_FREQUENT_CHECK;
1550 2196
1551 { 2197 {
1552 int active = ((W)w)->active; 2198 int active = ev_active (w);
1553 2199
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201
2202 --timercnt;
2203
1554 if (expect_true (--active < --timercnt)) 2204 if (expect_true (active < timercnt + HEAP0))
1555 { 2205 {
1556 timers [active] = timers [timercnt]; 2206 timers [active] = timers [timercnt + HEAP0];
1557 adjustheap ((WT *)timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
1558 } 2208 }
1559 } 2209 }
1560 2210
1561 ((WT)w)->at -= mn_now; 2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now;
1562 2214
1563 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
1564} 2216}
1565 2217
1566void 2218void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
1568{ 2220{
2221 EV_FREQUENT_CHECK;
2222
1569 if (ev_is_active (w)) 2223 if (ev_is_active (w))
1570 { 2224 {
1571 if (w->repeat) 2225 if (w->repeat)
1572 { 2226 {
1573 ((WT)w)->at = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2229 adjustheap (timers, timercnt, ev_active (w));
1575 } 2230 }
1576 else 2231 else
1577 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
1578 } 2233 }
1579 else if (w->repeat) 2234 else if (w->repeat)
1580 { 2235 {
1581 w->at = w->repeat; 2236 ev_at (w) = w->repeat;
1582 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
1583 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
1584} 2241}
1585 2242
1586#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
1587void 2244void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 2246{
1590 if (expect_false (ev_is_active (w))) 2247 if (expect_false (ev_is_active (w)))
1591 return; 2248 return;
1592 2249
1593 if (w->reschedule_cb) 2250 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 2252 else if (w->interval)
1596 { 2253 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 2255 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 2257 }
2258 else
2259 ev_at (w) = w->offset;
1601 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 2267 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w));
1606 2269
2270 EV_FREQUENT_CHECK;
2271
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1608} 2273}
1609 2274
1610void 2275void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 2277{
1613 ev_clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
1615 return; 2280 return;
1616 2281
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2282 EV_FREQUENT_CHECK;
1618 2283
1619 { 2284 {
1620 int active = ((W)w)->active; 2285 int active = ev_active (w);
1621 2286
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288
2289 --periodiccnt;
2290
1622 if (expect_true (--active < --periodiccnt)) 2291 if (expect_true (active < periodiccnt + HEAP0))
1623 { 2292 {
1624 periodics [active] = periodics [periodiccnt]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
1626 } 2295 }
1627 } 2296 }
1628 2297
2298 EV_FREQUENT_CHECK;
2299
1629 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
1630} 2301}
1631 2302
1632void 2303void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 2304ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 2305{
1635 /* TODO: use adjustheap and recalculation */ 2306 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 2307 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 2308 ev_periodic_start (EV_A_ w);
1640 2311
1641#ifndef SA_RESTART 2312#ifndef SA_RESTART
1642# define SA_RESTART 0 2313# define SA_RESTART 0
1643#endif 2314#endif
1644 2315
1645void 2316void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2317ev_signal_start (EV_P_ ev_signal *w)
1647{ 2318{
1648#if EV_MULTIPLICITY 2319#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 2321#endif
1651 if (expect_false (ev_is_active (w))) 2322 if (expect_false (ev_is_active (w)))
1652 return; 2323 return;
1653 2324
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 2326
2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2330
2331 {
2332#ifndef _WIN32
2333 sigset_t full, prev;
2334 sigfillset (&full);
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2339
2340#ifndef _WIN32
2341 sigprocmask (SIG_SETMASK, &prev, 0);
2342#endif
2343 }
2344
1656 ev_start (EV_A_ (W)w, 1); 2345 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2346 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2347
1660 if (!((WL)w)->next) 2348 if (!((WL)w)->next)
1661 { 2349 {
1662#if _WIN32 2350#if _WIN32
1663 signal (w->signum, sighandler); 2351 signal (w->signum, ev_sighandler);
1664#else 2352#else
1665 struct sigaction sa; 2353 struct sigaction sa;
1666 sa.sa_handler = sighandler; 2354 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
1670#endif 2358#endif
1671 } 2359 }
1672}
1673 2360
1674void 2361 EV_FREQUENT_CHECK;
2362}
2363
2364void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2366{
1677 ev_clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
1679 return; 2369 return;
1680 2370
2371 EV_FREQUENT_CHECK;
2372
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
1683 2375
1684 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
1686} 2380}
1687 2381
1688void 2382void
1689ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
1690{ 2384{
1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1693#endif 2387#endif
1694 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
1695 return; 2389 return;
1696 2390
2391 EV_FREQUENT_CHECK;
2392
1697 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
1699} 2397}
1700 2398
1701void 2399void
1702ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
1703{ 2401{
1704 ev_clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
1706 return; 2404 return;
1707 2405
2406 EV_FREQUENT_CHECK;
2407
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
1710} 2412}
1711 2413
1712#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
1713 2415
1714# ifdef _WIN32 2416# ifdef _WIN32
1732 if (w->wd < 0) 2434 if (w->wd < 0)
1733 { 2435 {
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735 2437
1736 /* monitor some parent directory for speedup hints */ 2438 /* monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */
2440 /* but an efficiency issue only */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 { 2442 {
1739 char path [4096]; 2443 char path [4096];
1740 strcpy (path, w->path); 2444 strcpy (path, w->path);
1741 2445
1867 } 2571 }
1868 2572
1869 } 2573 }
1870} 2574}
1871 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
1872#endif 2582#endif
1873 2583
1874void 2584void
1875ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
1876{ 2586{
1940 else 2650 else
1941#endif 2651#endif
1942 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
1943 2653
1944 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
1945} 2657}
1946 2658
1947void 2659void
1948ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2661{
1950 ev_clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
1952 return; 2664 return;
1953 2665
2666 EV_FREQUENT_CHECK;
2667
1954#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
1956#endif 2670#endif
1957 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
1958 2672
1959 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962 2674
2675 EV_FREQUENT_CHECK;
2676}
2677#endif
2678
2679#if EV_IDLE_ENABLE
1963void 2680void
1964ev_idle_start (EV_P_ ev_idle *w) 2681ev_idle_start (EV_P_ ev_idle *w)
1965{ 2682{
1966 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
1967 return; 2684 return;
1968 2685
2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2689
2690 {
2691 int active = ++idlecnt [ABSPRI (w)];
2692
2693 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2694 ev_start (EV_A_ (W)w, active);
2695
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2698 }
2699
2700 EV_FREQUENT_CHECK;
1972} 2701}
1973 2702
1974void 2703void
1975ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2705{
1977 ev_clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
1979 return; 2708 return;
1980 2709
2710 EV_FREQUENT_CHECK;
2711
1981 { 2712 {
1982 int active = ((W)w)->active; 2713 int active = ev_active (w);
1983 idles [active - 1] = idles [--idlecnt]; 2714
1984 ((W)idles [active - 1])->active = active; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2717
2718 ev_stop (EV_A_ (W)w);
2719 --idleall;
1985 } 2720 }
1986 2721
1987 ev_stop (EV_A_ (W)w); 2722 EV_FREQUENT_CHECK;
1988} 2723}
2724#endif
1989 2725
1990void 2726void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2728{
1993 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1994 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
1995 2733
1996 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1998 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
1999} 2739}
2000 2740
2001void 2741void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2743{
2004 ev_clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2006 return; 2746 return;
2007 2747
2748 EV_FREQUENT_CHECK;
2749
2008 { 2750 {
2009 int active = ((W)w)->active; 2751 int active = ev_active (w);
2752
2010 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active; 2754 ev_active (prepares [active - 1]) = active;
2012 } 2755 }
2013 2756
2014 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2015} 2760}
2016 2761
2017void 2762void
2018ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2019{ 2764{
2020 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2021 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2022 2769
2023 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2025 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2026} 2775}
2027 2776
2028void 2777void
2029ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2030{ 2779{
2031 ev_clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2033 return; 2782 return;
2034 2783
2784 EV_FREQUENT_CHECK;
2785
2035 { 2786 {
2036 int active = ((W)w)->active; 2787 int active = ev_active (w);
2788
2037 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active; 2790 ev_active (checks [active - 1]) = active;
2039 } 2791 }
2040 2792
2041 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2042} 2796}
2043 2797
2044#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2045void noinline 2799void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 2801{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 2802 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2803}
2050 2804
2051static void 2805static void
2052embed_cb (EV_P_ ev_io *io, int revents) 2806embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 2807{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 2809
2056 if (ev_cb (w)) 2810 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2811 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 2812 else
2059 ev_embed_sweep (loop, w); 2813 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 2814}
2815
2816static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820
2821 {
2822 struct ev_loop *loop = w->other;
2823
2824 while (fdchangecnt)
2825 {
2826 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2828 }
2829 }
2830}
2831
2832#if 0
2833static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2835{
2836 ev_idle_stop (EV_A_ idle);
2837}
2838#endif
2061 2839
2062void 2840void
2063ev_embed_start (EV_P_ ev_embed *w) 2841ev_embed_start (EV_P_ ev_embed *w)
2064{ 2842{
2065 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2066 return; 2844 return;
2067 2845
2068 { 2846 {
2069 struct ev_loop *loop = w->loop; 2847 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 2850 }
2851
2852 EV_FREQUENT_CHECK;
2073 2853
2074 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2076 2856
2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare);
2860
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862
2077 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2078} 2866}
2079 2867
2080void 2868void
2081ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2870{
2083 ev_clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2085 return; 2873 return;
2086 2874
2875 EV_FREQUENT_CHECK;
2876
2087 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare);
2088 2879
2089 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2090} 2883}
2091#endif 2884#endif
2092 2885
2093#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2094void 2887void
2095ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2096{ 2889{
2097 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2098 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2099 2894
2100 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2103} 2900}
2104 2901
2105void 2902void
2106ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2904{
2108 ev_clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2110 return; 2907 return;
2111 2908
2909 EV_FREQUENT_CHECK;
2910
2112 { 2911 {
2113 int active = ((W)w)->active; 2912 int active = ev_active (w);
2913
2114 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active; 2915 ev_active (forks [active - 1]) = active;
2116 } 2916 }
2117 2917
2118 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2921}
2922#endif
2923
2924#if EV_ASYNC_ENABLE
2925void
2926ev_async_start (EV_P_ ev_async *w)
2927{
2928 if (expect_false (ev_is_active (w)))
2929 return;
2930
2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2934
2935 ev_start (EV_A_ (W)w, ++asynccnt);
2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2940}
2941
2942void
2943ev_async_stop (EV_P_ ev_async *w)
2944{
2945 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w)))
2947 return;
2948
2949 EV_FREQUENT_CHECK;
2950
2951 {
2952 int active = ev_active (w);
2953
2954 asyncs [active - 1] = asyncs [--asynccnt];
2955 ev_active (asyncs [active - 1]) = active;
2956 }
2957
2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963void
2964ev_async_send (EV_P_ ev_async *w)
2965{
2966 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync);
2119} 2968}
2120#endif 2969#endif
2121 2970
2122/*****************************************************************************/ 2971/*****************************************************************************/
2123 2972
2181 ev_timer_set (&once->to, timeout, 0.); 3030 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 3031 ev_timer_start (EV_A_ &once->to);
2183 } 3032 }
2184} 3033}
2185 3034
3035#if EV_MULTIPLICITY
3036 #include "ev_wrap.h"
3037#endif
3038
2186#ifdef __cplusplus 3039#ifdef __cplusplus
2187} 3040}
2188#endif 3041#endif
2189 3042

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines